Zarządzanie jakością ćwiczenia
|
|
- Alicja Kuczyńska
- 9 lat temu
- Przeglądów:
Transkrypt
1 Zarządzanie jakością ćwiczenia mgr inż. Anna Wąsińska Zakład Zarządzania Jakością pok. 311 B1, tel Statystyczne sterowanie procesami SPC kontrolna Konsultacje: SO 13:00 14:00 SO 18:00 19:00 2 Statystyczne Sterowanie Procesem Statistical Process Control - SPC SPC jest to sterowanie jakością z wykorzystaniem metod statystycznych. SPC jest to zbiór metod statystycznych, które mają pomóc usprawniać w sposób ciągły jakość procesów produkcji lub usług. SPC to bieżąca kontrola procesu służąca do: - wykrywania jego ewentualnych rozregulowań - stałej poprawy jego jakości. W ramach SPC bada się: - z jaką naturalną zmiennością, czyli z jakim rozproszeniem wyników pomiaru wykonywany jest proces produkcyjny - jaka jest zdolność tego procesu do spełnienia wymagań określonych specyfikacjami., W. Mantura; J. Łańcucki;W. Prussak 3 Statystyczne Sterowanie Procesem Statistical Process Control - SPC O SPC można mówić zawsze, gdy dane lub informacje będące wynikiem stosowania narzędzi i metod statystycznych są wykorzystywane: - do oddziaływania na proces w celu utrzymywania jego przebiegu w wymaganych granicach - dla uzyskania jego trwałej poprawy. 4 Cel zastosowania karty kontrolnej kontrolna, jako główne narzędzie statystycznego sterowania procesami (SPC), służy do nadzorowania przebiegu procesu i doskonalenia jego jakości. Cele: kontrolna diagnoza i ocena stabilności procesu identyfikacja słabych punktów procesu (przyczyn powodujących wzrost zmienności procesu) wymagających regulacji wykrywanie, kiedy na kontrolowany proces wpływ miały normalne, a kiedy szczególne przyczyny zmienności potwierdzenie udoskonalenia procesu 5 Zadaniem karty kontrolnej jest dostarczanie w przejrzystej, graficznej postaci informacji o tym, czy proces jest stabilny, czy nie wymaga regulacji [A. Hamrol]. 6 Opracowała: Anna Wąsińska [za] J. Łańcucki; A. Hamrol, W. Mantura; J.J. Dahlgaard, K. Kristensen, G.K. Kanji 1
2 Przykładowe przyczyny odchyleń od wartości pożądanej w procesie system zarządzania dobór narzędzi technologia surowce maszyny błędy pracowników warunki otoczenia odzaje zakłóceń w procesie Przyczyny zmienności jakości procesu można podzielić na dwie grupy: 1. Czynniki (przyczyny, zakłócenia) specjalne (sporadyczne, wyjątkowe). 2. Czynniki (przyczyny, zakłócenia) losowe (systemowe, pospolite, chroniczne). Opracowała: Anna Wąsińska [za] J. Łańcucki 7 Opracowała: Anna Wąsińska [za] J. Łańcucki; A. Hamrol, W. Mantura; J.J. Dahlgaard, K. Kristensen, G.K. Kanji; Z. Zymonik 8 Przyczyny specjalne pojawiają się nagle i dlatego zakłócenie procesu zwraca uwagę kierownictwa istnieje tylko niewielka ich liczba, a skutek każdej z nich może być znaczący odpowiedzialność za te przyczyny może dzielić się pomiędzy pracownika a kierownictwo Przyczyny zmienności procesu Przyczyny systemowe wciąż się pojawiają i dlatego nie są zauważane przez kierownictwo jest ich wiele, skutek każdej z nich jest stosunkowo mały w porównaniu z przyczynami specjalnymi, jednak ich łączny skutek jest zazwyczaj dość znaczny, dlatego trzeba je zaatakować w celu udoskonalenia systemu/procesu odpowiedzialność za te przyczyny spoczywa całkowicie na kierownictwie Opracowała: Anna Wąsińska [za] J. Łańcucki; A. Hamrol, W. Mantura; J.J. Dahlgaard, K. Kristensen, G.K. Kanji; Z. Zymonik 9 Istota karty kontrolnej Prowadzenie karty kontrolnej polega na śledzeniu na wykresie zmian wybranych statystyk (np. średniej arytmetycznej, mediany, rozstępu, odchylenia standardowego, liczby niezgodności, liczby jednostek niezgodnych) wyznaczanych z próbek o określonej liczebności, pobieranych w ustalonych, regularnych odstępach czasu, utworzonych na wybranych właściwościach (cechach) procesu lub wyrobu. Jeśli wartości wybranych statystyk mieszczą się w przedziale wyznaczonym na karcie przez tzw. linie kontrolne lub nie tworzą określonej sekwencji oznacza to, że proces jest stabilny tzn. nie podlega działaniu czynników, które mogą trwale pogorszyć jego wyniki. 10, W. Mantura Ideą kart jest: Idea karty kontrolnej systematyczne ich prowadzenie w celu uzyskania potwierdzenia, że środki stosowane do sterowania procesem zapewniają jego stabilność, a w przypadku, gdy na karcie pojawi się sygnał rozregulowania, podjęcie odpowiednich działań korygujących. odzaje kart kontrolnych karty kontrolne dla cech mierzalnych karty kontrolne dla cech policzalnych (alternatywnych) 11 Źródło: J. Łańcucki Opracowała: Anna Wąsińska [za] J. Łańcucki; A. Hamrol, W. Mantura; J.J. Dahlgaard, K. Kristensen, G.K. Kanji 12 2
3 Typ karty x M e s Karty kontrolne dla cech mierzalnych Nadzorowana statystyka Średnia arytmetyczna Liczebność próbki stosunkowo mała (zazwyczaj 3-5) Mediana Liczebność próbki stosunkowo mała (zazwyczaj 3-5) ozstęp Liczebność próbki stosunkowo mała (zazwyczaj 3-5) Odchylenie standardowe Jeśli uzasadnione jest, mając na uwadze względy techniczne i ekonomiczne, pobieranie stosunkowo dużych próbek (o liczebności n>5) Zastosowania Podstawowa karta kontrolna stosowana w procesach, w których można wyróżnić kolejne, powtarzalne jednostki produktu, np. pakowanie produktów sztukowych zadko stosowana Zastosowanie jw Stosowana razem z kartą x, x i lubx jako kontrola naturalnej zmienności procesu 13 Typ karty x i x sum skumulowanych Karty kontrolne dla cech mierzalnych (cd) Nadzorowana statystyka Wartość pomiarowa Łatwość prowadzenia, jednak mała precyzja wrażliwa na zakłócenia przypadkowe /pojedyncze zakłócenia Średnia ważona (liniowa lub wykładnicza) z ostatnich n pomiarów Mało wrażliwa na zakłócenia sporadyczne, wymagająca stosunkowo pracochłonnych obliczeń Suma odchyleń mierzonej cechy od wartości nominalnej (celowej, średniej) Pracochłonna, przy interpretacji wymagająca od użytkownika wysokich kwalifikacji Zastosowania Stosowana, jeśli ze względu na liczbę danych oraz niską powtarzalność procesu, nie można zastosować kart x oraz xs lub M e : - w produkcji małoseryjnej, nierytmicznej - dla procesów ciągłych, w których nie można pobierać próbek wieloelementowych Stosowana w procesach, w których ważne jest wykrywanie niewielkich zmian 14 Typ karty np p c u Karty kontrolne dla cech policzalnych (alternatywnych) Nadzorowana statystyka Liczba jednostek niezgodnych Zalecana jest stała liczebność próbki Frakcja jednostek niezgodnych Dopuszczalna jest zmienna liczebność próbki Liczba niezgodności Zalecana jest stała liczebność próbki Liczba niezgodności na jednostkę wyrobu Dopuszczalna jest zmienna liczebność próbki Zastosowania Stosowana w procesach, w których można wyróżnić kolejne, powtarzalne jednostki produktu i zakwalifikować je jako zgodne lub niezgodne Stosowana w procesach, w których nie musi być możliwe wyróżnienie kolejnych, powtarzalnych jednostek produktu Możliwe jest określenie zakresu próbki i zliczenie w niej liczby niezgodności 15 Budowa karty kontrolnej LC (linia centralna) przedstawia średnią wartość wybranej statystyki wyznaczoną ze wszystkich umieszczonych na karcie kontrolnej pomiarów GGK (górna granica kontrolna) linia wyznaczająca górne wartości obserwowanych charakterystyk dla ustabilizowanego i poprawnie przebiegającego procesu DGK (dolna granica kontrolna) linia wyznaczająca dolne wartości obserwowanych charakterystyk dla ustabilizowanego i poprawnie przebiegającego procesu GGO (górna granica ostrzegawcza) i DGO (dolna granica ostrzegawcza) linie, po których przekroczeniu należy bliżej przyjrzeć się kontrolowanemu procesowi 16 Opracowała: Anna Wąsińska [za] J. Łańcucki; A. Hamrol, W. Mantura; J.J. Dahlgaard, K. Kristensen, G.K. Kanji; A. Dobrowolska Interpretacja wyników sprawdzenie spełnienia odpowiednich warunków Proces statystycznie uregulowany (kontrolowany, opanowany) wszystkie punkty muszą mieścić się pomiędzy górną i dolną linią kontrolną większość punktów musi znajdować się bliżej linii centralnej niż granic kontrolnych punkty nie mogą wykazywać trendów ani cykli świadczących o nienaturalnych przyczynach zmienności punkty nie mogą tworzyć powtarzających się okresowo układów liczba punktów znajdujących się powyżej lub poniżej linii centralnej musi być w przybliżeniu jednakowa linie łączące poszczególne punkty na wykresie powinny przecinać linię centralną Proces statystycznie nieuregulowany (niekontrolowany, nieopanowany) punkt (punkty) na karcie wypada poza dolną lub górną granicę kontrolną dwa z trzech kolejnych punktów leżą bardzo blisko górnej lub dolnej linii kontrolnej serie siedmiu kolejnych punktów leżą po jednej stronie linii centralnej szereg siedmiu punktów leży wzdłuż prostej rosnącej lub malejącej (występowanie trendów ) szeregi punktów układają się w falę (występowanie okresów ) Opracowała: Anna Wąsińska [za] J. Łańcucki; A. Hamrol, W. Mantura; J.J. Dahlgaard, K. Kristensen, G.K. Kanji 17 Przykłady symptomów wskazujących działanie na proces czynników specjalnych 18 3
4 Procedura sporządzania karty kontrolnej 1. Wybór wielkości kontrolowanych mających istotny udział w jakości na które można aktywnie oddziaływać poprzez zmianę parametrów procesu 2. Wybór typu karty kontrolnej, np.: proces o charakterze masowym, wyjście procesu policzalne karta x proces o charakterze ciągłym, wyjście procesu niepoliczalne karta pojedynczych obserwacji 3. Wyznaczenie wielkości próbki n (zmienność powinna w jak największym stopniu oddawać naturalną zmienność procesu) 19 Procedura sporządzania karty kontrolnej (cd) 4. Wyznaczenie częstotliwości pobierania próbek (wyniki kolejnych próbek powinny umożliwiać rozpoznanie zmian wywołanych czynnikami specjalnymi). 5. ejestrowanie danych (pobranie danych przynajmniej dla k = próbek n elementowych). 6. Obliczenie statystyk charakteryzujących każdą wybraną podgrupę (próbkę n elementową). 7. Obliczenie linii kontrolnych wyznaczenie ich położenia w oparciu o statystyki z wybranych podgrup/próbek n elementowych wg wzorów dla przyjętej karty kontrolnej Procedura sporządzania karty kontrolnej (cd) 8. Opracowanie arkusza karty (powinien zapewnić odpowiednią rozdzielczość) naniesienie na wykres linii centralnej naniesienie na wykres linii/granic kontrolnych (górnej i dolnej) 9. Naniesienie statystyk badanych próbek na kartę kontrolną. 10. Przeprowadzenie analizy karty wykrywanie symptomów wskazujących na działanie na proces czynników specjalnych zbadanie statystyk dla punktów znajdujących się poza granicami kontrolnymi i dla wzorów wskazujących na występowanie możliwych do wyznaczenie przyczyn specjalnych 11. Wyznaczenie i przeprowadzenie działań korygujących usuwanie źródeł czynników specjalnych monitorowanie efektów przeprowadzonych działań Przykład Budowanie karty kontrolnej x 22 Czynności wstępne (etapy 1 5) Obliczenie statystyk (etap 6) Nr pomiaru Numer próbki , , , , , ,5 249, , , ,5 250, ,5 250, , ,5 250, ,5 251, , , , , ,5 251, , ,5 Nr pomiaru Numer próbki , , , , , ,5 249, , , ,5 250, ,5 250, , ,5 250, ,5 251, , , , , ,5 251, , ,5 Średnia 250,67 250,92 250,50 250,92 250,92 250,58 252,25 250,83 251,08 250,83 ozstęp 2,00 2,00 2,50 1,50 2,50 2,00 2,00 1,00 1,50 1,
5 Obliczenie linii kontrolnych (etap 7) Statystyka dla n elementowej próbki (wykreślany punkt) x X X n X max X min Liczebność próbki n Wybrane współczynniki A2 D D , ,267 Linia centralna Granice kontrolne X X k GGK X A2 DGK X A2 k GGK ( ) D 4 DGK ( ) D 3 3 1, , , , , , ,483 0,030 1, Opracowała: Anna Wąsińska [za] J. Łańcucki; A. Hamrol Obliczenie linii kontrolnych (etap 7) - cd Opracowanie arkusza karty (etap 8) x Linia centralna 2509,5 18,5 X 250,95 1, Granice kontrolne GGK 250,95 0,483 1,85 251,84 GGK DGK 250,95 0,483 1,85 250,06 DGK ( ) 1,97 1,85 3,64 ( ) 0,03 1,85 0,06 Opracowała: Anna Wąsińska Naniesienie statystyk badanych próbek na kartę kontrolną (etap 9) Opracowała: Anna Wąsińska Użyteczność kart kontrolnych możliwość zastosowania do sterowania procesu w trakcie jego przebiegu możliwość sprawdzenia, na podstawie wyników pomiarów próbek, czy proces przebiega prawidłowo możliwość rozróżnienia pomiędzy zakłóceniami specjalnymi i losowymi, co pozwala na podjęcie właściwych działań korygujących pomoc w zapewnieniu stałości przebiegu procesu i jego przewidywalności poprawa jakości i zmniejszenie kosztów wspólny język pozwalający na analizowanie i zrozumienie działania procesu Opracowała: Anna Wąsińska [za] J. Łancucki; A. Hamrol; J.J. Dahlgaard, K. Kristensen, G.K. Kanji 30 5
6 Wskaźniki zdolności jakościowej Wskaźnik zdolności jakościowej określa możliwości spełnienia przez kogoś/przez coś postawionych wymagań jakościowych. Wskaźniki zdolności jakościowej wskaźnik = zmienność dopuszczalna wynikająca z wymagań zmienność własna procesu Badać można zdolność całych procesów lub tylko poszczególnych maszyn. Na podstawie wskaźnika określić można m.in. wadliwość produkcji, jakiej należy się spodziewać przy danym procesie (lub maszynie) ; J.Łańcucki; T. Greber C p Wskaźniki zdolności jakościowej Cp ( GLT DLT ) T 6 6 GLT (DLT) górna (dolna) linia tolerancji T pole tolerancji σ odchylenie standardowe badanej właściwości 6σ naturalna tolerancja (rozrzut) procesu Cp określa ile razy przedział naturalnej zmienności danej właściwości, wyznaczany wartością (-3σ, +3σ), mieści się w jej polu tolerancji (ustalonej wymaganiami). Określa tylko potencjalne możliwości procesu do spełnienia wymagań jakościowych (nie uwzględnia ewentualnego przesunięcia wartości średniej właściwości x względem linii tolerancji. 33 ; J.Łańcucki; T. Greber Wskaźniki zdolności jakościowej Cpk C pk ( GLT x) ( x DLT) min ; 3 3 GLT (DLT) górna (dolna) linia tolerancji σ odchylenie standardowe badanej właściwości x - wartość średnia badanej właściwości uzyskana z pomiarów Cpk uwzględnia położenie wartości średniej właściwości x względem granic tolerancji. 34 6
Katedra Technik Wytwarzania i Automatyzacji STATYSTYCZNA KONTROLA PROCESU
Katedra Technik Wytwarzania i Automatyzacji METROLOGIA I KONTKOLA JAKOŚCI - LABORATORIUM TEMAT: STATYSTYCZNA KONTROLA PROCESU 1. Cel ćwiczenia Zapoznanie studentów z podstawami wdrażania i stosowania metod
Zarządzanie procesami
Metody pomiaru stosowane w organizacjach Zarządzanie procesami Zakres Rodzaje pomiaru metod pomiaru Klasyczne metody pomiaru organizacji Pomiar całej organizacji Tradycyjny rachunek kosztów (np. ROI) Rachunek
Statystyczne sterowanie procesem
Statystyczne sterowanie procesem SPC (ang. Statistical Process Control) Trzy filary SPC: 1. sporządzenie dokładnego diagramu procesu produkcji; 2. pobieranie losowych próbek (w regularnych odstępach czasu
4) zmienność procesu w czasie wymaga od zespołu jednoczesnego monitorowania dokładności
6. Jeśli dąży się do porównania dwóch wykresów należy pamiętać, aby ich skale były sobie równe. Jeśli jest to niemożliwe ze względu na porównanie wartości bezwzględnych (np. 15 szt. i 150 szt.), trzeba
Sterowanie procesem i jego zdolność. Zbigniew Wiśniewski
Sterowanie procesem i jego zdolność Zbigniew Wiśniewski Wybór cech do kart kontrolnych Zaleca się aby w pierwszej kolejności były brane pod uwagę cechy dotyczące funkcjonowania wyrobu lub świadczenia usługi
POLITECHNIKA OPOLSKA
POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr Temat: Karty kontrolne przy alternatywnej ocenie właściwości.
POLITECHNIKA OPOLSKA
POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr 9 Temat: Karty kontrolne przy alternatywnej ocenie właściwości.
Definicje PN ISO Definicje PN ISO 3951 interpretacja Zastosowanie normy PN-ISO 3951:1997
PN-ISO 3951:1997 METODY STATYSTYCZNEJ KONTROI JAKOŚCI WG OCENY ICZBOWEJ ciągła seria partii wyrobów sztukowych dla jednej procedury analizowana jest tylko jedna wartość, która musi być mierzalna w skali
TRADYCYJNE NARZĘDZIA ZARZĄDZANIA JAKOŚCIĄ
TRADYCYJNE NARZĘDZIA ZARZĄDZANIA JAKOŚCIĄ Ewa Matuszak Paulina Kozłowska Aleksandra Lorek CZYM SĄ NARZĘDZIA ZARZĄDZANIA JAKOŚCIĄ? Narzędzia zarządzania jakością to instrumenty pozwalające zbierać i przetwarzać
POLITECHNIKA OPOLSKA
POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr 8 Temat: Statystyczna kontrola procesu SPC przy pomocy
STATYSTYCZNE STEROWANIE PROCESAMI
STATYSTYCZNE STEROWANIE PROCESAMI ARTUR MACIASZCZYK COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 1! STATYSTYCZNE MONITOROWANIE JAKOŚCI Bogu ufamy. Wszyscy pozostali niech przedstawią
POLITECHNIKA OPOLSKA
POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr 8 Temat: Statystyczna kontrola procesu SPC przy pomocy
Konspekt SPC jako metoda pomiaru i doskonalenia procesów.
Opracowali: Agata Murmyło Piotr Pokrzywa Michał Sabik Konspekt SPC jako metoda pomiaru i doskonalenia procesów. 1. Istota podejścia SPC. 2. Narzędzia do analizy stabilności procesu 2.1. Karty kontrolne
POLITECHNIKA OPOLSKA
POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Inżynierii Jakości Ćwiczenie nr 10 Temat: Karta kontrolna pojedynczych obserwacji i ruchomego
I jest narzędziem służącym do porównywania rozproszenia dwóch zmiennych. Używamy go tylko, gdy pomiędzy zmiennymi istnieje logiczny związek
ZADANIA statystyka opisowa i CTG 1. Dokonano pomiaru stężenia jonów azotanowych w wodzie μg/ml 1 0.51 0.51 0.51 0.50 0.51 0.49 0.52 0.53 0.50 0.47 0.51 0.52 0.53 0.48 0.59 0.50 0.52 0.49 0.49 0.50 0.49
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Monitorowanie i Diagnostyka w Systemach Sterowania na studiach II stopnia specjalności: Systemy Sterowania i Podejmowania Decyzji
Monitorowanie i Diagnostyka w Systemach Sterowania na studiach II stopnia specjalności: Systemy Sterowania i Podejmowania Decyzji Analiza składników podstawowych - wprowadzenie (Principal Components Analysis
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
DR HAB INŻ. TADEUSZ SAŁACIŃSKI POLITECHNIKA WARSZAWSKA
-1- DR HAB INŻ. TADEUSZ SAŁACIŃSKI POLITECHNIKA WARSZAWSKA ANALIZA ZDOLNOŚCI PROCESÓW PRODUKCYJNYCH Z WYKORZYSTANIEM SPC Statystyczne sterowanie procesami Zgodnie z normą ISO 9001:2000 Systemy Zarządzania
Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński
Wstęp do teorii niepewności pomiaru Danuta J. Michczyńska Adam Michczyński Podstawowe informacje: Strona Politechniki Śląskiej: www.polsl.pl Instytut Fizyki / strona własna Instytutu / Dydaktyka / I Pracownia
Statystyka opisowa. Wykład I. Elementy statystyki opisowej
Statystyka opisowa. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Elementy statystyku opisowej 1 Elementy statystyku opisowej 2 3 Elementy statystyku opisowej Definicja Statystyka jest to nauka o
Charakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej)
Charakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej) 1 Podział ze względu na zakres danych użytych do wyznaczenia miary Miary opisujące
Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( )
Statystyka Rozkład prawdopodobieństwa Testowanie hipotez Wykład III (04.01.2016) Rozkład t-studenta Rozkład T jest rozkładem pomocniczym we wnioskowaniu statystycznym; stosuje się go wyznaczenia przedziału
PRZYKŁAD TWORZENIA KART KONTROLNYCH W STATISTICA
PRZYKŁAD TWORZENIA KART KONTROLNYCH W STATISTICA Tomasz Demski, StatSoft Polska Sp. z o.o. Karty kontrolne są jednym z najczęściej wykorzystywanych narzędzi analizy danych. Zaproponowane w latach dwudziestych
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss
Zarządzanie jakością. cią. Zarządzanie jakością - wykład 5. W. Prussak Kontrola w zarządzaniu jakością
Jakość produktu Pojęcie i zasady zarządzania System zarządzania Planowanie Metody i narzędzia projakościowe Doskonalenie Zarządzanie. jakości cią Wykład 05/07 Statystyczna kontrola procesu (SPC) 5.1 inspekcyjna
Wydział Inżynierii Produkcji. I Logistyki. Statystyka opisowa. Wykład 3. Dr inż. Adam Deptuła
12.03.2017 Wydział Inżynierii Produkcji I Logistyki Statystyka opisowa Wykład 3 Dr inż. Adam Deptuła METODY OPISU DANYCH ILOŚCIOWYCH SKALARNYCH Wykresy: diagramy, histogramy, łamane częstości, wykresy
Karta kontrolna budowa i zastosowanie
STATYSTYCZNE STEROWANIE PROCESAMI PRAKTYCZNE PRZYKŁADY ZASTOSOWANIA Tomasz Greber, Politechnika Wrocławska, Instytut Organizacji i Zarządzania, Zakład Zarządzania Jakością; Magazyn ZARZĄDZANIE JAKOŚCIĄ
Kontrola i zapewnienie jakości wyników
Kontrola i zapewnienie jakości wyników Kontrola i zapewnienie jakości wyników QA : Quality Assurance QC : Quality Control Dobór systemu zapewnienia jakości wyników dla danego zadania fit for purpose Kontrola
Statystyka. Wykład 4. Magdalena Alama-Bućko. 13 marca Magdalena Alama-Bućko Statystyka 13 marca / 41
Statystyka Wykład 4 Magdalena Alama-Bućko 13 marca 2017 Magdalena Alama-Bućko Statystyka 13 marca 2017 1 / 41 Na poprzednim wykładzie omówiliśmy następujace miary rozproszenia: Wariancja - to średnia arytmetyczna
Statystyka matematyczna i ekonometria
Statystyka matematyczna i ekonometria prof. dr hab. inż. Jacek Mercik B4 pok. 55 jacek.mercik@pwr.wroc.pl (tylko z konta studenckiego z serwera PWr) Konsultacje, kontakt itp. Strona WWW Elementy wykładu.
Redukcja zmienności procesu oparta na analizie danych z procesu krótkoseryjnego za pomocą karty kontrolnej "celu"
Potencjał Wiedzy Jak zredukować koszty zmienności Łódź, 29 30 maja 2017 Redukcja zmienności procesu oparta na analizie danych z procesu krótkoseryjnego za pomocą karty kontrolnej "celu" Piotr Tomicki,
Monitorowanie procesów wytwarzania
POLITECHNIKA KOSZALIŃSKA WYDZIAŁ MECHANICZNY kierunek Mechanika i Budowa Maszyn Monitorowanie procesów wytwarzania Ocena zdolności jakościowej procesów Koszalin Umiejętności i kompetencje: Umiejętności
INSTRUKCJA Nr QI/8.2.3/NJ
Załącznik nr 6 do procedury QP/4.2.3/NJ INSTRUKCJA NR QI/8.2.3/NJ Wyd. 04 Metody statystyczne Str./Na str. 1 / 6 Egz. nr. 14.11.2016 (data wydania) INSTRUKCJA Nr QI/8.2.3/NJ METODY STATYSTYCZNE Stanowisko
STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych;
STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych; - badanie skuteczności nowego leku; - badanie stopnia zanieczyszczenia gleb metalami
POJĘCIA WSTĘPNE. STATYSTYKA - nauka traktująca o metodach ilościowych badania prawidłowości zjawisk (procesów) masowych.
[1] POJĘCIA WSTĘPNE STATYSTYKA - nauka traktująca o metodach ilościowych badania prawidłowości zjawisk (procesów) masowych. BADANIE STATYSTYCZNE - ogół prac mających na celu poznanie struktury określonej
Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część
Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część populacji, którą podaje się badaniu statystycznemu
ZASTOSOWANIE KART SHEWHARTA DO KONTROLI JAKOŚCI PRODUKCJI ELEMENTÓW UZBROJENIA
Dr Agnieszka Mazur-Dudzińska DOI: 10.17814/mechanik.2015.7.268 Politechnika Łódzka, Katedra Zarządzania Dr inż. Jacek Dudziński Wojskowa Akademia Techniczna, Katedra Mechatroniki ZASTOSOWANIE KART SHEWHARTA
Walidacja metod analitycznych Raport z walidacji
Walidacja metod analitycznych Raport z walidacji Małgorzata Jakubowska Katedra Chemii Analitycznej WIMiC AGH Walidacja metod analitycznych (według ISO) to proces ustalania parametrów charakteryzujących
Wprowadzenie. Typowe i nietypowe sytuacje
NIESTANDARDOWE KARTY KONTROLNE CZYLI JAK SOBIE RADZIĆ W NIETYPOWYCH SYTUACJACH dr inż. Tomasz Greber, Politechnika Wrocławska, Instytut Organizacji i Zarządzania Wprowadzenie SPC (statystyczne sterowanie
Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa
Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie
RÓWNOWAŻNOŚĆ METOD BADAWCZYCH
RÓWNOWAŻNOŚĆ METOD BADAWCZYCH Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska Równoważność metod??? 2 Zgodność wyników analitycznych otrzymanych z wykorzystaniem porównywanych
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący
Systemy zapewnienia jakości w laboratorium badawczym i pomiarowym
Systemy zapewnienia jakości w laboratorium badawczym i pomiarowym Narzędzia statystyczne w zakresie kontroli jakości / nadzoru nad wyposażeniem pomiarowym M. Kamiński Jednym z ważnych narzędzi statystycznej
Wykład 5: Statystyki opisowe (część 2)
Wykład 5: Statystyki opisowe (część 2) Wprowadzenie Na poprzednim wykładzie wprowadzone zostały statystyki opisowe nazywane miarami położenia (średnia, mediana, kwartyle, minimum i maksimum, modalna oraz
W1. Wprowadzenie. Statystyka opisowa
W1. Wprowadzenie. Statystyka opisowa dr hab. Jerzy Nakielski Zakład Biofizyki i Morfogenezy Roślin Plan wykładu: 1. O co chodzi w statystyce 2. Etapy badania statystycznego 3. Zmienna losowa, rozkład
-> Średnia arytmetyczna (5) (4) ->Kwartyl dolny, mediana, kwartyl górny, moda - analogicznie jak
Wzory dla szeregu szczegółowego: Wzory dla szeregu rozdzielczego punktowego: ->Średnia arytmetyczna ważona -> Średnia arytmetyczna (5) ->Średnia harmoniczna (1) ->Średnia harmoniczna (6) (2) ->Średnia
Statystyka matematyczna. dr Katarzyna Góral-Radziszewska Katedra Genetyki i Ogólnej Hodowli Zwierząt
Statystyka matematyczna dr Katarzyna Góral-Radziszewska Katedra Genetyki i Ogólnej Hodowli Zwierząt Zasady zaliczenia przedmiotu: część wykładowa Maksymalna liczba punktów do zdobycia 40. Egzamin będzie
PRZYKŁAD WDROŻENIA KART KONTROLNYCH KROK PO KROKU
PRZYKŁAD WDROŻENIA KART KONTROLNYCH KROK PO KROKU Tomasz Demski, StatSoft Polska Sp. z o.o. Przykład przedstawia tworzenie karty kontrolnej p dla nowego procesu, określanie wartości granic kontrolnych
KARTA INFORMACYJNA PRZEDMIOTU
Uniwersytet Rzeszowski WYDZIAŁ KIERUNEK Matematyczno-Przyrodniczy Fizyka techniczna SPECJALNOŚĆ RODZAJ STUDIÓW stacjonarne, studia pierwszego stopnia KARTA INFORMACYJNA PRZEDMIOTU NAZWA PRZEDMIOTU WG PLANU
Zad. 4 Należy określić rodzaj testu (jedno czy dwustronny) oraz wartości krytyczne z lub t dla określonych hipotez i ich poziomów istotności:
Zadania ze statystyki cz. 7. Zad.1 Z populacji wyłoniono próbę wielkości 64 jednostek. Średnia arytmetyczna wartość cechy wyniosła 110, zaś odchylenie standardowe 16. Należy wyznaczyć przedział ufności
Metody statystyczne kontroli jakości i niezawodności Lekcja II: Karty kontrolne.
Metody statystyczne kontroli jakości i niezawodności Lekcja II: Karty kontrolne. Wydział Matematyki Politechniki Wrocławskiej Karty kontroli jakości: przypomnienie Załóżmy, że chcemy mierzyć pewną charakterystykę.
SPC - Statystyczne Sterowanie Procesem
SPC - Statystyczne Sterowanie Procesem Terminy szkolenia 17-18 listopad 2016r., Warszawa - Centrum Szkoleniowe Adgar Ochota Opis W latach osiemdziesiątych XX wieku duże korporacje zaczęły szukać lepszych
Sterowanie jakością badań i analiza statystyczna w laboratorium
Sterowanie jakością badań i analiza statystyczna w laboratorium CS-17 SJ CS-17 SJ to program wspomagający sterowanie jakością badań i walidację metod badawczych. Może działać niezależnie od innych składników
1 Podstawy rachunku prawdopodobieństwa
1 Podstawy rachunku prawdopodobieństwa Dystrybuantą zmiennej losowej X nazywamy prawdopodobieństwo przyjęcia przez zmienną losową X wartości mniejszej od x, tzn. F (x) = P [X < x]. 1. dla zmiennej losowej
ANALIZA TRENDÓW DANYCH MIKROBIOLOGICZNYCH Z ZASTOSOWANIEM KART KONTROLNYCH
ANALIZA TRENDÓW DANYCH MIKROBIOLOGICZNYCH Z ZASTOSOWANIEM KART KONTROLNYCH Konrad Mysiakowski, FSP Galena; Dariusz Danel, Polska Akademia Nauk, Zakład Antropologii we Wrocławiu Wprowadzenie Obowiązujące
3. Modele tendencji czasowej w prognozowaniu
II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa
Próba własności i parametry
Próba własności i parametry Podstawowe pojęcia Zbiorowość statystyczna zbiór jednostek (obserwacji) nie identycznych, ale stanowiących logiczną całość Zbiorowość (populacja) generalna skończony lub nieskończony
INSTRUKCJA Nr QI/8.2.3/NJ
Załącznik nr 6 do procedury QP/4.2.3/NJ INSTRUKCJA NR QI/8.2.3/NJ Wyd. 05 Metody statystyczne Str./Na str. 1 / 6 Egz. nr. 17.08.2018 (data wydania) INSTRUKCJA Nr QI/8.2.3/NJ METODY STATYSTYCZNE Opracował
POLITECHNIKA OPOLSKA
POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Inżynierii Jakości KWIWiJ, II-go st. Ćwiczenie nr 3 Temat: Badanie stabilności i zdolności procesu
Statystyka. Wykład 4. Magdalena Alama-Bućko. 19 marca Magdalena Alama-Bućko Statystyka 19 marca / 33
Statystyka Wykład 4 Magdalena Alama-Bućko 19 marca 2018 Magdalena Alama-Bućko Statystyka 19 marca 2018 1 / 33 Analiza struktury zbiorowości miary położenia ( miary średnie) miary zmienności (rozproszenia,
Statystyka. Wykład 7. Magdalena Alama-Bućko. 16 kwietnia Magdalena Alama-Bućko Statystyka 16 kwietnia / 35
Statystyka Wykład 7 Magdalena Alama-Bućko 16 kwietnia 2017 Magdalena Alama-Bućko Statystyka 16 kwietnia 2017 1 / 35 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
W kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów:
Na dzisiejszym wykładzie omówimy najważniejsze charakterystyki liczbowe występujące w statystyce opisowej. Poszczególne wzory będziemy podawać w miarę potrzeby w trzech postaciach: dla szeregu szczegółowego,
Podstawowe pojęcia. Własności próby. Cechy statystyczne dzielimy na
Podstawowe pojęcia Zbiorowość statystyczna zbiór jednostek (obserwacji) nie identycznych, ale stanowiących logiczną całość Zbiorowość (populacja) generalna skończony lub nieskończony zbiór jednostek, które
LABORATORIUM PODSTAW TELEKOMUNIKACJI
WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego w Warszawie Wydział Elektroniki LABORATORIUM PODSTAW TELEKOMUNIKACJI Grupa Podgrupa Data wykonania ćwiczenia Ćwiczenie prowadził... Skład podgrupy:
Rozkłady statystyk z próby
Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny
OPTYMALIZACJA PROCESÓW TECHNOLOGICZNYCH W ZAKŁADZIE FARMACEUTYCZNYM
OPTYMALIZACJA PROCESÓW TECHNOLOGICZNYCH W ZAKŁADZIE FARMACEUTYCZNYM POZNAŃ / kwiecień 2013 Wasilewski Cezary 1 Cel: Obniżenie kosztów wytwarzania Kontrolowanie jakości wyrobu Zasady postępowania Odpowiednio
LABORATORIUM METROLOGII
AKADEMIA MORSKA W SZCZECINIE Centrum Inżynierii Ruchu Morskiego LABORATORIUM METROLOGII Ćwiczenie 6 Analiza karty kontrolnej dla cech mierzalnych procesu manewrowania statkiem Szczecin, 2010 Zespół wykonawczy:
Teoria błędów. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem.
Teoria błędów Wskutek niedoskonałości przyrządów, jak również niedoskonałości organów zmysłów wszystkie pomiary są dokonywane z określonym stopniem dokładności. Nie otrzymujemy prawidłowych wartości mierzonej
Testy nieparametryczne
Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów
Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy
Wykład Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Zbiorowość statystyczna - zbiór elementów lub wyników jakiegoś procesu powiązanych ze sobą logicznie (tzn. posiadających wspólne cechy
ANALIZA JAKOŚCIOWA I ILOŚCIOWA TESTÓW SZKOLNYCH MATERIAŁ SZKOLENIOWY
ANALIZA JAKOŚCIOWA I ILOŚCIOWA TESTÓW SZKOLNYCH MATERIAŁ SZKOLENIOWY Instrukcja przeprowadzania analiz badań edukacyjnych i sporządzania raportów po badaniach. Cele prowadzenia analiz jakościowych i ilościowych
DOKUMENTACJA SYSTEMU ZARZĄDZANIA LABORATORIUM. Procedura szacowania niepewności
DOKUMENTACJA SYSTEMU ZARZĄDZANIA LABORATORIUM Procedura szacowania niepewności Szacowanie niepewności oznaczania / pomiaru zawartości... metodą... Data Imię i Nazwisko Podpis Opracował Sprawdził Zatwierdził
RAPORT z diagnozy Matematyka na starcie
RAPORT z diagnozy Matematyka na starcie przeprowadzonej w klasach czwartych szkoły podstawowej Analiza statystyczna Wyjaśnienie Wartość wskaźnika Liczba uczniów Liczba uczniów, którzy przystąpili do sprawdzianu
Podstawowe definicje statystyczne
Podstawowe definicje statystyczne 1. Definicje podstawowych wskaźników statystycznych Do opisu wyników surowych (w punktach, w skali procentowej) stosuje się następujące wskaźniki statystyczne: wynik minimalny
1. SOLUTIONS -> ANALYSIS -> QUALITY IMPROVEMENT
UWAGA: Wszystkie dane potrzebne do zrealizowania tego ćwiczenia znajdują się w pliku sqc.xls w związku z tym przed rozpoczęciem niniejszych ćwiczeń należy zaimportować ten plik z następującego miejsca
STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY)
STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY) Praca z danymi zaczyna się od badania rozkładu liczebności (częstości) zmiennych. Rozkład liczebności (częstości) zmiennej to jakie wartości zmienna
Pobieranie prób i rozkład z próby
Pobieranie prób i rozkład z próby Marcin Zajenkowski Marcin Zajenkowski () Pobieranie prób i rozkład z próby 1 / 15 Populacja i próba Populacja dowolnie określony zespół przedmiotów, obserwacji, osób itp.
Statystyka opisowa PROWADZĄCY: DR LUDMIŁA ZA JĄC -LAMPARSKA
Statystyka opisowa PRZEDMIOT: PODSTAWY STATYSTYKI PROWADZĄCY: DR LUDMIŁA ZA JĄC -LAMPARSKA Statystyka opisowa = procedury statystyczne stosowane do opisu właściwości próby (rzadziej populacji) Pojęcia:
Plan wykładu. Statystyka opisowa. Statystyka matematyczna. Dane statystyczne miary położenia miary rozproszenia miary asymetrii
Plan wykładu Statystyka opisowa Dane statystyczne miary położenia miary rozproszenia miary asymetrii Statystyka matematyczna Podstawy estymacji Testowanie hipotez statystycznych Żródła Korzystałam z ksiażek:
Statystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl
Statystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Wprowadzenie Podstawowe cele analizy zbiorów danych Uogólniony opis poszczególnych
Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej
Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej cechy. Średnia arytmetyczna suma wartości zmiennej wszystkich
Wprowadzenie do analizy korelacji i regresji
Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących
ANALIZA SYSTEMU POMIAROWEGO (MSA)
StatSoft Polska, tel. 1 484300, 601 414151, info@statsoft.pl, www.statsoft.pl ANALIZA SYSTEMU POMIAROWEGO (MSA) dr inż. Tomasz Greber, Politechnika Wrocławska, Instytut Organizacji i Zarządzania Wprowadzenie
LABORATORIUM Z FIZYKI
LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI I PRACOWNIA FIZYCZNA C w Gliwicach Gliwice, ul. Konarskiego 22, pokoje 52-54 Regulamin pracowni i organizacja zajęć Sprawozdanie (strona tytułowa, karta pomiarowa)
Typy zmiennych. Zmienne i rekordy. Rodzaje zmiennych. Graficzne reprezentacje danych Statystyki opisowe
Typy zmiennych Graficzne reprezentacje danych Statystyki opisowe Jakościowe charakterystyka przyjmuje kilka możliwych wartości, które definiują klasy Porządkowe: odpowiedzi na pytania w ankiecie ; nigdy,
Statystyka. Wykład 3. Magdalena Alama-Bućko. 6 marca Magdalena Alama-Bućko Statystyka 6 marca / 28
Statystyka Wykład 3 Magdalena Alama-Bućko 6 marca 2017 Magdalena Alama-Bućko Statystyka 6 marca 2017 1 / 28 Szeregi rozdzielcze przedziałowe - kwartyle - przypomnienie Po ustaleniu przedziału, w którym
ZASTOSOWANIE TECHNIK CHEMOMETRYCZNYCH W BADANIACH ŚRODOWISKA. dr inż. Aleksander Astel
ZASTOSOWANIE TECHNIK CHEMOMETRYCZNYCH W BADANIACH ŚRODOWISKA dr inż. Aleksander Astel Gdańsk, 22.12.2004 CHEMOMETRIA dziedzina nauki i techniki zajmująca się wydobywaniem użytecznej informacji z wielowymiarowych
ŚLĄSKIE TECHNICZNE ZAKŁADY NAUKOWE EDUKACYJNA WARTOŚĆ DODANA
ŚLĄSKIE TECHNICZNE ZAKŁADY NAUKOWE EDUKACYJNA WARTOŚĆ DODANA ANALIZA 2014_2016 INTERPRETACJA WYNIKÓW W ŚLĄSKICH TECHNICZNYCH ZAKŁADACH NAUKOWYCH Metoda EWD to zestaw technik statystycznych pozwalających
RAPORT z diagnozy umiejętności matematycznych
RAPORT z diagnozy umiejętności matematycznych przeprowadzonej w klasach czwartych szkoły podstawowej 1 Analiza statystyczna Wskaźnik Liczba uczniów Liczba punktów Łatwość zestawu Wyjaśnienie Liczba uczniów,
Rozdział 8. Regresja. Definiowanie modelu
Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność
Analiza zdolności procesu
Analiza zdolności - przegląd Analiza zdolności procesu Zdolność procesu dla danych alternatywnych Obliczanie DPU, DPM i DPMO. Obliczanie poziomu sigma procesu. Zdolność procesu dla danych liczbowych Obliczanie
Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi
Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska D syst D śr m 1 3 5 2 4 6 śr j D 1
Metody statystyczne w zarządzaniu jakością 1
jakością 1 Metody statystyczne w zarządzaniu jakością Statystyczne sterowanie procesem Rozwój metod statystycznych 1980 Shewhart 191 Deming 195+ I Metody statystyczne w zarządzaniu jakością Podział metod
You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)
Prezentacja materiału statystycznego Szeroko rozumiane modelowanie i prognozowanie jest zwykle kluczowym celem analizy danych. Aby zbudować model wyjaśniający relacje pomiędzy różnymi aspektami rozważanego
Procedura szacowania niepewności
DOKUMENTACJA SYSTEMU ZARZĄDZANIA LABORATORIUM Procedura szacowania niepewności Stron 7 Załączniki Nr 1 Nr Nr 3 Stron Symbol procedury PN//xyz Data Imię i Nazwisko Podpis Opracował Sprawdził Zatwierdził
Sposoby opisu i modelowania zakłóceń kanałowych
INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Podstawy Telekomunikacji Sposoby opisu i modelowania zakłóceń kanałowych Warszawa 2010r. 1. Cel ćwiczeń: Celem ćwiczeń
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY Liczebności i częstości Liczebność liczba osób/respondentów/badanych, którzy udzielili tej konkretnej odpowiedzi. Podawana w osobach. Częstość odsetek,
VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15
VI WYKŁAD STATYSTYKA 9/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 6 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności, zasady