STATYSTYCZNE STEROWANIE PROCESAMI PRZYCZYNY ZMIENNOŚCI PROCES POMIAROWY WYKRESY KONTROLNE INTERPRETACJA WYKRESÓW KONTROLNYCH ZDOLNOŚĆ PROCESU ARTUR MACIASZCZYK COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 1! STATYSTYCZNE MONITOROWANIE JAKOŚCI Bogu ufamy. Wszyscy pozostali niech przedstawią dane... Ulepszanie jakości wymaga ciągłego śledzenia i optymalizacji pewnych parametrów wyrobów i usług. W określaniu i monitorowaniu jakości pomocne są wykresy kontrolne. SPC polega na śledzeniu parametrów procesu usługowego poprzez pobieranie próbek i obserwacji: - średniej jakości - zmienności jakości SPC służy do: - wyłapywania zakłóceń procesu - obserwacji poziomu jakości COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 2
Statystyczne Sterowanie Procesami (SPC) Osiągniemy wzrost jakości poprzez polepszenie procesu, osiągniemy polepszenie procesu poprzez zmniejszenie jego zmienności E.W. Deming SPC może być użyte do ostrzegania o zaistnieniu jakiejś nieprawidłowości. lub niskiej jakości Wykresy kontrolne używane są głównie do zapobiegania produkcji braków. Przykład: Co może być wykryte przez SPC: nagłe zwiększenie się procentowej wadliwości wyrobów. zwiększenie się średniej liczby dziennych zażaleń w hotelu. permanentnie zbyt niskie średnice produkowanych wałów korbowych, lub zwiększenie się liczby osób reklamujących zbyt późną wypłatę odszkodowań przez firmę ubezpieczeniową. Czy wzrost odsetek braków jest sygnałem alarmowym, czy też zwykłym zbiegiem okoliczności? SPC pomaga w podejmowaniu decyzji, czy należy podejmować działania korekcyjne. SPC wyrywkowe badanie odbiorcze. COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 3 Rozkład danych Jeżeli zważylibyśmy większą ilość opakowań płatków owsianych napełnionych przez maszynę, to dane na wykresie punktowym miałyby tendencje do układania się według pewnego wzorca (rozkład danych). Taki rozkład charakteryzuje się średnią oraz rozrzutem. Jeżeli zmienność procesu wynika jedynie ze zwykłej losowości, rozkład danych jest zazwyczaj symetryczny, z większością pomiarów skupionych wokół średniej. 1. Średnia to suma pomiarów podzielona przez ich liczbę: n gdzie x i = zaobserwowana wartość (np. waga) x i n = całkowita liczba pomiarów i = 1 x = x = średnia n 2. Rozrzut jest miernikiem rozproszenia zaobserwowanych wartości od średniej. Miarami rozrzutu (zmienności) używanymi w praktyce jest rozstęp i odchylenie standardowe. COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 4
Odchylenie standardowe można policzyć w następujący sposób: σ = ( i x) x n 1 2 lub σ = ( xi 2 ) xi n n 1 Oszacowanie σ z rozstępu ( R ) Rozstęp jest różnicą pomiędzy największą i najmniejszą wartością zaobserwowaną w próbce. Jeżeli zmienne losowe pochodzą z rozkładu normalnego to: σ = R / d 2 gdzie d 2 jest stałą z tabeli Dlaczego d 2 zwiększa się wraz ze zwiększaniem się liczebności próbki? 2 gdzie σ = odchylenie standardowe n = całkowita liczba pomiarów x = średnia x i = zaobserwowana wartość Liczebność d 2 próbki 2 1,128 3 1,693 4 2,059 5 2,326 6 2,534 7 2,704 8 2,847 9 2,970 10 3,078 15 3,472 20 3,735 COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 5 Niektóre rozkłady średnich z próbek można aproksymować poprzez rozkład normalny. Dzięki takiej aproksymacji możemy skorzystać z tabeli rozkładu normalnego. Mamy możliwość wyznaczenia prawdopodobieństwa, że jakaś średnia z próbek wykroczy poza pewne granice. Na przykład prawdopodobieństwo, iż jakaś średnia z próbek wykroczy poza dwa odchylenia standardowe od średniej wynosi 4,56% (100-95,44). Procentowy udział ilości elementów w poszczególnych przedziałach rozkładu normalnego. COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 6
Wykres Q Q Służy do ustalania czy dany rozkład jest zbliżony do rozkładu normalnego Obserwacja (X i ) Uporządkowane X i Skumulowane prawdopodobieństwo (p i ) =100(i-0,5)/n Z i (z tabeli rozkładu normalnego) Q i =(X i -x)/s 1 5,7 5,36 5-1,64-1,58 0,086 2 5,63 5,45 15-1,04-1,10 0,041 3 5,76 5,55 25-0,67-0,56 0,011 4 5,98 5,57 35-0,39-0,45 0,007 5 5,57 5,63 45-0,13-0,12 0,001 6 5,45 5,67 55 0,13 0,09 0,000 7 5,86 5,7 65 0,39 0,25 0,002 8 5,55 5,76 75 0,67 0,58 0,011 9 5,36 5,86 85 1,04 1,12 0,043 10 5,67 5,98 95 1,64 1,77 0,107 Nr.obser wacji (i) Obliczenia pomocnicze (X i -X) 2 X = 5,65 Warjancja (s 2 ) = 0,03 Odchylenie 0,19 standardowe s= COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 7 Wykres Q-Q 2,00 1,50 1,00 0,50 0,00-2,00-1,50-1,00-0,50 0,00 0,50 1,00 1,50 2,00-0,50-1,00-1,50-2,00 Z COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 8
PRZYCZYNY ZMIENNOŚCI Proces produkcyjny posiada wiele źródeł zmienności, nawet jeżeli proces działa prawidłowo, jego produkty nigdy nie będą idealnie identyczne. PRZYKŁAD: Średnice dwóch wałów korbowych, mogą różnić się z powodu istnienia różnic - w stopniu zużycia narzędzi, -w twardości materiału, -w umiejętnościach pracowników lub - innych temperatur na hali produkcyjnej w momencie ich wytwarzania. Czas potrzebny na wydanie karty kredytowej może różnić się ze względu na - obciążenie działu kredytowego, - sytuację finansową osoby występującej o wydanie karty kredytowej, -umiejętności i zachowania pracowników. Nie można całkowicie wyeliminować zmienności produktu, ale w celu jej zmniejszenia, można badać jej przyczyny. Istnieją dwa rodzaje przyczyn zmienności wyjścia: przyczyny systemowe i przyczyny specjalne COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 9 PRZYCZYNY SYSTEMOWE (ZWYCZAJNE) ZMIENNOŚCI Przyczyny systemowe powodują naturalną zmienność procesu przy danych uwarunkowaniach. Są nieodłącznie związane z procesem. Są spowodowane zmiennością wejść i zmiennością samego procesu Przyczyny systemowe nakładają się na siebie powodując ogólną zmienność wyjścia Mają charakter losowy i przypadkowy Mogą wynikać z:: - niedoskonałości sprzętu - niedoskonałości systemu produkcyjnego - niedoskonałości pracowników - niedoskonałości materiałów itp. Np. Maszyna napełniająca pudełka płatkami owsianymi, nie zapakuje do każdego opakowania takiej samej ilości płatków, co wynika z: - ograniczonej dokładności urządzenia ważącego - różnych umiejętności operatorów - różnej wagi poszczególnych płatków - zmian temperatury, wilgotności itp. Ich zmniejszenie wymaga zmian w systemie i udziału kierownictwa COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 10
PRZYCZYNY SPECJALNE ZMIENNOŚCI Przyczyny specjalne to sporadyczne, specyficzne i lokalne przyczyny, których powstania nie można przewidzieć. Można je stosunkowo łatwo zidentyfikować i wyeliminować. Mogą to być nie przeszkolony pracownik, uszkodzony sprzęt czy narzędzie, wady materiałowe... Często mogą być zidentyfikowane i skorygowane przez pracownika wykonawczego Wpływ przyczyn specjalnych na rozkład procesu napełniania opakowań. Proces jest pod kontrolą statystyczną, jeżeli kształt i rozmiary jego rozkładu nie zmieniają się wraz z upływem czasu. Wpływ przyczyn specjalnych na stabilność procesu COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 11 DECYZJE PRZY WDRAŻANIU SPC Należy odpowiedzieć na pytania: - jak mierzyć jakość? - jakiej wielkości próbki zbierać? - na jakim etapie procesu mierzyć jakość? COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 12
JAK MIERZYĆ JAKOŚĆ Mierzenie zmiennych (wartości mierzalnych), polega na mierzeniu charakterystyk wyrobu lub usługi o charakterze ciągłym, takich jak waga, długość, objętość lub czas. W Harley-Davidson mierzy się średnicę zaworów w celu sprawdzenia czy jest zgodna ze specyfikacjami i jak zmienia się z upływem czasu. W United Parcel Service monitoruje się czas dostarczenia przesyłki. Zaleta: możemy stwierdzić o ile wyrób przekroczył granicę tolerancji. Wada: zazwyczaj wymaga użycia specjalnego wyposażenia pomiarowego, specjalnych umiejętności pracowników, ścisłych procedur oraz czasu. Mierzenie atrybutowych właściwości wyrobu lub usługi (cechy niemierzalne ale policzalne), czyli charakterystyk, które można łatwo policzyć i stwierdzić czy spełniają dopuszczalny poziom jakości. Pozwala na podjęcie prostej decyzji: wyrób lub usługa spełnia albo nie spełnia wymogów specyfikacji. Przykład: - ilość błędnie wypełnionych polis ubezpieczeniowych, - procentowy udział odbiorników radiowych, które nie przeszły kontroli ostatecznej, - procentowy udział rejsów lotniczych, które były opóźnione więcej niż piętnaście minut, - ilość karoserii samochodowych z pomarszczonym lakierem. Zaleta: mniejsza pracochłonność i materiałochłonność Wada: ujawnia zmiany w poziomie jakości, ale nie pokazuje w jakim stopniu. COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 13 PRÓBKOWANIE Kontrola całkowita stosuje się gdy koszty inspekcji są mniejsze niż koszty wynikające z przekazania wyrobu wadliwego klientowi lub na następne stanowisko pracy. Np. Dostawcy części do promów kosmicznych, wielokrotnie sprawdzają każdy komponent, zanim wyślą go zleceniodawcy. Koszt awarii - okaleczenie, śmierć lub zniszczenie drogiego sprzętu - znacznie przekraczają koszty inspekcji Zmęczenie kontrolerów lub niedoskonałość metod testowania może przyczynić się do przeoczenia niektórych defektów. nawet kontrola jednostkowa może nie zapewnić wykrycia wszystkich defektów Próbkowanie może zapewnić ten sam stopień zabezpieczenia, co kontrola jednostkowa. Plan próbkowania precyzuje: - wielkość próbki, - ilość czasu pomiędzy pobieraniem dwóch kolejnych próbek; - zasady określające kiedy należy podjąć działania korekcyjne. Próbkowanie jest konieczne jeżeli test wiąże się ze zniszczeniem przedmiotu badań np. badanie wytrzymałości materiału COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 14
Przykład: ROZKŁAD Z PRÓBKI. Maszyna napełniająca pudełka płatkami owsianymi Napełniane pudełka powinny ważyć 425g. średnia rozkładu procesu 425g. Pobierana jest próbka składająca się z pięciu napełnionych opakowań, Można obliczyć średnią z próbki i na jej podstawie stwierdzić jak funkcjonuje maszyna. Średnie z próbek stanowią osobny rozkład, ze średnią 425g., ale z dużo mniejszą zmiennością. Odchylenie standardowe średnich z próbek: σ x = σ/ n σ = odchylenie standardowe procesu n = rozmiar próbki Związek pomiędzy rozkładem próbki i rozkładem procesu. COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 15 WYKRESY KONTROLNE Wykres zorientowany czasowo, na który nanosi się próbki. Pomagają stwierdzić czy zaobserwowana zmienność jest nieprawidłowością Zawiera: - centralną oś, zazwyczaj reprezentującą wartość średnią - granice kontrolne określone na podstawie rozkładu średnich z próbek. Granice kontrolne pozwalają na określenie momentu, w którym należy podjąć działania korekcyjne - górna wartość reprezentuje górną granicę kontrolną (UCL - Upper Control Limit), - dolna wartość reprezentuje dolną granicę kontrolną (LCL - Lower Control Limit). Jeżeli średnia z próbki zawiera się w przedziale pomiędzy UCL i LCL, oznacza to, iż proces podlega jedynie systemowym przyczynom zmienności; Jeżeli średnia z próbki wyjdzie poza granice kontrolne oznacza to, iż proces prawdopodobnie podlega specjalnym przyczynom zmienności. COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 16
Próbki wykraczające poza granice kontrolne, nie zawsze oznaczają słabą jakość procesu. Przykład: Przyczyna specjalna może wynikać z wdrożenia nowej procedury rejestrowania klientów, która została wprowadzona w celu zmniejszenia liczby pomyłek. Jeżeli odsetek pomyłek lub średni czas oczekiwania spadnie poniżej dolnej granicy, oznacza to, iż prawdopodobnie nowa procedura usprawniła proces rejestracji Umiejscowienie granic kontrolnych na rozkładzie średnich z próbek z trzema różnymi próbkami. COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 17 TWORZENIE KART KONTROLNYCH Wykresy X i R (wykresy kontrolne dla zmiennych). Służą do śledzenia średniej i zmienności rozkładu procesu. 1. Pobieramy i próbek o liczebności n. 2. Dla każdej próbki obliczamy: n i j = 1 - średnią próbki X = ( x ) / n - rozpiętość próbki Ri = xi max xi min 3. Dla k próbek obliczamy: - Średnią ze średnich z próbek X = ( X ) / k ij k i= 1 - Średnią rozpiętość próbek R = ( R ) / k k i= 1 i i COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 18
TWORZENIE KART KONTROLNYCH Wykresy X i R (wykresy kontrolne dla zmiennych). Służą do śledzenia średniej i zmienności pewnego parametru jakości. Wykresy typu X (wykres wartości średnich x) - używany do obserwacji średniej procesu. Granice kontrolne dla wykresu typu X wynoszą: LCL = X A2R UCL = X + A2R X X X = centralna linia wykresu - średnia ze średnich z próbek. A 2 = stała dla wyznaczenia granic kontrolnych (±3-sigma). Wykresy typu R. (wykresy rozstępu)-służą do monitorowania zmienności mierzonego parametru. Granice kontrolne dla wykresu typu R: LCL D3R R = UCL D4R R = COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 19 WSPÓŁCZYNNIKI DO OBLICZANIA GRANIC ±3 σ DLA WYKRESÓW TYPU X ORAZ R. Liczebność próbki (n) Współczynnik do obliczania UCL X i LCL X Współczynnik do obliczania LCL R (D 3 ) Współczynnik do obliczania UCL R (D 4 ) (A 2 ) 2 1,880 0 3,267 3 1,023 0 2,575 4 0,729 0 2,282 5 0,577 0 2,115 6 0,483 0 2,004 7 0,419 0,076 1,924 8 0,373 0,136 1,864 9 0,337 0,184 1,816 10 0,308 0,223 1,777 15 0,223 0,348 1,652 20 0,180 0,414 1,586 COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 20
PRZYKŁAD 1: Monitorowanie procesu przy pomocy wykresów typu R i X. Średnia średnica produkowanych śrub wynosi 0,5025 cala, a średni rozstęp wynosi 0,0020 cala. Dane z ostatnich pięciu próbek podane są w poniższej tabeli. Rozmiar próbki wynosi 4. Czy proces jest pod kontrolą statystyczną? Pomiary w próbce Numer 1 2 3 4 próbki 1 0,5014 0,5022 0,5009 0,5027 2 0,5021 0,5041 0,5032 0,5020 3 0,5018 0,5026 0,5035 0,5023 4 0,5008 0,5034 0,5024 0,5015 5 0,5041 0,5056 0,5034 0,5039 COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 21 ROZWIĄZANIE Krok 1. W celu stworzenia wykresu typu R, należy wybrać odpowiednie stałe D 4 oraz D 3 dla próbki o liczebności 4. Granice kontrolne wynoszą: UCL R = LCL R = D 4 D 3 R= 2,282 (0,0020) = 0,00456 cala R= 0 (0,0020) = 0 cala Krok 2. Dla każdej próbki obliczyć jej rozstęp: próbka nr 1: R = 0,5027-0,5009 = 0,0018 cala. próbka nr 2: R= 0,0021; próbka nr 3: R = 0,0017; próbka nr 4: R = 0,0026; próbka nr 5: R = 0,0022 Krok 3. Nanieść rozstępy z poszczególnych próbek na wykres typu R. Żaden z rozstępów próbek nie wykracza poza granice kontrolne. COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 22
Krok 4. Do śledzenia średniej procesu należy stworzyć wykres typu X. X= 0,5025 cala, R = 0,0020 cala, a więc: UCL = X + A2R = 0,5025 + 0,729 (0,0020) = 0,5040 cala X LCL = X A2R = 0,5025-0,729 (0,0020) = 0,5010 cala X Krok 5. Należy obliczyć średnią dla każdej próbki. X 1= 0,5018 cala; X 2=0,5029; X 3=0,5026; X 4=0,5020; X 5=0,5043 Krok 6. Należy nanieść średnie z próbek na wykres kontrolny. Średnia z próbki nr 5 wykracza ponad górną granicę kontrolną, wskazując iż średnia procesu jest poza kontrolą statystyczną. COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 23 PRZYKŁAD 2 Firma Watson Electric Company produkuje żarówki. Następujące dane, zebrane gdy proces był stabilny, przedstawiają jasność światła w lumenach dla czterdziestowatowych żarówek. Pomiar Próbka 1 2 3 4 1 604 612 588 600 2 597 601 607 603 3 581 570 585 592 4 620 605 595 588 5 590 614 608 604 a) Obliczyć granice kontrolne dla wykresów typu X i typu R. b) Odkąd zebrano te dane, zostali zatrudnieni nowi pracownicy. Współcześnie pobrana próbka składała się z następujących pomiarów: 570, 603, 623 oraz 583. Czy proces wciąż jest pod kontrolą statystyczną? COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 24
Rozwiązanie a) Obliczenie x i R dla każdej próbki. Pomiar Próbka 1 2 3 4 X R 1 604 612 588 600...... 2 597 601 607 603...... 3 581 570 585 592 582 22 4 620 605 595 588 582 32 5 590 614 608 604 604 24 Σ/5 D 4 =... D 3 =... A 2 =... Granice kontrolne dla wykresu typu R wynoszą: UCLR = D4R =... LCLR = D3R =... Granice kontrolne dla wykresu typu X wynoszą: UCL = X + A2R =... X LCL = X A2R =... b) Należy sprawdzić, czy po wprowadzeniu nowych danych zmienność jest wciąż pod kontrolą statystyczną. Rozstęp wynosi 53 (623-570), czyli jest powyżej górnej granicy kontrolnej wykresu R. Pomimo że średnia z próbki zawiera się pomiędzy granicami kontrolnymi wykresu średnich, zmienność procesu nie jest pod kontrolą statystyczną. Należy rozpocząć poszukiwania przyczyn specjalnych. X COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 25 PRZYKŁAD Tworzenie wykresu typu X przy użyciu odchylenia standardowego procesu. Bank Gdyński monitoruje czas potrzebny do obsłużenia klientów (czynnik jakości, mający duży wpływ na konkurencyjność banku). Stwierdzono, że średni czas obsługi klienta w godzinach szczytu wynosił 5 minut z odchyleniem standardowym 1,5 minuty. Należy monitorować średni czas obsługi klienta poprzez zbieranie próbek o liczebności 6 klientów. Należy stworzyć wykres typu X, który posiada 5%-owy błąd typu I-szego. Rozwiązanie X = 5,0 minut σ = 1,5 minuty n = 6 klientów z = 1,96 Granice kontrolne wynoszą: UCL x = X + zσ/ n = 5,0 + 1,96(1,5)/ 6 = 6,20 minut LCL x = X - zσ/ n = 5,0-1,96(1,5)/ 6 = 3,80 minut 5%-owy błąd typu I-szego, czyli 2,5% z całości masy rozkładu powyżej górnej granicy kontrolnej i 2,5% poniżej dolnej granicy kontrolnej. Chcemy więc odczytać z tabeli wartość z, która pozostawia jedynie 2,5% w górnej części rozkładu normalnego (w tabeli odpowiednik 0,9750). Wartość ta wynosi 1,96. COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 26
PROCEDURA UŻYWANIA WYKRESÓW KONTROLNYCH: 1.Pobrać próbkę z procesu, zmierzyć daną charakterystykę jakości, 2.Nanieść wartość (np. średnią) na wykres kontrolny, 3. Jeżeli próbka zawiera się w granicach kontrolnych - O.K punkt 6 4. Jeżeli próbka wypadnie poza granice kontrolne, szukać przyczyn specjalnych. 5.Wyeliminować przyczynę jeżeli wpływa ona na obniżenie jakości; utrwalić przyczynę jeżeli wpływa na podwyższenie jakości. Sporządzić wykres kontrolny dla nowych danych. 6. Okresowo powtarzać tę procedurę. COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 27 INTERPRETACJA WYKRESÓW KONTROLNYCH Często można zauważyć, iż coś złego dzieje się z procesem, nawet jeżeli granice kontrolne nie zostały przekroczone. Proces jest pod kontrolą statystyczną. Nie należy podejmować żadnych działań. Nieprawidłowość zwana przebiegiem, czyli sekwencja obserwacji posiadająca pewne właściwości. W tym przypadku przebieg jest trendem malejącym. PRZYKŁAD: Stopniowe zużywanie się narzędzia. Jest to sygnał do wymiany narzędzia lub konieczności ustawienia maszyny na wartość zawierającą się pomiędzy wartością nominalną i UCL w celu przedłużenia eksploatacji narzędzia. Zwiększanie się odsetku opóźnionych przylotów. Przyczyną może być powolne zwiększanie się intensywności i zatłoczenia lądujących samolotów. Może być konieczna zmiana harmonogramu lotów. COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 28
Gwałtowna zmiana zachowania się procesu, polegająca na zwiększeniu zmienności. Sygnał ostrzegawczy, nawet jeżeli granice kontrolne nie zostały jeszcze przekroczone. Kilka kolejnych punktów znajduje się powyżej lub poniżej wartości nominalnej. Należy podjąć działania korekcyjne, pomimo że granice kontrolne nie zostały przekroczone Proces dwukrotnie nie jest pod kontrolą statystyczną ponieważ dwie średnie z próbek wykroczyły poza granice kontrolne. Istnieje wysokie prawdopodobieństwo, iż zmienił się rozkład procesu. COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 29 ZAAWANSOWANE PROCEDURY UŻYWANIA WYKRESÓW KONTROLNYCH: Na wykresach typu X obszar pomiędzy LCL i UCL podzielony jest na 6 równych stref: 3 strefy pomiędzy LCL i średnią strefy A, B, C; oraz 3 strefy pomiędzy UCL i średnią strefy A, B, C Testy kontrolne Shewart a Testy kontrolne negatywne- w przypadku spełnienia tego testu należy przeprowadzić analizę, jakie czynniki wpłynęły na pogorszenie procesu: 1) Jeden punkt pomiarowy jest powyżej UCL lub poniżej LCL. 2) Dwa z trzech kolejnych punktów znajdują się w strefie A lub dalej (dla kart X). COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 30
3) Cztery z pięciu kolejnych punktów znajdują się w strefie B lub dalej (dla kart X). 4) Osiem lub więcej kolejnych punktów znajduje się poniżej lub powyżej średniej. 5) Sześć kolejnych punktów wznosi się lub opada. COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 31 6) Czternaście lub więcej kolejnych punktów oscyluje 7) Osiem lub więcej kolejnych punktów znajduje się po obydwu stronach średniej, omijając strefę C (dla kart X). Test kontrolny pozytywny - w przypadku spełnienia tego testu należy przeprowadzić analizę, jakie czynniki wpłynęły na polepszenie dokładności procesu: 8) Piętnaście kolejnych punktów znajduje się po obydwu stronach średniej tylko w strefie C (najbliższej średniej) COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 32
LOKALIZACJA STANOWISK KONTROLNYCH Identyfikacja czynników jakości istotnych dla klienta oraz etapów procesu w największym stopniu wpływające na te czynniki (wykresy przyczyn i skutków). Stanowiska kontrolne zazwyczaj lokalizuje się na trzech różnych etapach produkcji: Dostawa surowców. Cel: zapewnienie prawidłowej jakości materiałów wejściowych do systemu produkcyjnego. Na tym etapie można używać różne rodzaje badań odbiorczych. Proces produkcyjny. Na etapie produkcji, stanowiska kontrolne można umiejscawiać po każdej operacji produkcyjnej, zwłaszcza przed operacjami drogimi i tymi które stanowią wąskie gardło produkcji. Usługa lub wyrób końcowy. Dokonuje się jej tuż przed magazynowaniem wyrobów. Sposób drogi ponieważ wiąże się z: (1) kasacją wyrobu lub partii produkcyjnej, (2) cofnięciem wyrobu lub partii produkcyjnej do wcześniejszego etapu w celu naprawy, (3) przesunięciem wyrobu lub partii produkcyjnej do obszaru diagnostycznego i usuwaniem defektów. Kontrola nie zwiększa jakości wyrobu!!! COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 33 INNE RODZAJE WYKRESÓW KONTROLNYCH NIE Wykresy X oraz R TAK Czy rozmiar próbki n=1? Wybór odpowiedniego rodzaju wykresu kontrolnego Czy charakterystyka jest mierzalna? TAK Wykresy X oraz Rm NIE Czy cały element jest wadliwy? TAK Wykresy P lub NP NIE Czy próbka jest stała? TAK Wykres C NIE Wykres U COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 34
Karty kontrolne X oraz R m Stosuje się kiedy stosowne jest pobranie jak najmniejszej próbki (o liczebności 1) ze względu na koszt (np. próbki niszczące się) ze względu na rzadkość występowania badanie danej serii produkcyjnej (np. stężenie składnika) W celu obserwacji zmienności tworzymy sztuczne próbki (pełzające), które składają się z dwóch (lub trzech, czterech,...) kolejnych odczytów: ODCZYTY 1 2 3 PRÓBKI (składające się z 2 odczytów) 4 Próbka 4 5 Próbka 1 Próbka 2 Próbka 3 COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 35 Wykres R m. (wykresy rozstępu) - Na wykres rozstępu nanosimy rozstępy poszczególnych sztucznych próbek - Linia centralna to średnia z poszczególnych rozstępów ( R m ) - Granice kontrolne: LCL R = D3R m UCL R = D4R m Wykresy X - Na wykres X nanosimy poszczególne obserwacje (a nie średnie z fikcyjnych próbek) - Linia centralna to średnia ze wszystkich obserwacji (X) - Granice kontrolne: LCL m X = X 3σ d 2 = stała z tabeli. x R = X 3 d 2 R UCL X = X + 3σ x = X + 3 d m 2 COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 36
Przykład tworzenia wykresów kontrolnych X oraz R m X 1,383 1,431 1,328 1,340 1,396 1,365 1,444 1,469 1,461 1,446 R m X = R m = n = d 2 = D 3 = D 4 = Wykres R m LCL = D3R m = UCL R R = D4R m Wykres X LCL UCL X X = R = X 3 d R = X + 3 d m 2 m 2 = = COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 37 Gotowy wykres X oraz R m COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 38
Interpretacja wykresów X oraz R m W przypadku wykresów X oraz R, dane układają się według rozkładu normalnego (gdyż obserwujemy średnie z próbek W przypadku wykresów X oraz R m, dane nie muszą układać się według rozkładu normalnego (gdyż obserwujemy poszczególne pomiary, a nie srednie) Należy sprawdzić, czy rozkład jest rozkładem normalnym (Wykres Q-Q) jeżeli nie jest, to testy Shewarta mogą sugerować niestabilność procesu jeżeli jest to interpretacja jest taka sama jak dla wykresów X oraz R Wykresy X oraz R m, są bardziej czułe niż wykresy X oraz R i mogą powodować fałszywe alarmy należy stosować mniej rygorystyczne testy COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 39 WYKRESY KONTROLNE DLA ATRYBUTÓW (CHARAKTERYSTYK NIEMIERZALNYCH LECZ POLICZALNYCH) W tym przypadku stosuje się wykresy typu p (lub np.) oraz typu c (lub u). Wykresy typu p używa się do śledzenia procentowej ilości wadliwych produktów lub usług generowanych przez proces. Jednostką wadliwą jest każda jednostka obarczona choćby jednym defektem. Wykresy typu c (lub u) używa się do śledzenia ilości defektów, w przypadku kiedy produkt lub usługa może być obarczona więcej niż jednym defektem. Np. ilość skaz na lakierze samochodowym COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 40
WYKRESY KONTROLNE DLA ATRYBUTÓW (CHARAKTERYSTYK NIEMIERZALNYCH LECZ POLICZALNYCH) Wykresy typu p używa się do śledzenia procentowej ilości wadliwych usług generowanych przez proces. Jednostką wadliwą jest każda usługa obarczona choćby jednym defektem. Wymaga podejmowanie decyzji: wyrób wadliwy lub dobry. A więc wady istnieją bądź nie istnieją. Przykład: - ilość błędnych depozytów w banku - ilość niedziałających świateł na skrzyżowaniach w całym mieście - ilość wyrobów, które nie działały po zmontowaniu - ilość skarg klientów Rozkład statystyczny danych oparty jest na rozkładzie dwumianowym. COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 41 Metoda polega na wybraniu losowej próbki i policzeniu stosunku elementów wadliwych w próbce, p, ilości elementów wadliwych w próbce p = -------------------------------------------------- liczebność próbki. Odchylenie standardowe rozkładu odsetek jednostek wadliwych, σ p wynosi: σ p = p( 1 p)/ n Granice kontrolne: UCL = p + zσ p = p + 3 p(1 p) n n = liczebność próbki p= średnia z odsetek wyrobów wadliwych (linia centralna wykresu). LCL = p zσ = p 3 p(1 p) n Jeżeli dana wartość stosunku wyrobów wadliwych w próbce, wykracza poza granice kontrolne, należy założyć, iż odsetek wyrobów wadliwych generowany przez proces zmienił się. Należy więc szukać przyczyn specjalnych. Zawsze istnieje prawdopodobieństwo, iż odsetek wyrobów wadliwych w danej próbce nie będący pod kontrolą statystyczną zdarzył się przypadkowo. p COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 42
PRZYKŁAD 1: Monitorowanie procesu przy użyciu wykresów typu p. W banku X, zaniepokojono się ilością numerów rachunków klientów źle wpisanych przez urzędników banku. Każdego tygodnia pobiera się losową próbkę dwóch i pół tysiąca depozytów, i zapisuje się liczbę źle wpisanych numerów. Czy proces nie jest pod kontrolą statystyczną? Dane z poprzednich dwunastu tygodni: Numer Ilość złych numerów próbki rachunków 1 15 2 12 3 19 4 2 5 19 6 4 7 24 8 7 9 10 10 17 11 15 12 3 Razem 147 COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 43 ROZWIĄZANIE Krok 1. Należy opracować wykres typu p. Obliczyć pna podstawie danych historycznych. Całkowita liczba złych numerów 147 p = ------------------------------------------ = ----------- = 0,0049 Ilość wszystkich obserwacji 12 (2500) σ = p(1 p) / n = [0,0049 (1-0,0049) / 2500] = 0,0014 p UCL p = p + zσ p = 0,0049 + 3 (0,0014) = 0,0091 LCL p = p -zσ p = 0,0049 3 (0,0014) = 0,0007 Krok 2. Obliczyć odsetek elementów wadliwych dla każdej próbki. Dla próbki 1 odsetek elementów wadliwych wynosi 14/2500 = 0,0060. COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 44
Krok 3. Nanieść poszczególne odsetki elementów wadliwych z każdej próbki na wykres, Próbka nr 7 wykracza poza górną granicę kontrolną; Numery rachunków mogły być nieprawidłowo wpisane do komputera przez stażystę, lub maszyna kodująca mogła ulec awarii. Należy ponownie obliczyć granice kontrolne (wyłączając próbkę nr.7). COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 45 WYKRESY TYPU C. Stosuje się kiedy produkty mogą posiadać więcej niż jeden defekt. Sprawdza ilość defektów (skaz), a nie jednostek wadliwych. Pomaga w zmniejszaniu ilości defektów przypadających na wyrób - zmechacenie, zdekoloryzowane włókna lub naprężenia materiału w jednym dywanie. - defekty obrazu w kineskopie telewizyjnym, - wypadki na skrzyżowaniu, -zażalenia w hotelu. Rozkład z próbek dla wykresów typu c jest rozkładem Poissona. Bazuje on na założeniu, iż defekty występują na ciągłym obszarze, i że prawdopodobieństwo wystąpienia usterki jest takie samo w całym obszarze, proporcjonalnie do rozmiaru obszaru. -3 defekty płótna na cm 2 3 x 10000 na m 2 c = średnia ilość defektów w próbce (linia centralna) = ilość wszystkich defektów / ilość próbek Odchylenie standardowe σ = c Granice kontrolne wynoszą UCL c = c + 3 c LCL c = c 3 c UWAGA: Jeśli LCL wynosi z obliczeń <0, to przyjmujemy LCL = 0 COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 46
PRZYKŁAD 1 Monitorowanie ilości defektów na wyrób przy pomocy wykresów typu c. Papiernia w Kwidzysku produkuje papier toaletowy. Na ostatnim etapie procesu produkcyjnego, papier przechodzi przez urządzenie mierzące różne parametry jakości. Kiedy proces jest stabilny, średnia ilość defektów przypadających na rolkę wynosi 20. Należy: a. Utworzyć wykres kontrolny dla ilości defektów przypadających na rolkę. Użyć granic kontrolnych ±2σ. b. Jeżeli ostatnio testowana rolka posiada 27 defektów, to czy proces jest pod kontrolą statystyczną? c. Jeżeli ostatnio testowana rolka posiada jedynie 5 defektów, to czy proces jest pod kontrolą statystyczną? COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 47 ROZWIĄZANIE a. Średnia ilość defektów na rolkę wynosi 20. A więc: UCL c = c + 3 c = 20 + 2( 20) = 28,94 LCL c = c 3 c = 20-2( 20) = 11,06 Wykres typu c dla ilości defektów na rolkę papieru. - Górna granica kontrolna nie została przekroczona, proces jest wciąż pod kontrolą statystyczną. - Pięć defektów to mniej niż wynosi dolna granica kontrolna, proces jest więc teoretycznie poza kontrolą statystyczną. To dobrze czy źle? COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 48
ZDOLNOŚĆ PROCESU Granice kontrolne oparte są na średniej i zmienności rozkładu próbek, a nie specyfikacji projektowych, Proces który jest pod kontrolą statystyczną może nie dostarczać produktów zgodnych ze specyfikacjami wyrobu. Zdolność procesu odnosi się do zdolności spełniania przez proces specyfikacji projektowych określonych dla produktu. Przykład: Specyfikacje dla ratowniczych rac świetlnych określają nominalny czas świecenia racy na 100 ±10 s. Górna granica tolerancji (USL) = 110 s, Dolną granica tolerancji (LSL) = 90 s. Proces produkcji rac, musi być zdolny do wytwarzania wyrobów zawierających się w tych specyfikacjach projektowych; jeżeli nie powstanie pewien odsetek rac wadliwych. Jeżeli odchylenie standardowe czasu świecenia wynosi σ = 10s, to 32% rac nie spełni wymogów tolerancji!!! COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 49 OKREŚLANIE ZDOLNOŚCI PROCESU Związek pomiędzy rozkładem procesu oraz górną i dolną granicą specyfikacji. (a) (b) Proces posiada zdolność, ponieważ krańce rozkładu procesu zawierają się pomiędzy dolną i górną granicą specyfikacji. Proces nie posiada zdolności, ponieważ dostarcza zbyt dużo rac o krótkiej trwałości. Im mniejsza zmienność - charakteryzująca się mniejszym odchyleniem standardowym - tym rzadziej występują braki produkcyjne. COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 50
Produkcja według 2 sigma (granice tolerancji równe są średniej rozkładu procesu plus i minus dwa odchylenia standardowe), dostarcza 4,56 % wyrobów wadliwych, = 45.600 ppm. Produkcja według 4 sigma, dostarcza jedynie 0,0063 % wyrobów wadliwych, = 63 ppm. Produkcja według 6 sigma, dostarcza jedynie 0,0000002 % wyrobów wadliwych, = 0,002 ppm. COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 51 WSKAŹNIK ZDOLNOŚCI PROCESU C p Wskaźnik porównuje granice kontrolne (LCL, UCL) z granicami tolerancji (LSL, USL) Proces posiada zdolność, jeżeli krańce jego dystrybucji zawierają się pomiędzy górną i dolną granicą tolerancji. Generalnie, dystrybucja większości procesów zawiera się w obszarze ±3 sigma od średniej. Jeżeli proces posiada zdolność, to różnica pomiędzy górną i dolną granicą tolerancji, musi być większa od sześciu odchyleń standardowych (wynikających ze zmienności danego procesu). Wskaźnik zdolności procesu, C p, wynosi: Górna granica tolerancji - Dolna granica tolerancji C p = ------------------------------------------------------------------- 6 σ Jeżeli C p jest większe niż 1,0 to zakres tolerancji jest większy niż rzeczywisty zakres rozkładu produkcji. Jeżeli C p jest mniejsze niż 1,0 to proces będzie wytwarzał produkty lub usługi nie zawierające się w granicach tolerancji. σ = R d 2 COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 52
INDEKS ZDOLNOŚCI PROCESU C pk Proces posiada zdolność tylko jeżeli - C p 1 (lub np. 1,33), oraz: - rozkład procesu jest wycentrowany na wartość nominalną specyfikacji. PRZYKŁAD: Proces produkcji rac może posiadać C p 1,33, ale jeżeli średnia rozkładu procesu x, jest bliżej górnej lub dolnej granicy tolerancji, to proces może wciąż generować wyroby wadliwe. Indeks zdolności procesu C pk, jest miarą skłonności procesu do generowania wadliwych wyrobów względem górnej bądź dolnej granicy tolerancji: x - Dolna granica tolerancji Górna granica tolerancji - x C pk = Mniejsza wartość [ ----------------------------------------, ---------------------------------------- ] 3 σ 3 σ Jeżeli C pk 1,0 (lub 1,33), oraz C p 1, to proces posiada zdolność. Jeżeli C pk < 1,0 to średnia procesu jest bliżej którejś z granic tolerancji i proces generuje braki. Zawsze C pk C p Jeżeli C pk = C p, to proces jest wycentrowany. COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 53 PRZYKŁAD 1: Określanie zdolności procesu produkcji rac W procesie produkcji rac wytwarzane są race o średnim czasie świecenia 90-ciu sek. I σ = 4,8 sek. Normy wymagają czasu świecenia 100 ± 20 sek. Czy proces produkcji posiada zdolność do generowania wyrobów zgodnych z wymaganiami? ROZWIĄZANIE Aby określić zdolność procesu obliczamy C p oraz C pk 120 80 C p = = 1,39 6 4,8 90 80 Obliczenia dla dolnej granicy tolerancji: = 0, 69 3 4,8 120 90 Obliczenia dla górnej granicy tolerancji: = 2, 08 3 4,8 C pk = Mniejssza wartość (0,69 lub 2,08) = 0,69 C p wskazuje na to, że zmienność procesu jest akceptowalna względem zakresu granic tolerancji Jednak wartość C pk wskazuje, że proces produkcyjny nie jest wycentrowany, a więc będą notorycznie produkowane race o zbyt krótkim czasie świecenia COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 54