Matematyka z plusem dla szkoły ponadgimnazjalnej



Podobne dokumenty
Matematyka z plusemdla szkoły ponadgimnazjalnej WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM. KATEGORIA B Uczeń rozumie:

K P K P R K P R D K P R D W

Rozkład materiału klasa 1BW

KLASA 3 GIMNAZJUM. 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna System dziesiątkowy System rzymski 5-6

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY V TECHNIKUM 5 - LETNIEGO

Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)

PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY)

Dział Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra trójkąty prostokątne. Wielokąty i okręgi

Wymagania na poszczególne oceny klasa 4

Załącznik nr 4 do PSO z matematyki

'()(*+,-./01(23/*4*567/8/23/*98:)2(!."/+)012+3$%-4#"4"$5012#-4#"4-6017%*,4.!"#$!"#%&"!!!"#$%&"#'()%*+,-+

Arkusz maturalny treningowy nr 7. W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Matematyka z plusem dla szkoły ponadgimnazjalnej ROZKŁAD MATERIAŁU DLA KLASY II

Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)

Analiza wyników egzaminu gimnazjalnego. Test matematyczno-przyrodniczy matematyka. Test GM-M1-122,

SPRAWDZIANY Z MATEMATYKI

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA TRZECIA GIMNAZJUM PIERWSZY OKRES

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS IV VI

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY

Matematyka wykaz umiejętności wymaganych na poszczególne oceny zakres rozszerzony KLASA II

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM

WYMAGANIA EDUKACYJNE W ROKU SZKOLNYM 2014 /2015

DZIAŁ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) TEMAT ZAJĘĆ CELE PODSTAWOWE CELE PONADPODSTAWOWE 1. Lekcja organizacyjna. Uczeń:

KOŃCOWOROCZNE KRYTERIA OCENIANIA Z MATEMATYKI W ROKU SZKOLNYM 2014/2015 DLA KLAS III przygotowały mgr Magdalena Murawska i mgr Agnieszka Łukaszyk

Przedmiotowy system oceniania z matematyki kl.i

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z MATEMATYKI W KLASACH IV-VI

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH, ŚCIEŻEK EDUKACYJNYCH I STANDARDÓW WYMAGAŃ EGZAMINACYJNYCH

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE III GIMNAZJUM ROK SZKOLNY 2015/2016

ROK SZKOLNY 2012/2013

EGZAMIN MATURALNY Z MATEMATYKI

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM WG PROGRAMU MATEMATYKA Z PLUSEM w roku szkolnym 2013/2014

PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (ZAKRES ROZSZERZONY)

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2013/2014

SZCZEGÓŁOWE WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM ROZSZERZONY. S x 3x y. 1.5 Podanie odpowiedzi: Poszukiwane liczby to : 2, 6, 5.

Kryteria oceniania z matematyki Klasa III poziom rozszerzony

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

Przedmiotowe Zasady Oceniania

Kurs z matematyki - zadania

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

MATEMATYKA 4 INSTYTUT MEDICUS FUNKCJA KWADRATOWA. Kurs przygotowawczy na studia medyczne. Rok szkolny 2010/2011. tel

Kurs wyrównawczy dla kandydatów i studentów UTP

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

Program nauczania matematyki

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

ZAKRES PODSTAWOWY CZĘŚĆ II. Wyrażenia wymierne

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

Temat: Funkcje. Własności ogólne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM W KLASIE III

i danej prędkości; stosuje jednostki prędkości: km/h, m/s; umiejętności rachunkowe, a także własne poprawne metody.

Rys. 1. Rysunek do zadania testowego

Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNI TE. W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied.

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W KLASIE I

Czas pracy 170 minut

KURS GEOMETRIA ANALITYCZNA

Matematyka z plusami. Program nauczania matematyki w III LO w Łomży. Zakres podstawowy oraz zakres podstawowy z rozszerzeniem

nie zdałeś naszej próbnej matury z matematyki?

Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2011/2012

Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka XI LO w Krakowie. Klasa trzecia. Poziom rozszerzony.

Czas pracy 170 minut

Zadania zamknięte. A) 3 pierwiastki B) 1 pierwiastek C) 4 pierwiastki D) 2 pierwiastki. C) a 4 = 2 3

Wymagania edukacyjne z matematyki dla klasy I TM w roku szkolnym 2012/2013

MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI

ROZKŁAD MATERIAŁU Z MATEMATYKI, ZGODNY Z PODSTAWĄ PROGRAMOWĄ OGŁOSZONĄ PRZEZ MINISTRA EDUKACJI NARODOWEJ DNIA 23 VIII 2007 R.

Matematyka klasa 5 Wymagania edukacyjne na ocenę śródroczną.

Przedmiotowy system oceniania z matematyki w klasach IV - VI

PROGRAM ZAJĘĆ MATEMATYCZNYCH DLA UCZNIÓW Z DYSLEKSJĄ

Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Szczegółowe wymagania edukacyjne z matematyki w klasie trzeciej. Zakres podstawowy i rozszerzony

ROZKŁAD MATERIAŁU DO III KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

Regulamin II Krośnieńskiego Konkursu Matematycznego

V. WYMAGANIA EGZAMINACYJNE

Odpowiedzi i schematy oceniania Arkusz 23 Zadania zamknięte. Wskazówki do rozwiązania. Iloczyn dwóch liczb ujemnych jest liczbą dodatnią, zatem

14.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe.

EGZAMIN MATURALNY Z MATEMATYKI

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W ZESPOLE SZKÓŁ NR 32 im. K. K. Baczyńskiego W WARSZAWIE

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI

WYKRESY FUNKCJI NA CO DZIEŃ

EGZAMIN MATURALNY 2013 MATEMATYKA

ZADANIA ZAMKNI TE. W zadaniach od 1. do 20. wybierz i zaznacz na karcie odpowiedzi jedn poprawn odpowied.

ZASADY OCENIANIA PRZEDMIOTOWEGO Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

Zadanie I. 2. Gdzie w przestrzeni usytuowane są punkty (w której ćwiartce leży dany punkt):

NUMER IDENTYFIKATORA:

Temat: Co to jest optymalizacja? Maksymalizacja objętości naczynia prostopadłościennego za pomocą arkusza kalkulacyjngo.

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

TEMAT : Sprawdź sam siebie powtórzenie materiału (ewaluacja całoroczna)

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W CENTRUM KSZTAŁCENIA USTAWICZNEGO NR 1 KLASY STACJONARNE

ARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI

,,Nie bój się matematyki - Program zajęć wyrównawczych z matematyki dla uczniów klas VI Szkoły Podst. nr 5 w Nowym Dworze Maz.

PLAN WYNIKOWY Z MATEMATYKI DLA LICEUM OGÓLNOKSZTAŁCĄCEGO, LICEUM PROFILOWANEGO I TECHNIKUM 4 LETNIEGO (Kształcenie ogólne w zakresie podstawowym)

EGZAMIN MATURALNY Z MATEMATYKI

Przedmiotowy system oceniania z matematyki

Szczegółowe kryteria ocen dla klasy czwartej.

SCENARIUSZ LEKCJI. Podstawa programowa:

Transkrypt:

1 ZAŁOŻENIA DO PLANU REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy) Program nauczania: Matematyka z plusem, numer dopuszczenia DKW-4015-37/01. Liczba godzin nauki w tygodniu: 3 Planowana liczba godzin w ciągu roku: 72 Szarym paskiem zaznaczono treści dotyczące materiału z zakresu rozszerzonego. Szarą ramką oznaczono treści nieobowiązkowe. Podkreślenie dotyczy treści, które mimo, że nie są już objęte podstawą programową, warto je omówić z uczniami. Podręczniki i książki pomocnicze Gdańskiego Wydawnictwa Oświatowego: Matematyka III. Podręcznik dla liceum i technikum. Zakres podstawowy. Nowa wersja M. Dobrowolska, M. Karpiński, J. Lech Matematyka III. Podręcznik dla liceum i technikum. Zakres podstawowy z rozszerzeniem. Nowa wersja M. Dobrowolska, M. Karpiński, J. Lech Matematyka III. Ćwiczenia M. Dobrowolska, M. Karpiński, J. Lech Matematyka III. Zbiór zadań M. Braun, M. Dobrowolska, M. Karpiński, J. Lech, E. Zamościńska Matematyka III. Sprawdziany U. Sawicka-Patrzałek, D. Figura, B. Jeleńska, A. Wola, W. Urbańczyk Matematyka III. Podręcznik dla liceum i technikum. Wersja dla nauczyciela. Część I i II M. Dobrowolska, M. Karpiński, J. Lech, W. Urbańczyk ROZKŁAD MATERIAŁU DLA KLASY III Liczba godzin Wyrażenia wymierne 13 Przekształcanie wielomianów 2 Wyrażenia wymierne 2 Równania wymierne 3 Nierówności wymierne Hiperbola. Przesuwanie hiperboli 3 Funkcja homograficzna Powtórzenie i praca klasowa 3

2 Prawdopodobieństwo 17 Zdarzenia losowe 5 Drzewka 3 Własności 3 Elementy kombinatoryki 3 Elementy kombinatoryki (cd.) Kombinatoryka i prawdopodobieństwo Powtórzenie i praca klasowa 3 Stereometria 23 Wielościany 2 Wielościany foremne 2 Kąty w wielościanach 2 Pola ostrosłupów Pola wielościanów 2 Walec 2 Stożek 2 Kula 2 Bryły podobne 2 Powtórzenie i praca klasowa 3 RAZEM W CIĄGU ROKU 53 4

3 PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY) Kategorie celów nauczania: A zapamiętanie wiadomości, B rozumienie wiadomości, C stosowanie wiadomości w sytuacjach typowych, D stosowanie wiadomości w sytuacjach problemowych Poziomy wymagań edukacyjnych: K konieczny ocena dopuszczająca (2), P podstawowy ocena dostateczna (3), R rozszerzający ocena dobra (4), D dopełniający ocena bardzo dobra (5), W wykraczający ocena celująca (6) DZIAŁ PROGRAMOWY JEDNOSTKA LEKCYJNA JEDNOSTKA TEMATYCZNA 1 Lekcja organizacyjna. CELE KSZTAŁCENIA W UJĘCIU OPERACYJNYM WRAZ Z OKREŚLENIEM WYMAGAŃ KATEGORIA A Uczeń zna: podstawowe KATEGORIA B Uczeń rozumie: KATEGORIA C Uczeń potrafi: ponadpodstawowe KATEGORIA D Uczeń potrafi: WYRAŻENIA WYMIERNE (13 h ) 2 3 Przekształcanie wielomianów. pojęcie jednomianu pojęcie wielomianu stopnia n pojęcie rozkładu wielomianu na czynniki wzory skróconego mnożenia: kwadrat sumy i różnicy, różnica kwadratów dwóch wyrażeń, suma i różnica sześcianów, sześcian sumy i różnicy dwóch wyrażeń (P) własność rozkładu wie-lomianu na czynniki (P) pojęcie trójmianu kwadratowego pojęcie równania wielomianowego stopnia n pojęcie pierwiastka wielomianu pojęcie k-krotnego pierwiastka wielomianu pojęcie nierówności wielomianowej pojęcie jednomianu pojęcie wielomianu stopnia n pojęcie rozkładu wie-lomianu na czynniki wzory skróconego mnożenia: kwadrat sumy i różnicy, różnica kwadratów dwóch wyrażeń, suma i różnica sześcianów, sześcian sumy i różnicy dwóch wyrażeń (P) własność rozkładu wielomianu na czynniki (P) pojęcie trójmianu kwadratowego pojęcie równania wielomianowego stopnia n pojęcie pierwiastka wielomianu pojęcie k-krotnego pierwiastka wielomianu pojęcie nierówności wielomianowej określać stopień wielomianu dodawać, odejmować, mnożyć wielomiany porządkować wielomiany i doprowadzać je do najprostszej postaci (K R) rozkładać wielomiany na czynniki, stosując: wyłączanie wspólnego czynnika poza nawias wzory skróconego mnożenia metodę grupowania wyrazów rozkład trójmianu kwadratowego na czynniki w zależności od znaku wyróżnika (K D) równania wielomianowe (K D) określać liczbę pierwiastków równania kwadratowego w zależności od znaku wykonywać działania na wielomianach i przedstawiać otrzymane wielomiany w najprostszej postaci podawać przykłady wielomianów spełniających określone warunki ustalać liczbę rozwiązań równania wielomianowego (R D) ustalać wartości parametrów, dla których dany wielomian ma określoną liczbę pierwiastków określać, dla jakich wartości parametru zbiorem rozwiązań

4 4 5 Wyrażenia wymierne. pojęcie wyrażenia wymiernego pojęcie wartości liczbowej wyrażenia wymiernego pojęcie dziedziny wyrażenia wymiernego pojęcie równości wyrażeń wymiernych 6 8 Równania wymierne. pojęcie równania wymiernego sposoby rozwiązywania równań wymiernych (K P) Nierówności wymierne. pojęcie nierówności wymiernej pojęcie wyrażenia wymiernego pojęcie wartości liczbowej wyrażenia wymiernego pojęcie dziedziny wyrażenia wymiernego pojęcie równości wyrażeń wymiernych pojęcie równania wymiernego sposoby rozwiązywania równań wymiernych (K P) pojęcie nierówności wymiernej wyróżnika znajdować pierwiastki wielomianów i ustalać ich krotności (P-D) nierówności wielomianowe (P D) obliczać wartości liczbowe wyrażeń wymiernych dla podanych wartości zmiennej (K P) określać dziedzinę wyrażenia wymiernego (P R) podawać przykłady wyra-żeń wymiernych spełniających dane warunki (P R) upraszczać wyrażenia wymierne (KP) dodawać, odejmować, mnożyć wyrażenia wymierne (K R) równania wymierne (KR) określać założenia, przy których dane równanie wymierne ma sens (K R) dzielić wyrażenia wymierne (P R) przekształcać wzory, aby wyznaczyć wskazaną wielkość (K R) nierówności wymierne (K R) określać założenia, przy których dana nierówność wymierna ma sens (K R) określać dziedzinę funkcji (K R) nierówności wielomianowej jest dany zbiór określać dziedzinę wyrażenia wymiernego oraz wykonywać działania na wyrażeniach wymiernych określać, dla jakich wartości parametrów wyrażenia wymierne spełniają określone warunki zastosowaniem wyrażeń wymiernych (R W) równania wymierne zastosowaniem równań wymiernych nierówności wymierne określać dziedzinę funkcji sprawdzać, czy dane funkcje są równe (R) zadania z zastosowaniem nierówności wymiernych

5 9 11 Hiperbola. Przesuwanie hiperboli. pojęcie hiperboli zasady sporządzania wykresów funkcji: y= f(x), y= f(x+ a)+ b, gdy dany jest wykres funkcji y= f(x) (P D) pojęcie osi symetrii hiperboli (P) pojęcie wierzchołków hiperboli (P) pojęcie hiperboli pojęcie asymptot poziomej i pionowej wykresu funkcji f(x)=a/x, a 0 położenie gałęzi hiperboli w zależności od znaku a zasady sporządzania wykresów funkcji: y= f(x), y= f(x+ a)+ b, gdy dany jest wykres funkcji y= f(x ) (P D) pojęcie osi symetrii hiperboli (P) pojęcie wierzchołków hiperboli (P) określać dziedzinę i sporządzać wykres funkcji f(x)=a/x, a 0 określać położenie gałęzi hiperboli w zależności od a określać przedziały monotoniczności funkcji f(x)=a/x, a 0 dopasowywać wzór do wykresu funkcji i odwrotnie (P R) określać wzór funkcji, która powstanie, gdy wykres funkcji f(x)=a/x odbijemy symetrycznie względem osi układu współrzędnych (P) odbijemy symetrycznie względem początku układu (P) przesuniemy równolegle o a jednostek w prawo lub w lewo i o b jednostek do góry lub w dół (P) określać dziedzinę i sporządzać wykres funkcji f(x)=a/x-p + q, a 0 (P) określać równania asymptot i współrzędne punktów przecięcia wykresu funkcji f(x)=a/x-p +q, a 0 z osiami układu (P) określać przedziały monotoniczności i argumenty, dla których funkcja f(x)=a/x-p + q, a 0 przyjmuje wartości dodatnie, ujemne (P) określać współrzędne wierzchołków hiperboli (P) określać wartość parametru, dla którego funkcja f(x)=a/x-p + q, a 0 spełnia określone warunki (R W) określać wzory funkcji, których wykresami są hiperbole spełniające określone warunki (R W)

6 PRAWDOPO- DOBIENSTWO (17 h) Funkcja homograficzna. pojęcie funkcji homograficznej postać ogólną i postać kanoniczną funkcji homograficznej (P) zasady sporządzania wykresów funkcji: y= f(x), y= f( x ), gdy dany jest wykres funkcji y= f(x) 12 Powtórzenie wiadomości. 13 14 Praca klasowa i jej omówienie. 15 19 Zdarzenia losowe. pojęcia: doświadczenie losowe, zdarzenie elementarne, przestrzeń zdarzeń elementarnych, zdarzenie losowe klasyczną definicję zasadę mnożenia pojęcie funkcji homograficznej postać ogólną i postać kanoniczną funkcji homograficznej (P) zasady sporządzania wykresów funkcji: y= f(x), y= f( x ), gdy dany jest wykres funkcji y= f(x) pojęcia: doświadczenie losowe, zdarzenie elementarne, przestrzeń zdarzeń elementarnych, zdarzenie losowe klasyczną definicję zasadę mnożenia podawać przykłady funkcji homograficznych określać dziedzinę funkcji homograficznej przekształcać wzór funkcji homograficznej z postaci ogólnej do postaci kanonicznej (P R) sporządzać wykresy funkcji homograficznych (P R) określać równania asymptot i osi symetrii wykresów funkcji homograficznych (P R) określać współrzędne punktów przecięcia wykresów funkcji homograficznych z osiami układu (P R) dopasować wzory funkcji homograficznych do wykresów (P R) określać zbiór wszystkich zdarzeń elementarnych doświadczenia losowego (K R) określać zbiór zdarzeń elementarnych sprzyjających danemu zdarzeniu losowemu (K R) obliczać zdarzeń, korzystając z klasycznej definicji (K P) stosować zasadę mnożenia (P) określać, dla jakiej wartości parametru funkcja homograficzna spełnia określone warunki (R W) podawać przykłady wzorów funkcji homograficznych spełniających określone warunki określać własności funkcji homograficznych (R D) sporządzać wykres funkcji homograficznej y= f(x), a następnie, korzystając z jej wykresu, szkicować wykresy funkcji: y= f(x), y= f( x ), y= f( x ) (R W) obliczać zdarzeń, korzystając z klasycznej definicji

STEREOME- TRIA (23 h) Matematyka z plusem dla szkoły ponadgimnazjalnej 20 22 Drzewka. metodę drzewek metodę drzewek obliczać zdarzeń, korzystając z metody drzewek (KP) 23 25 Własności. 26-28 Elementy kombinatoryki. Elementy kombinatoryki (cd.). Kombinatoryka i prawdopodobieństwo. pojęcia: suma, iloczyn, różnica zdarzeń, zdarzenia wykluczające się pojęcie zdarzenia przeciwnego pojęcia: zdarzenie pewne, zdarzenie niemożliwe własności twierdzenie o prawdopodobieństwie sumy zdarzeń zasadę mnożenia pojęcie silni pojęcie permutacji pojęcia: wariacja bez powtórzeń, wariacja z powtórzeniami (P) symbol Newtona własności symbolu Newtona (K P) pojęcie kombinacji 29 Powtórzenie wiadomości. 30-31 Praca klasowa i jej omówienie. 32-33 Wielościany. pojęcie figury wypukłej pojęcia: graniastosłup, ostrosłup pojęcia: podstawa, ściana boczna, wierzchołek, pojęcia: suma, iloczyn, różnica zdarzeń, zdarzenia wykluczające się pojęcie zdarzenia przeciwnego pojęcia: zdarzenie pewne, zdarzenie niemożliwe własności twierdzenie o prawdopodobieństwie sumy zdarzeń zasadę mnożenia pojęcie silni pojęcie permutacji pojęcia: wariacja bez powtórzeń, wariacja z powtórzeniami (P) symbol Newtona własności symbolu Newtona (K P) pojęcie kombinacji pojęcie figury wypukłej pojęcia: graniastosłup, ostrosłup pojęcia: podstawa, ściana boczna, wierzchołek, ustalać zdarzenia przeciwne do danych rozpoznawać zdarzenia wykluczające się (K P) określać sumę, iloczyn, różnicę zdarzeń (K P) obliczać zdarzeń, korzystając z własności (K P) stosować zasadę mnożenia (K R) ustalać liczbę permutacji (K R) ustalać liczby wariacji z powtórzeniami i wariacji bez powtórzeń (K R) obliczać symbol Newtona (K P) ustalać liczbę kombinacji (K P) równania z zastosowaniem symbolu Newtona stosować kombinatorykę w rachunku (K R) wskazywać graniastosłupy pochyłe, graniastosłupy proste wskazywać wierzchołki, podstawy, ściany boczne, 7 obliczać zdarzeń, korzystając z metody drzewek (RD) obliczać zdarzeń, korzystając z własności ustalać liczby permutacji, wariacji z powtórzeniami oraz wariacji bez powtórzeń ustalać liczbę kombinacji zastosowaniem własności symbolu Newtona (R W) stosować kombinatorykę w rachunku wyznaczać długości odcinków w graniastosłupach i ostrosłupach, korzystając z twierdzenia

8 krawędź boczna, krawędź podstawy graniastosłupa i ostrosłupa pojęcia: prostopadłościan, graniastosłup prosty, graniastosłup pochyły pojęcia: graniastosłup prawidłowy, ostrosłup prawidłowy pojęcie czworościanu pojęcia: wysokość graniastosłupa, wysokość ostrosłupa, spodek wysokości twierdzenia dotyczące ostrosłupów prawidłowych reguły rysowania rzutów brył 34-35 Wielościany foremne. pojęcia: czworościan foremny, sześcian pojęcia: ośmiościan foremny, dwunastościan foremny, dwudziestościan foremny (P) 36-37 Kąty w wielościanach. pojęcia: proste równoległe w przestrzeni, proste prostopadłe w przestrzeni, proste skośne pojęcie prostej prostopadłej do płaszczyzny krawędź boczna, krawędź podstawy graniastosłupa i ostrosłupa pojęcia: prostopadłościan, graniastosłup prosty, graniastosłup pochyły pojęcia: graniastosłup prawidłowy, ostrosłup prawidłowy pojęcie czworościanu pojęcia: wysokość graniastosłupa, wysokość ostrosłupa, spodek wysokości twierdzenia dotyczące ostrosłupów prawidłowych reguły rysowania rzutów brył pojęcia: czworościan foremny, sześcian pojęcia: ośmiościan foremny, dwunasto-ścian foremny, dwudziestościan foremny (P) pojęcia: proste równoległe w przestrzeni, proste prostopadłe w przestrzeni, proste skośne pojęcie prostej prostopadłej do płaszczyzny krawędzie podstawy i krawędzie boczne ostrosłupów rysować rzuty ostrosłupów rysować siatki ostrosłupów rozpoznawać siatki ostrosłupów (K P) obliczać liczbę wierzchołków, krawędzi, ścian bocznych ostrosłupów (K R) wyznaczać długości odcinków w graniastosłupach i ostrosłupach, korzystając z twierdzenia Pitagorasa oraz funkcji trygonometrycznych kąta w trójkącie prostokątnym (K R) rysować siatki oraz rzuty czworościanu foremnego i sześcianu rozpoznawać siatki oraz rzuty ośmiościanu foremnego, dwunastościanu foremnego i dwudziestościanu foremnego (P) wyznaczać długości odcinków w czworościanach foremnych i sześcianach (K R) wskazywać na rysunkach graniastosłupów odcinki równoległe, prostopadłe oraz skośne (K R) wskazywać kąty Pitagorasa oraz funkcji trygonometrycznych kąta ostrego w trójkącie prostokątnym wyznaczać długości odcinków w wielościanach foremnych (P D) wykorzystaniem obliczania miar kątów między odcinkami, miar kątów między

9 38-41 Pola powierzchni i objętości ostrosłupów. 42-43 Pola powierzchni i objętości wielościanów. pojęcia: kąt dwuścienny, kąt między prostą a płaszczyzną powierzchni graniastosłupa wzór na obliczanie objętości graniastosłupa i ostrosłupa powierzchni ostrosłupa wzory na obliczanie pól figur płaskich pojęcia: pole powierzchni i objętość wielościanu (P) 44-45 Walec. pojęcie walca pojęcia: tworząca walca, podstawy, promień podstawy, wysokość walca pojęcia: oś obrotu, przekrój osiowy walca powierzchni walca wzór na obliczanie objętości walca pojęcia: kąt dwuścienny, kąt między prostą a płaszczyzną powierzchni graniastosłupa wzór na obliczanie objętości graniastosłupa i ostrosłupa powierzchni ostrosłupa wzory na obliczanie pól figur płaskich pojęcia: pole powierzchni i objętość wielościanu (P) pojęcie walca pojęcia: tworząca walca, podstawy, promień podstawy, wysokość walca pojęcia: oś obrotu, przekrój osiowy walca powierzchni walca wzór na obliczanie objętości walca między odcinkami oraz kąty między odcinkami i ścianami w graniastosłupach i ostrosłupach (K P) wskazywać kąty między ścianami ostrosłupów (P D) wyznaczać miary kątów między odcinkami, miary katów między odcinkami i ścianami oraz między ścianami w graniastosłupach i ostrosłupach (K R) graniastosłupów (K R) ostrosłupów (K R) rysować rzuty wielościanów (K D) wielościanów (P D) rysować rzut walca rysować siatkę walca wskazywać kąty między odcinkami oraz odcinkami i podstawami w walcu (K P) walców (K-R) odcinkami i ścianami oraz między ścianami w graniastosłupach i ostrosłupach (R-W) zastosowaniem obliczania pól powierzchni i objętości ostrosłupów (R W) zadania z zastosowaniem obliczania pól powierzchni i objętości wielościanów (R W) zastosowaniem obliczania pól walców zadania na obliczanie pól powierzchni i objętości brył wpisanych w walec i opisanych na walcu (R W)

10 46-47 Stożek. pojęcie stożka pojęcia: podstawa, promień podstawy, tworząca, wysokość stożka pojęcia: oś obrotu, przekrój osiowy stożka, spodek wysokości, kąt rozwarcia stożka wzory na obliczanie pola stożka 48-49 Kula. pojęcia: kula, sfera pojęcia: środek, promień, średnica, koło wielkie wzory na obliczanie pola kuli 50-51 Bryły podobne. pojęcie brył podobnych własności brył podobnych zależność między polami powierzchni brył podobnych zależność między objętościami brył podobnych 52 Powtórzenie wiadomości. 53-54 Praca klasowa i jej omówienie. pojęcie stożka pojęcia: podstawa, promień podstawy, tworząca, wysokość stożka pojęcia: oś obrotu, przekrój osiowy stożka, spodek wysokości, kąt rozwarcia stożka wzory na obliczanie pola stożka pojęcia: kula, sfera pojęcia: środek, promień, średnica, koło wielkie wzory na obliczanie pola kuli pojęcie brył podobnych własności brył podobnych zależność między polami powierzchni brył podobnych zależność między objętościami brył podobnych rysować rzut stożka rysować siatkę stożka wskazywać kąty między odcinkami oraz odcinkami i podstawą w stożku (K P) stożków (K R) rysować rzut kuli wskazywać kąty między przekrojami kuli (K P) kul (K R) wykorzystywać zależności między polami powierzchni i objętościami brył podobnych (K R) zastosowaniem obliczania pól powierzchni i objętości stożków zadania na obliczanie pól powierzchni i objętości brył wpisanych w stożek i opisanych na stożku (W) powierzchni i objętości kul zadania na obliczanie pól powierzchni i objętości brył wpisanych w kulę i opisanych na kuli (R W) zastosowaniem zależności między polami powierzchni i objętościami brył podobnych (R W)