Rodzaje Kontroli. SPC Statystyczna kontrola procesu. Rodzaje kontroli Uproszczony cykl życia wyrobu. Kontrola odbiorcza - stuprocentowa
|
|
- Marian Nowakowski
- 9 lat temu
- Przeglądów:
Transkrypt
1 Uproszczony cykl życia projektowanie projektowanie procesów i planowanie prod. zakupy Rodzaje Kontroli marketing i badanie rynku pozbycie się lub odzysk dbałość o wyrób po sprzedaży faza przedprodukcyjna faza poprodukcyjna faza produkcji produkcja (świadczenie usług) sprawdzanie i weryfikacja pakowanie i przechowywanie pomoc techniczna i sprzedaż i dystrybucja serwis instalowanie i oddawanie do eksploatacji 1 ISO Rodzaje kontroli SPC Statystyczna kontrola procesu 100% Statystyczna kontrola procesu Decyzja o działaniach korygujących Statystyczna kontrola procesu Statystyczna kontrola odbiorcza ciągła Proces produkcji zgodne 3 4 odbiorcza - stuprocentowa Statystyczna kontrola odbiorcza Dostawa Decyzja niezgodne zgodne Dostawa Decyzja Partia odrzucona Partia przyjęta wykryte w czasie kontroli wyrywkowej sztuki niezgodne zastępujemy zgodnymi 5 6 1
2 odbiorcza odbiorcza ciągła kontrola produktów sztukowych (lub umownie sztukowych) niezgodne stuprocentowa ciągła statystyczna Nowa dostawa Decyzja zgodne (kontrola wyrywkowa) ocena alternatywna według oceny liczbowej jednostopniowe plany badania z próbkami o małych licznościach system kontowy plany jedno, dwu, wielos topniowe, sekwen cyjne jednostopniowe plany badania małych partii S σ R 7 Nowa dostawa Decyzja przejście na 100% elementy przyjęte 8 wykryto i sztuk dobrych na m zbadanych badać jedną sztukę spośród f wyprodukowanych tak Schemat kontroli ciągłej czy dobra? zarejestrowano i sztuk i nie stwierdzono niezgodności badanie sztuk w czasie ich ciągłego przepływu kontrola stuprocentowa nie nie wykryto isztuk dobrych na m zbadanych usunąć przyczynę kontynuować kontrolę rejestrując liczbę zbadanych sztuk zarejestrowano nie więcej niż i sztuk i stwierdzono niezgodność 9 odbiorcza produktów sztukowych ciągła ciągła polega na przemiennym stosowaniu kontroli stuprocentowej i statystycznej (w obu wypadkach kontrolowana jednostka oceniana jest jako dobra lub niedobra) w warunkach ciągłego przepływu jednostek produktu w kolejności ich wytwarzania badania są nieniszczące zakres badań (czas, sposób wykonania uniemożliwia kontrolę stuprocentową) tworzenie partii N elementowych jest nieuzasadnione 10 Kryterium mierzalność typ rozkładu liczba kontrolowanych właściwości sposób kontroli Porównanie metod kontroli statystycznej Metoda wg kontroli alternatywnej kontrolowane właściwości mierzalne i niemierzalne rozkład właściwości w partii dowolny dowolna w jednym planie badaniai w jednym postępowaniu odbiorczym kwalifikowanie alternatywne (dobra, nie dobra) liczbowej kontrolowane właściwości mierzalne (najlepiej i rozkład właściwości w partii normalny) dla każdej kontrolowanej właściwości oddzielny plan badania pomiar wartości właściwości dla każdej kontrolowanej sztuki (granice) Plany badania na podstawie akceptowanego poziomu jakości (AQL) stosowane podczas kontroli partii za partia PN-ISO AC1 rodzaj informacji uzyskiwanych podczas kontroli liczba sztuk niedobrych w próbce wartości indywidualne dla każdej kontrolowanej sztuki, średnia, odchylenie lub rozstęp
3 Statystyczna kontrola odbiorcza Zastosowanie SKO jednostek końcowego składników i surowców operacji produkcyjnych materiałów w procesie dostaw w magazynach operacji obsługi danych do zapisów procedur administracyjnych Cel kontroli statystycznej Celem stosowania SKO jest nakłonienie dostawcy do utrzymywania średniego poziomu procesu przynajmniej na poziomie nie gorszym niż poziom określony przez AQL, wywierając presję ekonomiczną, psychologiczną, związaną z odrzuceniem partii.* nie służy do szacowania jakości ani segregowania * Odbiorca liczy się z prawdopodobieństwem przyjęcie pewnej liczny wyrobów niezgodnych *(wg. normy PN ISO ) Metoda kontroli Na podstawie wyników pomiarów wyznacza się miary statystyczne z próbki: liczbę lub frakcję sztuk niezgodnych (alternatywna), wskaźnik obliczeniowy wyznaczany na postawie średniej i zmienność R lub s (liczbowa), i ocenia czy wartości te nie przekraczaj pewnych wartości granicznych Plan badania kontrola alternatywna Plan badania określa się przez dwa parametry: liczność próbki n maksymalną liczbę jednostek niezgodnych w próbce Ac Każdemu planowi badania odpowiada krzywa operacyjno charakterysyczna Krzywa OC planu idealnego Rozkład dwumianowy P(QL) 1 0 AQL QL P (QL) prawdopodobieństwo przyjęcia partii QL poziom jakości partii lub procesu malejący liczba niezgodności rośnie
4 Krzywa OC porównanie dwóch planów Krzywa OC P(QL) 1 0,4 0,2 0 n=200 Ac=7 P (QL) prawdopodobieństwo przyjęcia partii QL poziom jakości partii lub procesu malejący (liczba niezgodności rośnie) n=32 Ac=1 p i QL 19 P(QL) 1 ryzyko dostawcy (PR) ryzyko odbiorcy (CR) 0 P (QL) prawdopodobieństwo przyjęcia partii QL poziom jakości partii lub procesu malejący (liczba niezgodności rośnie) punkt ryzyka dostawcy PRP Akceptowany poziom jakości AQL Krzywa OC dla planu badania (dla danych N, n, Ac) punkt ryzyka odbiorcy CRP Graniczny poziom jakości LQL QL 20 Średnia jakość po kontroli AOQ Skutki przyjęcia partii niezgodnej określa średnią jakość w kolejnych przekazywanych do odbioru partii (average outgoing quality) [%] AOQ AOQL 25% 50% 75% AOQL najniższa jakość z jaką może liczyć się odbiorca w danym planie odbioru w długim okresie 100% z 21 Niezgodności krytyczne istotne drugorzędne Trzy podstawowe poziomy kontroli Poziom II jest podstawowy 22 Postępowanie odbiorcze Postępowanie odbiorcze ustalić jakie właściwości produktu powinny być kontrolowane i podzielić je w miarę potrzeb na grupy ustalić liczność partii i zakres ich zmienności ustalić poziom kontroli ustalić akceptowany poziom jakości AQL dla poszczególnych właściwości i grup właściwości wybrać rodzaj planu odczytać wartości parametrów planów badania z odpowiednich tablic PN-ISO AC1 Odczytanie z normy parametrów planu : AQL Ac Wylosowanie próbki i jej ocena (określenie liczby jednostek niezgodnych) Ocena jakości kontrolowanej partii
5 Liczba i udział jednostek niezgodnych procent jednostek niezgodnych procent jednostek niezgodnych = liczba jednostek niezgodnych ogólna liczba jednostek liczba niezgodności na 100 sztuk X 100 Liczność partii Określenie znaku literowego A, B, C R Korzystanie z normy PN-ISO AC1 Poziom kontroli S1, S2, S3, S4, I, II, III Akceptowany poziom jakości Rodzaj planu badania liczba niezgodności = na 100 jednostek liczba niezgodności ogólna liczba jednostek X 100 Określenie parametrów planu badania n, A c R e wg tabeli np. II A, B, C, jednostopniowe dwustopniowe wielostopniowe Rodzaje planów badania wg PN-ISO AC1 Plany badania jednostopniowe PN-ISO AC1 partia o liczności N próbka o liczności n liczba sztuk niezgodnych w próbce n z A c liczba sztuk niezgodnych w próbce n z R c partię o liczności N przyjąć partię odrzucić 27 Ac liczba kwalifikująca, Rc liczba dyskwalifikująca 28 Liczność partii wg PN-ISO AC1 Plan kontroli jednostopniowej - normalnej na jej podstawie wybiera się znak literowy
6 Liczność próbki Plany badania dwustopniowe wg PN-ISO AC1 średnio udział % próbki w partii 45% 40% 35% 30% 25% 20% 15% 10% 5% 0% n liczność próbki z 1 A c1 dla n 1 partię przyjąć partia o liczności N próbka o liczności n 1 w 1 stopniu z 1 +z 2 A cii dla n 1 +n 2 A c1 <z 1 <R c1 n 2 w 2 stopniu z 1 +z 2 R cii dla n 1 +n 2 z 1 R c1 dla n 1 partię odrzucić N (liczność partii) 31 z 1 liczba sztuk niezgodnych w próbce o liczności n i i poziom kontroli 32 Plany badania wielostopniowym wg PN-ISO AC1 partia o liczności N próbka o liczności n 1 w 1 stopniu i<7 z 1 A c1 dla n 1 A c1 <z 1 <R c1 n 2 w II stopniu z 1 R c1 dla n 1 z 1 +z 2 A cii dla n 1 +n 2 A ci <z i <R ci n i w i-tym stopniu z 1 +z 2 R cii dla n 1 +n 2 z i A ci dla Σn i z i R cii dla Σn i partię przyjąć partię odrzucić Podsumowanie wielkości charakteryzujące plan badania Ogólna procedura (alternatywna PN-ISO AC1 I liczbowa PN ISO 3951) wejściowe: AQL liczność partii poziom kontroli rodzaj kontroli TAK START NIE NIE wyjściowe: liczność próbki liczba kwalifikująca Ac liczba dyskwalifikująca Re 35 ulgowa normalna obostrzona NIE TAK poprawa jakości przerwanie kontroli 36 6
7 Efekty przejścia (alternatywna PN-ISO AC1 I liczbowa PN ISO 3951) obostrzona zmieszenie wartości Ac w stosunku do kontroli normalnej Ulgowa mniejsza liczność próbki mniejsza liczba lub stała kwalifikująca Warunki przejścia normalna-ulgowa przejścia z kontroli normalnej na ulgową 10 poprzednich partii przeszło kontrolę normalną produkcja ustabilizowana jednostka upoważniona akceptuje przejścia z kontroli ulgowej na normalną partii nie przyjęto przyjęto ale Ac < liczba niezgodności < Re produkcja jest nieuregulowana inne okoliczności dają podstawę do przejścia Warunki przejścia normalna-obostrzona przejścia z kontroli normalnej na obostrzoną 2 spośród 5 lub mniej kolejnych partii nie przyjęto Plan kontroli obostrzona jednostopniowa przejścia z kontroli obostrzonej na normalną 5 kolejnych partii przyjęto Plan kontroli ulgowa jednostopniowa Wybór planu badania AQL -wartości zalecane podano w tablicach w normie
8 Zmiana liczności partii Wraz z licznością partii należy zmienić liczność próbki ponieważ: istnieje ryzyko większych strat ekonomiczne uzasadnienie losowe pobieranie małej próbki z dużej partii może być kosztowne Ograniczenia specjalne kontrola więcej niż jednej cechy klasyfikacja ważności niezgodności korzystanie ze zbioru planów o wspólnej liczności próbki lecz o różnej liczbie kwalifikującej kontrola 100% dla pewnej klasy Partie przedstawione ponownie przy stwierdzeniu, że partia nie spełnia wymagań zawiadomienie stron kontrola 100% sztuk niezgodnych przed kolejną kontrolą decyzja jednostki upoważnionej o kontroli klasach niezgodności Sposoby Pobieranie próbki arbitralny z ograniczona losowością losowy: pobieranie z zastosowaniem liczb losowych pobieranie na ślepo pobieranie systematyczne pobieranie wielostopniowe pobieranie warstwowe
Definicje PN ISO Definicje PN ISO 3951 interpretacja Zastosowanie normy PN-ISO 3951:1997
PN-ISO 3951:1997 METODY STATYSTYCZNEJ KONTROI JAKOŚCI WG OCENY ICZBOWEJ ciągła seria partii wyrobów sztukowych dla jednej procedury analizowana jest tylko jedna wartość, która musi być mierzalna w skali
Agnieszka MISZTAL Inż. Syst. Projakośc. Kontrola jakości. INŻYNIERIA SYSTEMÓW PROJAKOŚCIOWYCH Wykład 2 Kontrola jakości
INŻYNIERI SYSTEMÓW PROJKOŚIOWYH Wykład 2 Kontrola jakości KONTROL - działanie takie jak: zmierzenie, zbadanie, oszacowanie lub sprawdzenie jednej lub kilku właściwości obiektu oraz porównanie wyników z
Jakość betonu kontrola i koszty. Izabela Skrzypczak Lidia Buda-Ożóg Joanna Kujda
Jakość betonu kontrola i koszty Izabela Skrzypczak Lidia Buda-Ożóg Joanna Kujda Plan prezentacji Wprowadzenie Metody oceny jakości według różnych zaleceń normowych Jakość betonu a normowe kryteria zgodności
Sterowanie procesem i jego zdolność. Zbigniew Wiśniewski
Sterowanie procesem i jego zdolność Zbigniew Wiśniewski Wybór cech do kart kontrolnych Zaleca się aby w pierwszej kolejności były brane pod uwagę cechy dotyczące funkcjonowania wyrobu lub świadczenia usługi
ZARZĄDZANIE JAKOŚCIĄ
WYDZIAŁ MECHATRONIKI INSTYTUT METROLOGII I INŻYNIERII BIOMEDYCZNEJ Nazwa przedmiotu: ZARZĄDZANIE JAKOŚCIĄ Materiały dydaktyczne do ćwiczeń laboratoryjno-projektowych Opracował: dr inż. Jerzy Arendarski
Zarządzanie i inżynieria jakości / Adam Hamrol. Warszawa, Spis treści
Zarządzanie i inżynieria jakości / Adam Hamrol. Warszawa, 2017 Spis treści Wprowadzenie 11 1. O inżynierii jakości i zarządzaniu jakością 11 2. Zakres i układ książki 14 3. Komentarz terminologiczny 17
POLITECHNIKA OPOLSKA
POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr Temat: Karty kontrolne przy alternatywnej ocenie właściwości.
Statystyczne sterowanie procesem
Statystyczne sterowanie procesem SPC (ang. Statistical Process Control) Trzy filary SPC: 1. sporządzenie dokładnego diagramu procesu produkcji; 2. pobieranie losowych próbek (w regularnych odstępach czasu
POLITECHNIKA OPOLSKA
POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr 9 Temat: Karty kontrolne przy alternatywnej ocenie właściwości.
Wykład 3 Hipotezy statystyczne
Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza
Pobieranie prób i rozkład z próby
Pobieranie prób i rozkład z próby Marcin Zajenkowski Marcin Zajenkowski () Pobieranie prób i rozkład z próby 1 / 15 Populacja i próba Populacja dowolnie określony zespół przedmiotów, obserwacji, osób itp.
RÓWNOWAŻNOŚĆ METOD BADAWCZYCH
RÓWNOWAŻNOŚĆ METOD BADAWCZYCH Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska Równoważność metod??? 2 Zgodność wyników analitycznych otrzymanych z wykorzystaniem porównywanych
Statystyka matematyczna i ekonometria
Statystyka matematyczna i ekonometria Wykład 5 Anna Skowrońska-Szmer lato 2016/2017 Hipotezy 2 Hipoteza zerowa (H 0 )- hipoteza o wartości jednego (lub wielu) parametru populacji. Traktujemy ją jako prawdziwą
Statystyka matematyczna i ekonometria
Statystyka matematyczna i ekonometria Wykład 5 dr inż. Anna Skowrońska-Szmer zima 2017/2018 Hipotezy 2 Hipoteza zerowa (H 0 )- hipoteza o wartości jednego (lub wielu) parametru populacji. Traktujemy ją
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Zadania ze statystyki, cz.6
Zadania ze statystyki, cz.6 Zad.1 Proszę wskazać, jaką część pola pod krzywą normalną wyznaczają wartości Z rozkładu dystrybuanty rozkładu normalnego: - Z > 1,25 - Z > 2,23 - Z < -1,23 - Z > -1,16 - Z
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
JAKOŚCI W RÓŻNYCH FAZACH I ŻYCIA PRODUKTU
Wykład 6. SYSTEMY ZAPEWNIANIA JAKOŚCI W RÓŻNYCH FAZACH CYKLU WYTWARZANIA I ŻYCIA PRODUKTU 1 1. Ogólna charakterystyka systemów zapewniania jakości w organizacji: Zapewnienie jakości to systematyczne działania
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
Oszacowanie i rozkład t
Oszacowanie i rozkład t Marcin Zajenkowski Marcin Zajenkowski () Oszacowanie i rozkład t 1 / 31 Oszacowanie 1 Na podstawie danych z próby szacuje się wiele wartości w populacji, np.: jakie jest poparcie
Metody statystyczne w zarządzaniu jakością 1
jakością 1 Metody statystyczne w zarządzaniu jakością Statystyczne sterowanie procesem Rozwój metod statystycznych 1980 Shewhart 191 Deming 195+ I Metody statystyczne w zarządzaniu jakością Podział metod
Pytanie: Kiedy do testowania hipotezy stosujemy rozkład normalny?
Pytanie: Kiedy do testowania hipotezy stosujemy rozkład normalny? Gdy: badana cecha jest mierzalna (tzn. posiada rozkład ciągły); badana cecha posiada rozkład normalny; dysponujemy pojedynczym wynikiem;
Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( )
Statystyka Rozkład prawdopodobieństwa Testowanie hipotez Wykład III (04.01.2016) Rozkład t-studenta Rozkład T jest rozkładem pomocniczym we wnioskowaniu statystycznym; stosuje się go wyznaczenia przedziału
Streszczenie. Słowa kluczowe: towary paczkowane, statystyczna analiza procesu SPC
Waldemar Samociuk Katedra Podstaw Techniki Akademia Rolnicza w Lublinie MONITOROWANIE PROCESU WAśENIA ZA POMOCĄ KART KONTROLNYCH Streszczenie Przedstawiono przykład analizy procesu pakowania. Ocenę procesu
Bezpieczne opakowanie. Barbara Kozielska Magdalena Michalska Chesapeake - Cezar S.A.
Bezpieczne opakowanie Barbara Kozielska Magdalena Michalska Chesapeake - Cezar S.A. 1 Bezpieczne opakowanie Co decyduje o bezpieczeństwie w opakowaniu: 1. Farmaceutycznym, 2. Artykułów alkoholowych, 3.
Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi
Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska D syst D śr m 1 3 5 2 4 6 śr j D 1
Testowanie hipotez statystycznych
Agenda Instytut Matematyki Politechniki Łódzkiej 2 stycznia 2012 Agenda Agenda 1 Wprowadzenie Agenda 2 Hipoteza oraz błędy I i II rodzaju Hipoteza alternatywna Statystyka testowa Zbiór krytyczny Poziom
Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej
Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
STATYSTYKA MATEMATYCZNA WYKŁAD 4. WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X.
STATYSTYKA MATEMATYCZNA WYKŁAD 4 WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X. Wysuwamy hipotezy: zerową (podstawową H ( θ = θ i alternatywną H, która ma jedną z
ρ siła związku korelacyjnego brak słaba średnia silna bardzo silna
Ćwiczenie 4 ANALIZA KORELACJI, BADANIE NIEZALEŻNOŚCI Analiza korelacji jest działem statystyki zajmującym się badaniem zależności pomiędzy rozkładami dwu lub więcej badanych cech w populacji generalnej.
Spis treści 3 SPIS TREŚCI
Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe
Granica akceptowalnej jakości (AQL) Barbara Kozielska Chesapeake Cezar S.A.
Granica akceptowalnej jakości (AQL) Barbara Kozielska Chesapeake Cezar S.A. 1 Granica akceptowalnej jakości AQL Jakość jest to zgodność z wymaganiami. Każdy, kto wykonuje jakąkolwiek pracę, musi znać i
POLITECHNIKA OPOLSKA
POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr 8 Temat: Statystyczna kontrola procesu SPC przy pomocy
Skrót wymagań normy ISO 9001/2:1994, PN-ISO 9001/2:1996
Skrót wymagań normy ISO 9001/2:1994, PN-ISO 9001/2:1996 (pojęcie wyrób dotyczy też usług, w tym, o charakterze badań) 4.1. Odpowiedzialność kierownictwa. 4.1.1. Polityka Jakości (krótki dokument sygnowany
1.1 Wstęp Literatura... 1
Spis treści Spis treści 1 Wstęp 1 1.1 Wstęp................................ 1 1.2 Literatura.............................. 1 2 Elementy rachunku prawdopodobieństwa 2 2.1 Podstawy..............................
Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26
Rozkład normalny Marcin Zajenkowski Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Krzywa normalna, krzywa Gaussa, rozkład normalny Rozkłady liczebności wielu pomiarów fizycznych, biologicznych
LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI
LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych
Teoria błędów. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem.
Teoria błędów Wskutek niedoskonałości przyrządów, jak również niedoskonałości organów zmysłów wszystkie pomiary są dokonywane z określonym stopniem dokładności. Nie otrzymujemy prawidłowych wartości mierzonej
HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N =
HISTOGRAM W pewnych przypadkach interesuje nas nie tylko określenie prawdziwej wartości mierzonej wielkości, ale także zbadanie całego rozkład prawdopodobieństwa wyników pomiarów. W takim przypadku wyniki
Zarządzanie jakością. cią. Zarządzanie jakością - wykład 5. W. Prussak Kontrola w zarządzaniu jakością
Jakość produktu Pojęcie i zasady zarządzania System zarządzania Planowanie Metody i narzędzia projakościowe Doskonalenie Zarządzanie. jakości cią Wykład 05/07 Statystyczna kontrola procesu (SPC) 5.1 inspekcyjna
Zad. 4 Należy określić rodzaj testu (jedno czy dwustronny) oraz wartości krytyczne z lub t dla określonych hipotez i ich poziomów istotności:
Zadania ze statystyki cz. 7. Zad.1 Z populacji wyłoniono próbę wielkości 64 jednostek. Średnia arytmetyczna wartość cechy wyniosła 110, zaś odchylenie standardowe 16. Należy wyznaczyć przedział ufności
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Obowiązuje od: r.
Wydanie: czwarte Data wydania: 24.04.2018 Strona 1 z 6 Obowiązuje od: 24.04.2018 r. Wydanie: czwarte Data wydania: 24.04.2018 Strona 2 z 6 1. Zakres stosowania Niniejszy dokument stosowany jest na potrzeby
LABORATORIUM 6 ESTYMACJA cz. 2
LABORATORIUM 6 ESTYMACJA cz. 2 TEORIA ESTYMACJI I 1. ODRZUCANIE WYNIKÓW WĄTPLIWYCH PRÓBA P (m) (m-elementowa) Obliczenie: ; s bez wyników wątpliwych Odrzucenie wyników z poza przedziału: 3s PRÓBA LOSOWA
Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd.
Wnioskowanie statystyczne obejmujące metody pozwalające na uogólnianie wyników z próby na nieznane wartości parametrów oraz szacowanie błędów tego uogólnienia. Przewidujemy nieznaną wartości parametru
VII WYKŁAD STATYSTYKA. 30/04/2014 B8 sala 0.10B Godz. 15:15
VII WYKŁAD STATYSTYKA 30/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 7 (c.d) WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności,
Metody Statystyczne. Metody Statystyczne.
gkrol@wz.uw.edu.pl #4 1 Sprawdzian! 5 listopada (ok. 45-60 minut): - Skale pomiarowe - Zmienne ciągłe i dyskretne - Rozkład teoretyczny i empiryczny - Miary tendencji centralnej i rozproszenia - Standaryzacja
Zakład Certyfikacji 03-042 Warszawa, ul. Kupiecka 4 Sekcja Ceramiki i Szkła ul. Postępu 9 02-676 Warszawa PROGRAM CERTYFIKACJI
Zakład Certyfikacji 03-042 Warszawa, ul. Kupiecka 4 Sekcja Ceramiki i Szkła ul. Postępu 9 02-676 Warszawa PC-04 PROGRAM CERTYFIKACJA ZGODNOŚCI WYROBU Z KRYTERIAMI TECHNICZNYMI certyfikacja dobrowolna Warszawa,
OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp
tel.: +48 662 635 712 Liczba stron: 15 Data: 20.07.2010r OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA z wykorzystaniem programu obliczeniowego Q maxp DŁUGIE
), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0
Testowanie hipotez Każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy nazywamy hipotezą statystyczną. Hipoteza określająca jedynie wartości nieznanych parametrów liczbowych badanej cechy
Zarządzanie procesami
Metody pomiaru stosowane w organizacjach Zarządzanie procesami Zakres Rodzaje pomiaru metod pomiaru Klasyczne metody pomiaru organizacji Pomiar całej organizacji Tradycyjny rachunek kosztów (np. ROI) Rachunek
Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności. Dr Anna ADRIAN Paw B5, pok407
Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Weryfikacja hipotez dotyczących postaci nieznanego rozkładu -Testy zgodności.
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej
ZJAZD 4. gdzie E(x) jest wartością oczekiwaną x
ZJAZD 4 KORELACJA, BADANIE NIEZALEŻNOŚCI, ANALIZA REGRESJI Analiza korelacji i regresji jest działem statystyki zajmującym się badaniem zależności i związków pomiędzy rozkładami dwu lub więcej badanych
LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI
LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI TESTOWANIE HIPOTEZ PARAMETRYCZNYCH
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI TESTOWANIE HIPOTEZ PARAMETRYCZNYCH Co to są hipotezy statystyczne? Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej. Dzielimy je
Katedra Technik Wytwarzania i Automatyzacji STATYSTYCZNA KONTROLA PROCESU
Katedra Technik Wytwarzania i Automatyzacji METROLOGIA I KONTKOLA JAKOŚCI - LABORATORIUM TEMAT: STATYSTYCZNA KONTROLA PROCESU 1. Cel ćwiczenia Zapoznanie studentów z podstawami wdrażania i stosowania metod
Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona;
LABORATORIUM 4 Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona; dwie zmienne zależne mierzalne małe próby duże próby rozkład normalny
Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd.
Wnioskowanie statystyczne obejmujące metody pozwalające na uogólnianie wyników z próby na nieznane wartości parametrów oraz szacowanie błędów tego uogólnienia. Przewidujemy nieznaną wartości parametru
POLITECHNIKA WARSZAWSKA
POLITECHNIKA WARSZAWSKA WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII INSTYTUT INŻYNIERII MECHANICZNEJ STATYSTYCZNA KONTROLA PROCESU (SPC) Ocena i weryfikacja statystyczna założeń przyjętych przy sporządzaniu
ZAKŁADOWA ADOWA KONTROLA PRODUKCJI W ŚWIETLE WYMAGAŃ CPR
ZAKŁADOWA ADOWA KONTROLA PRODUKCJI W ŚWIETLE WYMAGAŃ CPR Alicja Papier Warszawa, kwiecień 2014 Wprowadzanie wyrobów w budowlanych wg CPR Wszystkie podmioty gospodarcze w łańcuchu dostaw i dystrybucji powinny
Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych
Statystyka matematyczna. Wykład IV. e-mail:e.kozlovski@pollub.pl Spis treści 1 2 3 Definicja 1 Hipoteza statystyczna jest to przypuszczenie dotyczące rozkładu (wielkości parametru lub rodzaju) zmiennej
Testowanie hipotez statystycznych cd.
Temat Testowanie hipotez statystycznych cd. Kody znaków: żółte wyróżnienie nowe pojęcie pomarańczowy uwaga kursywa komentarz 1 Zagadnienia omawiane na zajęciach 1. Przykłady testowania hipotez dotyczących:
Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak
Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak Redakcja i korekta Bogdan Baran Projekt graficzny okładki Katarzyna Juras Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2011 ISBN
WYMAGANIA DLA ZAKŁADOWEJ KONTROLI PRODUKCJI
Instytut Odlewnictwa Biuro Certyfikacji i Normalizacji u l. Z a k o p i a ń s k a 7 3 30-418 Kraków, Polska tel. +48 (12) 26 18 442 fax. +48 (12) 26 60 870 bcw@iod.krakow.pl w w w.i o d.k r ak ow. p l
Testowanie hipotez statystycznych. Wnioskowanie statystyczne
Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy
WYKŁAD 5 TEORIA ESTYMACJI II
WYKŁAD 5 TEORIA ESTYMACJI II Teoria estymacji (wyznaczanie przedziałów ufności, błąd badania statystycznego, poziom ufności, minimalna liczba pomiarów). PRÓBA Próba powinna być reprezentacyjna tj. jak
Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r
Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT Anna Rajfura 1 Przykład wprowadzający Wiadomo, że 40% owoców ulega uszkodzeniu podczas pakowania automatycznego.
VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15
VI WYKŁAD STATYSTYKA 9/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 6 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności, zasady
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT Anna Rajfura 1 Przykład wprowadzający Wiadomo, Ŝe 40% owoców ulega uszkodzeniu podczas pakowania automatycznego.
Zarządzanie jakością w logistyce ćw. Artur Olejniczak
ćw. artur.olejniczak@wsl.com.pl Plan spotkań Data Godziny Rodzaj 18.03.2012 4 godziny ćw. 14:30-15:30 dyżur 14.04.2012 4 godziny ćw. 28.04.2012 4 godziny ćw. 14:30-15:30 dyżur 19.05.2012 4 godziny ćw.
2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona
Sprawdzanie założeń przyjętych o modelu (etap IIIC przyjętego schematu modelowania regresyjnego) 1. Szum 2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona
Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28
Statystyka #5 Testowanie hipotez statystycznych Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik rok akademicki 2016/2017 1 / 28 Testowanie hipotez statystycznych 2 / 28 Testowanie hipotez statystycznych
STATYSTYKA wykład 8. Wnioskowanie. Weryfikacja hipotez. Wanda Olech
TATYTYKA wykład 8 Wnioskowanie Weryfikacja hipotez Wanda Olech Co nazywamy hipotezą Każde stwierdzenie o parametrach rozkładu lub rozkładzie zmiennej losowej w populacji nazywać będziemy hipotezą statystyczną
Testowanie hipotez statystycznych
Temat Testowanie hipotez statystycznych Kody znaków: Ŝółte wyróŝnienie nowe pojęcie pomarańczowy uwaga kursywa komentarz 1 Zagadnienia omawiane na zajęciach 1. Idea i pojęcia teorii testowania hipotez
4. Metody systemowe zarządzania jakością
Zarządzanie jakością w praktyce inżynierskiej 4. Metody systemowe zarządzania jakością 4.1 Metody statystyczne w zarządzaniu jakością Do podstawowych instrumentów monitorowania procesów wytwórczych należą
OGÓLNE WARUNKI WSPÓŁPRACY Teleplan Polska Sp. z o.o. z dnia r.
1. Niniejsze ogólne warunki sprzedaży stosuje się do wszelkich stosunków zobowiązaniowych, których stroną jest TELEPLAN, w tym w szczególności do zawieranych umów sprzedaży i dostawy oraz odpowiednio do
I jest narzędziem służącym do porównywania rozproszenia dwóch zmiennych. Używamy go tylko, gdy pomiędzy zmiennymi istnieje logiczny związek
ZADANIA statystyka opisowa i CTG 1. Dokonano pomiaru stężenia jonów azotanowych w wodzie μg/ml 1 0.51 0.51 0.51 0.50 0.51 0.49 0.52 0.53 0.50 0.47 0.51 0.52 0.53 0.48 0.59 0.50 0.52 0.49 0.49 0.50 0.49
Wykład 4. Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym. 2. Rozkłady próbkowe. 3. Centralne twierdzenie graniczne
Wykład 4 Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym 2. Rozkłady próbkowe 3. Centralne twierdzenie graniczne Przybliżenie rozkładu dwumianowego rozkładem normalnym Niech Y ma rozkład
Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych
Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zad. 1 Średnia ocen z semestru letniego w populacji studentów socjologii w roku akademickim 2011/2012
Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa
Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie
Wyniki badań reprezentatywnych są zawsze stwierdzeniami hipotetycznymi, o określonych granicach niepewności
Wyniki badań reprezentatywnych są zawsze stwierdzeniami hipotetycznymi, o określonych granicach niepewności Statystyka indukcyjna pozwala kontrolować i oszacować ryzyko popełnienia błędu statystycznego
Estymacja punktowa i przedziałowa
Temat: Estymacja punktowa i przedziałowa Kody znaków: żółte wyróżnienie nowe pojęcie czerwony uwaga kursywa komentarz 1 Zagadnienia 1. Statystyczny opis próby. Idea estymacji punktowej pojęcie estymatora
LABORATORIUM 9 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI
LABORATORIUM 9 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI 1. Test dla dwóch średnich P.G. 2. Testy dla wskaźnika struktury 3. Testy dla wariancji DECYZJE Obszar krytyczny od pozostałej
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta
Testy nieparametryczne
Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów
STATYSTYKA zadania do ćwiczeń. Weryfikacja hipotez część I.
STATYSTYKA zadania do ćwiczeń Weryfikacja hipotez część I Zad 1 W pewnej firmie postanowiono zbadać staż pracy pracowników W tym celu wylosowano prostą próbę losową z populacji pracowników i otrzymano,
Wnioskowanie statystyczne Weryfikacja hipotez. Statystyka
Wnioskowanie statystyczne Weryfikacja hipotez Statystyka Co nazywamy hipotezą Każde stwierdzenie o parametrach rozkładu lub rozkładzie zmiennej losowej w populacji nazywać będziemy hipotezą statystyczną
Dr inż. Paweł Fotowicz. Procedura obliczania niepewności pomiaru
Dr inż. Paweł Fotowicz Procedura obliczania niepewności pomiaru Przewodnik GUM WWWWWWWWWWWWWWW WYRAŻANIE NIEPEWNOŚCI POMIARU PRZEWODNIK BIPM IEC IFCC ISO IUPAC IUPAP OIML Międzynarodowe Biuro Miar Międzynarodowa
Zarządzanie jakością ćwiczenia
Zarządzanie jakością ćwiczenia mgr inż. Anna Wąsińska Zakład Zarządzania Jakością pok. 311 B1, tel. 320-42-82 anna.wasinska@pwr.wroc.pl Statystyczne sterowanie procesami SPC kontrolna Konsultacje: SO 13:00
Statystyka matematyczna i ekonometria
Statystyka matematyczna i ekonometria Wykład 11 Anna Skowrońska-Szmer lato 2016/2017 Powtórzenie materiału 2 Zadanie 1 Wykład 1 Eksperyment polega na pojedynczym rzucie symetryczną kostką. Przestrzeń zdarzeń
Zadania przykładowe na egzamin. przygotował: Rafał Walkowiak
Zadania przykładowe na egzamin z logistyki przygotował: Rafał Walkowiak Punkt zamawiania Proszę określić punkt dokonywania zamawiania jeżeli: zapas bezpieczeństwa wynosi 10 sztuk, czas realizacji zamówienia
Badania sondażowe. Schematy losowania. Agnieszka Zięba. Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa
Badania sondażowe Schematy losowania Agnieszka Zięba Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa 1 Próba jako miniatura populacji CELOWA subiektywny dobór jednostek
PODSTAWY LOGISTYKI ZARZĄDZANIE ZAPASAMI PODSTAWY LOGISTYKI ZARZĄDZANIE ZAPASAMI MARCIN FOLTYŃSKI
PODSTAWY LOGISTYKI ZARZĄDZANIE ZAPASAMI WŁAŚCIWIE PO CO ZAPASY?! Zasadniczą przyczyną utrzymywania zapasów jest występowanie nieciągłości w przepływach materiałów i towarów. MIEJSCA UTRZYMYWANIA ZAPASÓW
Wnioskowanie statystyczne. Statystyka w 5
Wnioskowanie statystyczne tatystyka w 5 Rozkłady statystyk z próby Próba losowa pobrana z populacji stanowi realizacje zmiennej losowej jak ciąg zmiennych losowych (X, X,... X ) niezależnych i mających
Testowanie hipotez statystycznych
9 października 2008 ...czyli definicje na rozgrzewkę n-elementowa próba losowa - wektor n zmiennych losowych (X 1,..., X n ); intuicyjnie: wynik n eksperymentów realizacja próby (X 1,..., X n ) w ω Ω :
Grupowanie materiału statystycznego
Grupowanie materiału statystycznego Materiał liczbowy, otrzymany w wyniku przeprowadzonej obserwacji statystycznej lub pomiaru, należy odpowiednio usystematyzować i pogrupować. Doskonale nadają się do
Rozkłady statystyk z próby
Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny
Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu
Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotności, p-wartość i moc testu Wrocław, 01.03.2017r Przykład 2.1 Właściciel firmy produkującej telefony komórkowe twierdzi, że wśród jego produktów