Część IV. Elektryczność i Magnetyzm Uczyć się bez myślenia to zmarnowana praca, Myśleć bez uczenia się to pustka. Wykłady 10 i 11

Podobne dokumenty
Część IV. Elektryczność Uczyć się bez myślenia to zmarnowana praca, Myśleć bez uczenia się to pustka. Wykłady 10 i 11

Podstawy fizyki wykład 8

Część IV. Elektryczność i Magnetyzm

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics)

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α

Lekcja 40. Obraz graficzny pola elektrycznego.

Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się

Wykład 8 ELEKTROMAGNETYZM

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI.

Elektrostatyka. Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego

Ładunek elektryczny. Ładunek elektryczny jedna z własności cząstek elementarnych

Odp.: F e /F g = 1 2,

ŁADUNEK I MATERIA Ładunki elektryczne są ściśle związane z atomową budową materii. Materia składa się z trzech rodzajów cząstek elementarnych:

Elektrostatyka. Potencjał pola elektrycznego Prawo Gaussa

Podstawy fizyki sezon 2 1. Elektrostatyka 1

Elektrostatyka, cz. 1

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku

MECHANIKA II. Praca i energia punktu materialnego

Wykład FIZYKA II. 1. Elektrostatyka. Dr hab. inż. Władysław Artur Woźniak

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Pojęcie ładunku elektrycznego

Wykład 8: Elektrostatyka Katarzyna Weron

cz. 2. dr inż. Zbigniew Szklarski

Różniczkowe prawo Gaussa i co z niego wynika...

Elektrostatyczna energia potencjalna U

Wykład FIZYKA II. 1. Elektrostatyka

Ładunek elektryczny. Zastosowanie równania Laplace a w elektro- i magnetostatyce. Joanna Wojtal. Wprowadzenie. Podstawowe cechy pól siłowych

Elektrostatyka. Już starożytni Grecy wiedzieli, że potarty o tkaninę bursztyn przyciąga drobne lekkie przedmioty.

Elektrostatyka Elektryczność nas otacza i tworzy...

Elektrostatyka. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Potencjalne pole elektrostatyczne. Przypomnienie

LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA

znak minus wynika z faktu, że wektor F jest zwrócony

Atomowa budowa materii

Wykład 4 i 5 Prawo Gaussa i pole elektryczne w materii. Pojemność.

Rozdział 22 Pole elektryczne

Dielektryki. właściwości makroskopowe. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:

Wykład 17 Izolatory i przewodniki

Elektrostatyczna energia potencjalna. Potencjał elektryczny

Pole magnetyczne magnesu w kształcie kuli

Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera

Badanie rozkładu pola elektrycznego

Badanie rozkładu pola elektrycznego

Wykład 18 Dielektryk w polu elektrycznym

Wykład FIZYKA II. 3. Magnetostatyka. Dr hab. inż. Władysław Artur Woźniak

cz.3 dr inż. Zbigniew Szklarski

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie

Potencjał pola elektrycznego

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku

Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Fizyka 2 Podstawy fizyki

Linie sił pola elektrycznego

Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY

Podstawy fizyki sezon 2

Wykład 2. POLE ELEKTROMEGNETYCZNE:

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

Pole elektryczne. Zjawiska elektryczne często opisujemy za pomocą pojęcia pola elektrycznego wytwarzanego przez ładunek w otaczającej go przestrzeni.

Teoria pola elektromagnetycznego

Wykład 14: Indukcja cz.2.

Plan Zajęć. Ćwiczenia rachunkowe

Elektrodynamika. Część 5. Pola magnetyczne w materii. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?

Podstawy fizyki sezon 2 2. Elektrostatyka 2

cz. 1. dr inż. Zbigniew Szklarski

POLE ELEKTRYCZNE PRAWO COULOMBA

Wykład 15: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

Pole elektromagnetyczne

1.6. Ruch po okręgu. ω =

Momentem dipolowym ładunków +q i q oddalonych o 2a (dipola) nazwamy wektor skierowany od q do +q i o wartości:

Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne.

Elektrodynamika Część 5 Pola magnetyczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Ruch ładunków w polu magnetycznym

I. PROMIENIOWANIE CIEPLNE

POLE MAGNETYCZNE Magnetyzm. Pole magnetyczne. Indukcja magnetyczna. Siła Lorentza. Prawo Biota-Savarta. Prawo Ampère a. Prawo Gaussa dla pola

Dielektryki polaryzację dielektryka Dipole trwałe Dipole indukowane Polaryzacja kryształów jonowych

Wykład 2. POLE ELEKTROMEGNETYCZNE:

Pole magnetyczne. Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni.

Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki

DYNAMIKA dr Mikolaj Szopa

Elektrostatyka. A. tyle samo B. będzie 2 razy mniejsza C. będzie 4 razy większa D. nie da się obliczyć bez znajomości odległości miedzy ładunkami

1. Dwa ładunki punktowe q znajdujące się w odległości 1 m od siebie odpychają się siłą o wartości F r

Elektrostatyka. mgr inż. Grzegorz Strzeszewski. 20 kwietnia 2013 r. ZespółSzkółnr2wWyszkowie. mgr inż. Grzegorz Strzeszewski Elektrostatyka

POLE MAGNETYCZNE W PRÓŻNI

Podstawy fizyki sezon 1 III. Praca i energia

Elektrodynamika Część 3 Pola elektryczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Witam na teście z działu ELEKTROSTATYKA

4.1.1 Elektryzowanie ciał. Zasada zachowania ładunku

Wykład 2 Prawo Coulomba i pole elektryczne

ZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE ZIMOWYM Elektronika i Telekomunikacja oraz Elektronika 2017/18

Fale elektromagnetyczne

Elektrostatyka, część pierwsza

Wykład 14: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok

Wykłady z Fizyki. Magnetyzm

Transkrypt:

Część IV. Elektryczność i Magnetyzm Uczyć się bez myślenia to zmarnowana praca, Myśleć bez uczenia się to pustka. Konfucjusz (właściwie K ung Ch iu, 55 479 p.n.e.) Dialogi, II/5 Wykłady 0 i 0.. Ładunek elektryczny 0.. Prawo Coulomba 0.3 Pole elektryczne 0.4. Indukcja pola elektrycznego 0.5. Strumień pola. Prawo Gaussa 0. 6. Praca w polu elektrostatycznym 0.7. Energia potencjalna i potencjał W 04 roku wykorzystując jony węgla, Sven Sturm z kolegami z Max-Planck-Institut w Heidelberg, ustalili z wysoką precyzja, że elektron ma masę równą / 836.567377 protonu (0-30 kg). https://www.nature.com/nature/journal/v506/n7489/full/ nature306.html (Science Photo Andrzej Wojcicki ).

0.. Ładunek elektryczny Początki nauki o elektryczności sięgają czasów Talesa z Miletu (VI w. p.n.e.), który obserwował przyciąganie źdźbła trawy przez potarty bursztyn. słowo elektryczny pochodzi od elektron (bursztyn). Bursztyn zwany: jantar, amber (z łac. sucinum, czasem także elektrum z gr. ἤλεκτρον - elektron) Ładunek elektryczny - właściwość cząstek elementarnych, z których składają się wszystkie ciała. Elementarne ładunki: e - : elektrony -e p + : protony +e n : neutrony 0 e + : pozytrony +e

Ładunek elektryczny Atomy, cząsteczki zbudowane są z elektronów, protonów i neutronów; dwa ostatnie, zwane nukleonami, tworzą jądro atomowe. Rys. źródło: https://fizyka.zamkor.pl Ogromne ilości ładunku w każdym ciele są zwykle niewidoczne, gdyż ciało zawiera jednakowe ilości dwóch rodzajów ładunku: ładunku dodatniego i ładunku ujemnego ciało elektrycznie obojętne (neutralnym), ładunek wypadkowy równy zero. Jeśli dwa rodzaje ładunku nie równoważą się, to ciało jest naelektryzowane (naładowane). 3

Ładunek elektryczny Ciała naelektryzowane wzajemnie na siebie oddziałują a) b) Rys. Ładunki elektryczne o takich samych znakach odpychają się (a), a ładunki elektryczne o przeciwnych znakach się przyciągają (b). źródło: Halliday,Resnick,Walker Fundamentals of Physics. Istnieją dwa rodzaje ładunków: dodatnie + (proton) i ujemne - (elektron). Przypisanie znaków + i - ładunkom elektrycznym było zupełnie dowolne. Umówiono się, że szkło pocierane jedwabiem elektryzuje się dodatnio, a ebonit pocierany suknem ujemnie. 4

Ładunek elektryczny Ładunki protonu i elektronu są sobie równe, w granicy błędu pomiarowego. Ładunek elementarny ma wartość : e.60 x 0 9 [ C ] (0.) Ładunki elektryczne podlegają dwóm fundamentalnym prawom:. Ładunek podlega prawu zachowania. Całkowity ładunek elektryczny układu odosobnionego w dowolnej chwili nie może ulegać zmianie.. Każdy ładunek elektryczny, z którym mamy do czynienia jest całkowitą wielokrotnością ładunku elementarnego. całkowity ładunek elektryczny układu poszczególne ładunki elektryczne w układzie (0.) Elementarne ładunki: e - : elektrony -e p + : protony +e n : neutrony 0 e + : pozytrony +e 5

Ładunek elektryczny 0... Kwantyzacja ładunku elektrycznego Obecna idea: istnieje elektryczny ładunek elementarny e i każdy eksperymentalnie wykryty ładunek elektryczny jest wielokrotnością jego wielkości: q = ne, n = 0,,, 3,, (0.3) e =.6077330-9 C.600-9 C [ładunek elektryczny, tzw. ładunek elementarny]. : Ładunek elementarny e jest stałą naturalną = stałą przyrody. : Jeżeli wielkość fizyczna, np. ładunek, istnieje tylko w dyskretnych paczkach a nie w postaci wartości zmieniającej się w sposób ciągły, mówimy, że dana wielkość jest skwantowana. Mechanika Kwantowa 3: W obiektach materialnych istnieją ogromne ilości dodatnich i ujemnych ładunków, np. 3. g miedzi zawiera.370 5 C dodatnich i ujemnych ładunków, więc ładunek ogólny takiego obiektu jest zbliżony do neutralnego. 6

0... Podział materiałów ze względu na właściwości elektryczne Przewodniki Izolatory Półprzewodniki Nadprzewodniki Ładunki elektryczne (tj. elektrony przewodnictwa), pomimo pewnego oporu elektrycznego, mogą poruszać się swobodnie w całym materiale. W większości przypadków ładunki elektryczne są nieruchome. Materiały (np. krzem, german) pośrednie pomiędzy przewodnikami a izolatorami posiadają specyficzne właściwości dzięki pasmom energetycznym w których elektrony (i dziury) mogą się poruszać. Materiały które mogą przenosić prąd elektryczny bez oporu; np. niektóre metale i stopy = nadprzewodniki konwencjonalne (w niskich temperaturach) lub nowe wysokotemperaturowe Właściwości materiałów wynikają z budowy atomów i właściwości elektrycznych ich składników. Atomy zbudowane są z dodatnio naładowanych protonów, ujemnie naładowanych elektronów i elektrycznie obojętnych neutronów. Gęstość elektronów w materiałach: Przewodniki: 0 3 elektronów przewodnictwa na cm 3. Półprzewodniki: 0 0 0 na cm 3. Izolatory: < na cm 3. 7

0..3. CZTERY PODSTAWOWE ODDZIAŁYWANIA (przypomnienie) ) Siła grawitacji -siła powszechnego ciążenia lub oddziaływanie grawitacyjne, dotyczy ciał posiadających masę (jest siłą powszechną), ma długi zasięg i najmniejsze względne natężenie. Powoduje spadanie ciał i rządzi ruchem ciał niebieskich. 8

ODDZIAŁYWANIA PODSTAWOWE c.d. ) Oddziaływanie elektromagnetyczne - są to siły działające między ładunkami elektrycznymi: Oddziaływanie to jest dalekozasięgowe. Siły międzyatomowe mają charakter elektromagnetyczny ponieważ atomy zawierają naładowane elektrony i protony. Większość sił z jakimi spotykamy się na co dzień np. tarcie, siła sprężystości jest wynikiem oddziaływania atomów, są to więc siły elektromagnetyczne. Oddziaływanie elektromagnetyczne ma wielokrotnie większe natężenie od grawitacyjnego; Przykładowe skutki: uderzenia piorunów, prąd elektryczny, struktura atomów, cząsteczek, ciał stałych. 9

ODDZIAŁYWANIA FUNDAMENTALNE c.d. 3) Oddziaływanie jądrowe (silne) - występuje na poziomie jądra atomowego i cząstek elementarnych. Siła utrzymująca w całości jądra atomowe pomimo odpychania między protonami (ładunki dodatnie). Jądro atomowe Kwarki łączą się w protony i neutrony dzięki gluonom, które przenoszą oddziaływanie silne. Protony i neutrony noszą wspólną nazwę nukleony. Nukleony łączą się w jądra również przez oddziaływanie silne Oddziaływanie to ma bardzo krótki zasięg i największe względne natężenie. 0

ODDZIAŁYWANIA FUNDAMENTALNE c.d. 4) Oddziaływanie słabe - temu oddziaływaniu podlegają wszystkie cząstki elementarne, w szczególności oddziaływanie to odpowiada za rozpad niektórych cząstek elementarnych. np. neutronu Oddziaływanie to jest również krótkozasięgowe. Tab. Cztery oddziaływania fundamentalne

0.. PRAWO COULOMBA Jednorodnie naładowana powłoka kulista przyciąga lub odpycha naładowaną cząstkę znajdującą się na zewnątrz powłoki tak, jakby cały ładunek tej powłoki był skupiony w jej środku.(tw. o powłoce Zmierzył (w 785) w sposób ilościowy przyciąganie i odpychanie elektryczne pomiędzy dwoma ładunkami. F k q r q 4 o r q r q k q r q (0.4) Rys. Siły działające między dwoma ładunkami. gdzie: k- stała elektrostatyczna, historycznie jest wyrażona przez przenikalność elektryczną o - przenikalność elektryczna próżni, wtedy: o k 8.854878760 C / N m 4 o 8.990 9 N m r - przenikalność elektryczna ośrodka. Charles Augustin Coulomb (736-806) / C

Porównanie oddziaływań p Jednostki pomijamy, by dać pojęcie o skali tych wielkości: WNIOSEK: Analizując oddziaływanie elektrostatyczne (elektryczne) ładunków, oddziaływanie grawitacyjne mas tych ładunków może być pominięte. 3

0... Prawo Coulomba w postaci wektorowej F r rˆ : siła elektrostatyczna działająca na cząstkę wywierana przez cząstkę. : wektor pozycyjny, określający pozycję cząstki względem cząstki. r r - (kierunkowy wektor jednostkowy) F q q rˆ 4 o r 0 - przenikalność elektryczna próżni: o 8.854878760 C / N m 0..3. W ośrodku różnym od próżni musimy uwzględnić przenikalność elektryczną ośrodka, stąd: (0.5) 0 r r - względna przenikalność elektryczna ośrodka (stała bezwymiarowa). 4

Elektryczność Tabela. Wartości przenikalności elektrycznej dla kilku wybranych materiałów Należy pamiętać, o związku między elektrycznymi i magnetycznym własnościami próżni a prędkością światła: c (0.6) gdzie ε 0 to podatność elektryczna, μ 0 podatność magnetyczna próżni. WNIOSEK: Oddziaływanie elektryczne ładunków zależy od ośrodka, w którym ładunki się znajdują. Ośrodek wpływa na oddziaływanie, ale też pole elektryczne oddziałuje na ośrodek (polaryzacja elektryczna ośrodka) 0 0 5

0.3. POLE ELEKTRYCZNE Ładunek 0.6 oddziałuje z polem wytworzonym przez drugi ładunek a nie oddziałują bezpośrednio ze sobą. Inaczej mówiąc oddziaływanie między ładunkami elektrycznymi jest oddziaływaniem na odległość. Ładunek elektryczny Q zmienia przestrzeń wokół siebie w taki sposób, że każdy inny ładunek q, który znajdzie się w tej przestrzeni dozna działania siły kulombowskiej (ładunek q znalazł się w polu elektrycznym wytworzonym przez ładunek Q). Ładunek Q wytwarzający pole elektryczne nazywamy źródłem pola. Jeśli ładunek wytwarzający pole elektryczne nie zmienia swej wartości w czasie i nie porusza się, to mówimy o polu elektrostatycznym. 6

0.3.. Natężenie pola elektrycznego N C (0.7) (0.8) Wnioski: ) Pole elektryczne jest polem wektorowym ) Matematyczny opis pola elektrycznego ma postać funkcji mającej dobrze określoną wartość w każdym punkcie przestrzeni. 3) Kierunek i zwrot natężenia pola elektrycznego jest taki sam jak siły działającej na dodatni FIZYKA ładunek - wykłady próbny. 0 i 7

Własności pola elektrycznego c.d. (5) Natężenie pola elektrycznego spełnia prawo odwrotności kwadratu odległości: E r Pole elektryczne nie jest modelem abstrakcyjnym. Jest to twór fizyczny jak najbardziej realny. 8

0.3.. Linie pola elektrycznego Rys. Linie natężenia pola elektrycznego wokół ładunków Q. Źródło: Halliday,Resnick,Walker Fundamentals of Physics. ()Linie pola elektrycznego określają kierunek wektora E w dowolnym punkcie przestrzeni Wektor E jest zawsze styczny do linii pola elektrycznego przechodzącej przez dany punkt. () Linie pola elektrycznego zaczynają się w miejscach położenia ładunków dodatnich (lub w nieskończoności), a kończą się na ładunkach ujemnych ( lub w nieskończoności). (3) Liczba gęstość linii pola jest wprost proporcjonalna do wartości wektora E. 9

LINIE POLA ELEKTRYCZNEGO- PRZYKŁADY 0

0.3.3. Zasada superpozycji pól Pole elektryczne układu ładunków punktowych: Stosując zasadę superpozycji ( do obliczenia wypadkowej siły elektrostatycznej) znajdziemy pole elektryczne wytworzone przez układ N ładunków punktowych (0.9) Przykład Na rysunku obok przedstawiono trzy cząstki o ładunkach q, q, q 3, z których każda znajduje się w odległości d od początku układu. Jakie jest wypadkowe natężenie pola elektrycznego E w początku układu?

0.3.4. Pole elektryczne dipola elektrycznego Dipol elektryczny- tworzą dwa ładunki o równej wartości q i przeciwnych znakach znajdujące się w odległości d od siebie. wektor natężenia pola elektrycznego na przedłużeniu osi dipola p q d [C m] (0.0) Moment dipolowy jest wielkością wektorową. ( jest skierowany od q => +q). x natężenie pola na symetralnej osi dipola

Przykład Pole elektryczne dipola elektrycznego c.d. Korzystając z zasady superpozycji oddziaływań, obliczyć wartość natężenia pola elektrycznego (E) w punkcie P (rys.), leżącym na osi x w dużej odległości od dipola (x>>d). W punkcie P wypadkowy wektor natężenia : E E E Wartości natężenia pola elektrycznego pochodzącego od poszczególnych ładunków w punkcie P, w odległości x od początku układu współrzędnych są jednakowe (gdyż odległości ładunków są takie same): E E 4 0 r x q d 3

Pole elektryczne dipola elektrycznego c.d. Aby wyznaczyć wartość wektora wypadkowego E E, zapiszemy tw. cosinusów ( rys.): E E E EE cos Korzystając z tego, że 0 E EE, mamy E E cos Zatem długość wypadkowego natężenia: E E cos Z kolei (patrz rys.): cos d x d Po podstawieniu otrzymujemy x d 0 wynik : x d x d E 4 q d qd 3 0 4 4 0 qd Uwzględniając zał.(x>>d x 3 4

Pole elektryczne dipola elektrycznego Uwaga: Wielkością charakteryzującą pole elektryczne dipola jest moment dipola p =qd (? ). Zatem możemy zapisać: E 4 0 x p d 3 Dla odległości x >> d, otrzymujemy: E 4 0 x p 3 Przykład ( do samodzielnego rozwiązania dla chętnych:) Obliczyć wartość natężenia pola elektrycznego (E) w punkcie P leżącym na prostej z (rys. z P. ) w odległości r od środka dipola ((r>>d). Odp. E 4 0 p r 3 5

0.3. 5. Pole elektryczne od ładunków o rozkładzie ciągłym. Rozważając dużą liczbę jednorodnie rozłożonych ładunków elementarnych używamy następującą procedurę, aby znaleźć E(x,y,z) pochodzące od takiego układu: (a) podzielić rozkład na nieskończenie małe składowe dq (b) każda składowa wytwarza pole w punkcie P(x,y,z) (c) pole w punkcie P można wyznaczyć przy pomocy zasady superpozycji przez dodawanie kolejnych wkładów od poszczególnych składowych ładunku. (0.) Gdy mamy do czynienia z ciągłym rozkładem ładunków, to wygodnie jest wyrazić rozkład ładunku elektrycznego za pomocą gęstości ładunku (Tab.). Nazwa Ładunek Liniowa gęstość Ładunku Powierzchniowa gęstość ładunku Objętościowa gęstość ładunku 6

Pole elektryczne Przykład. Jakie jest natężenie pola elektrycznego E w punkcie P, w odległości z od płaszczyzny pierścienia, leżącym na osi jednorodnie naładowanego pierścienia? Pierścień naładowany ładunkiem dodatnim. Element różniczkowy ładunku dq zajmuje pewną długość dl i wytwarza pole elektryczne w punkcie P (rys.). Uwzględniając liniową gęstość ładunku:, de ten mały element dl ma ładunek o wartości: dq dl dq dl (0.) wytwarza E o wartości : d de 4 o dq r 4 o dl r (.3) dl Uwzględniając r (rys.) : de 4 z dl Uwzględniam teraz wszystkie wektory składowe do osi z : o R de de z = de cosθ. (0.5) (0.4) równoległe 7

Z rys. (0.6) Uwzględniając wzory (0.5) i (0.6) : de de cos z z z 4 3/ o Aby wyznaczyć E, należy scałkować po obwodzie pierścienia: R dl dl (0.7) dl Ponieważ całkowity ładunek q: q R Otrzymujemy rozwiązanie: (0.8) W przypadku dla z >> R : (0.9) 8

0.3.6. Ładunek punktowy w polu elektrycznym Co stanie się z naładowaną cząstką, gdy znajdzie się w polu elektrycznym, wytworzonym przez inne stacjonarne lub powoli poruszające się ładunki? Na naładowaną cząstkę będzie działać siła elektrostatyczna, określona następującym wzorem: izolująca ściana komory (0.9) gdzie q jest ładunkiem cząstki, a jest natężeniem pola elektrycznego (tzw. pola zewnętrznego), wytworzonego przez pozostałe ładunki w miejscu w którym znajduje się cząstka. Rys. Aparatura do pomiaru ładunku elementarnego e w doświadczeniu Millikana. źródło: Halliday,Resnick,Walker Fundamentals of Physics. Doświadczenie to jest dowodem skwantowania ładunku q =ne. Częściowo za to określenie wielkości ładunku Millikan w 93r.otrzymał nagrodę Nobla. Siła elektrostatyczna F, działająca na cząstkę umieszczoną w zewnętrznym polu elektrycznym o natężeniu E,ma kierunek natężenia E, jeśli ładunek cząstki q jest dodatni, i ma przeciwny kierunek, jeśli ładunek q jest ujemny. 9

Ruch ładunku w polu elektrycznym Jak skierowana jest siła elektrostatyczna działająca na elektron i pochodząca od pola elektrycznego o natężeniu przedstawionym na rysunku? a)w którym kierunku elektron będzie przyspieszany, jeśli przed wejściem w obszar pola elektrycznego poruszał się równolegle do osi y (rys.)? Na ciało o masie m i ładunku q umieszczone w polu elektrycznym działa siła elektrostatyczna F e równa: qe F e (0.9) Nasz ładunek q= - e, stąd siła F e ma zwrot przeciwny do E. Ładunek będzie poruszał się równolegle do linii pola z przyspieszeniem: a gdzie: m- masa ładunku q umieszczonego w polu elektrycznym. Zwrot wektora a będzie zależał od ładunku. qe m (0.30) q q 30

Ruch ładunku w polu elektrycznym ładunek wpada pod kątem prostym do linii pola b) W którym kierunku elektron będzie przyspieszany, jeśli wpada w obszar pola elektrycznego pod kątem prostym do linii E? Czy jego prędkość wzrośnie, zmaleje, czy pozostanie stała? y l v y v 0 Oznaczenia: v 0 - prędkość początkowa ; v y pionowa składowa prędkości; y wysokość początkowa; l zasięg; d- odległość między okładkami kondensatora; t- czas potrzebny na pokonanie obszaru między płytami. Ładunek q =(-e) przesuwając się wzdłuż osi x z prędkością v 0 =const. (a x =0), zaczyna odchylać się ze stałym przyspieszeniem a y : F (e) E a y m m (0.3) 3

Ruch ładunku w polu elektrycznym c.d. (e) E a y m (0.3) Niech t- oznacza czas potrzebny elektronowi na przejście obszaru między płytami. Po czasie t mamy : y v y v 0 l v 0 t, a y ayt (0.33) l Eliminując t z równań i podstawiając za a y (0.3) : Torem ładunku jest parabola. y ee mv 0 l (0.34) A co z prędkością? v y a y t ( e) El mv 0, zatem v v 0 ( e) m E v 0 l. (0.35) 3

0.3.7. Dipol w jednorodnym zewnętrznym polu elektrycznym (a) (b) Moment dipolowy ŚM tworzy kąt z kierunkiem natężenia pola Na naładowane końce dipola działają siły w przeciwnych kierunkach: F e qe Mające taką samą wartość, a zatem F w =0 i ŚM dipola się nie porusza. Jednak siły działające na naładowane końce wytwarzają moment siły względem ŚM. Korzystając ze wzoru: M r F sin (0.36) Rys. (a) Dipol elektryczny w jednorodnym polu elektrycznym, (b) Pole o natężeniu E działa momentem siły o wartości M na dipol. Dipol jest przekręcany do wyrównania. Wartość wypadkowego momentu siły: M w lub Fxsin F( d x)sin (0.38) (0.37) Fd sin W postaci wektorowej moment siły działający na dipol: (0.39) 33

0.4. Indukcja pola elektrycznego Jak będzie wyglądało pole elektryczne w ośrodkach charakteryzujących się różną od jedności względną przenikalnością elektryczną? W takich ośrodkach pole elektryczne definiujemy poprzez wektor indukcji pola elektrycznego D : Pole elektryczne D E C ] [ gdzie: D wektor indukcji pola elektrycznego, E wektor natężenia pola elektrycznego, - przenikalność elektryczna ośrodka m (0.40) Przenikalność elektryczna ośrodka : 0 r (0.4) gdzie: r o 8.854878760 C / N m jest przenikalnością elektryczną w próżni; - względna przenikalność elektryczna ośrodka (stała bezwymiarowa) (określa ile razy przenikalność danego ośrodka jest większa od przenikalności elektrycznej w próżni). 34

Pole elektryczne i prawo Gaussa 0.5. Strumień wektora natężenia pola elektrycznego ds E Strumień pola elektrycznego opisywany wektorem przechodzącym przez daną powierzchnię S, to : E E ds E ds cos E (0.4) S - kąt zawarty między wektorem, a wektorem ds E, normalnym do powierzchni S. Całkowity strumień pola elektrycznego: E E ds S (0.43) Strumień elektryczny przenikający przez powierzchnię S jest proporcjonalny do całkowitej liczby linii pola elektrycznego, przechodzących przez tę powierzchnię. 35

Pole elektryczne Przykład Znajdź wyrażenie na strumień pola elektrycznego przechodzący przez powierzchnię sferyczną (A) w odległości r od środka ładunku punktowego q. Korzystając ze wzoru ( ), otrzymujemy: Zatem, całkowity strumień przechodzący przez naszą zamkniętą powierzchnię sferyczną wynosi : E q 0 (0.45) (0.44) 36

Pole elektryczne Jeżeli będziemy rozważać wiele ładunków zawartych w naszej powierzchni możemy zastosować zasadę superpozycji: natężenie pola elektrycznego od wielu źródeł można przedstawić jako sumę natężeń pola od pojedynczych źródeł. (0.46) 37

0.5. Prawo Gaussa Prawo Gaussa opisuje związek między strumieniem pola elektrycznego, przenikającym przez zamkniętą powierzchnię (powierzchnię Gaussa) i całkowitym ładunkiem q wewn. zawartym wewnątrz tej powierzchni. Carl Friedrich Gauss (777-855) ds Prawo Gaussa dla pola elektrycznego: S E ds q 0 (0.47) lub (0.48) Strumień wektora natężenia pola elektrycznego przez dowolną powierzchnię zamkniętą S jest proporcjonalny do ładunku zawartego wewnątrz tej powierzchni. 38

Prawo Gaussa 0.5.. Prawo Gaussa a prawo Coulomba Wykazać, że prawo Coulomba wynika z prawa Gaussa. Przyjąć,że E =const. Z prawa Gaussa strumień przechodzących przez sferę o promieniu r, otaczającą ładunek Q (rys.) : 0 S E ds Q (0.49) Obliczymy teraz lewą stronę powyższego równania, mamy: L F 4 r q 0 E ds 0E ds 0E r 0 4 S Przyrównując powyższe wyrażenie z prawą stroną równania (9.), otrzymujemy Prawo Coulomba: F 4 0 S Qq r (0.5) (0.50) 39

0.5.. Izolowany przewodnik naładowany. Jeśli nadmiarowy ładunek zostaje umieszczony na izolowanym przewodniku, to ten ładunek przesuwa się całkowicie na powierzchnię przewodnika. We wnętrzu przewodnika nie ma żadnego nadmiarowego ładunku. Wewnętrzne pole elektryczne występuje w przewodniku, gdy przewodnik jest ładowany. Dodawany ładunek szybko rozmieszcza się w ten sposób, że wypadkowe natężenie pola eklektycznego- wektorowa suma natężeń pól elektrycznych, wytworzonych przez wszystkie ładunki zarówno wewnątrz jak i na zewnątrz przewodnika- jest równe zeru. Wówczas ruch ładunków ustaje, ustala się wtedy stan równowag w którym wewnętrzne. 40

0.5.3. Prawo Gaussa- pole sferycznego rozkładu ładunku Przykład. Jednorodnie naładowana sfera o promieniu R. Q Pole elektryczne na powierzchni Gaussa jest równe: E Q (0.5) 4 0 R (0.53) Rys. Zależność pola E(r) od środka naładowanej sfery o promieniu R 4

Prawo Gaussa Przykład. Kuliste rozkłady ładunków - kula naładowana objętościowo Q Pole elektryczne na powierzchni Gaussa jest równe: E 4 0 wew. Dla r < R, obliczam stosunek objętości kuli o promieniu r do objętości kuli o promieniu R. Q r (0.54) Ostatecznie otrzymujemy (0.55) Rys. Zależność pola E od odległości od środka naładowanej kuli o promieniu R lub 4

0.6. Praca w polu elektrostatycznym (0.56) Pole elektryczne jest polem zachowawczym, położenie końcowe i początkowe ładunku tzn. praca wykonana przez siłę elektrostatyczną nie zależy od drogi, lecz od położeń punktu początkowego i końcowego. 43

0.6.. Pole elektryczne jest polem zachowawczym Dlatego praca wykonana dla drogi zamkniętej jest równa zero. W F ds q E ds 0 (0.57) Powyższe równanie jest prawdziwe dla każdego pola zachowawczego (np. pole grawitacyjne). Jeżeli pole jest polem zachowawczym, to znaczy, że dla takiego pola istnieje potencjał i energia potencjalna. Rys. Pole elektryczne od dipola. 44

0.7. Energia potencjalna Energię potencjalną E p ( r) U( r) definiujemy jako: B E p ( r ) r F dr q r E dr q E dr r (0.58) A jest to praca wykonaną przez siły zewnętrzne przy przenoszeniu ładunku punktowego q z nieskończoności do punktu. r (0.59) (0.60) (0.6) 45

0.7.. Potencjał elektryczny Potencjał elektryczny (V): (V )=(J/C) (0.6) to wartość energii potencjalnej na jednostkowy ładunek w wybranym punkcie pola elektrycznego, stąd potencjał jest skalarem,. (0.63) Różnica potencjałów elektrycznych ΔV : (napięcie ) U V Zmiana ΔE p układu spełnia zależność: (0.64) stąd (0.65) Jeśli E ppocz =0, to def. potencjału elektrycznego w dowolnym punkcie pola V: (0.66) (V )=(J/C) Jednostka do pomiarów energii w obszarze atomowym: 46

Potencjał elektryczny Przykład. Obliczanie potencjału na podstawie natężenia pola. Potencjał pola układu ładunków: 47

0.7.. Potencjał a natężenie pola elektrycznego Podstawiając do równania (0.6) definicję energii potencjalnej (0.58), otrzymany potencjał będzie określony przez zależność: V ( r ) r E dr E dr r (0.67) Powyższe równanie jest równaniem całkowym. Związek między potencjałem a wektorem natężenia pola elektrycznego można również przedstawić w postaci równania różniczkowego: E gradv ( r) V ( r) (0.68) Przykład. Dla ładunku punktowego q potencjał wyniesie: V ( r) E dr r 4 0 q r 48

0.7.3. Powierzchnie ekwipotencjalne Zapamiętaj Powierzchnie ekwipotencjalne powierzchnie stałego potencjału, spełniające równanie V( r ) const. Praca przy przesunięciu ładunku na pow. ekwipotencjalnej W = 0! 49

0.8. BEZWIROWOŚĆ POLA ELEKTROSTATYCZNEGO Przypomnijmy def. pracy wykonanej przy przesunięciu ładunku między dwoma punktami: W( r r ) r F dl q Pole elektryczne jest polem zachowawczym, zatem praca wykonana po dowolnej drodze zamkniętej równa się zero. otrzymujemy: r dw E dl 0 Korzystając z prawa Stokes a: L E dl rot E 0 0 L r r E dl E dl rote ds 0 S podstawową własność pola elektrostatycznego: POLE ELEKTROSTATYCZNE JEST BEZWIROWE. (0.69) 50

Pole elektryczne dodatek ELEMENTY TEORII POLA PODSTAWOWE DEFINICJE: Jeżeli każdemu punktowi pewnego obszaru przyporządkowujemy wartość liczbową, to ten obszar nazywamy polem skalarnym. Pole skalarne przyjmuje nazwę w zależności od sensu fizycznego funkcji. Np. pole gęstości danego ciała, pole temperatur, pole potencjału elektromagnetycznego. Jeżeli każdemu punktowi obszaru przyporządkowujemy wektor, to obszar ten nazywamy polem wektorowym. Pole wektorowe przyjmuje nazwę w zależności od sensu fizycznego wektora. Np. pole prędkości cieczy, pole grawitacyjne, pole elektrostatyczne, magnetyczne. A 5

Pole elektryczne Definicja Symbol (nabla*), oznacza wektorowy operator rózniczkowy, zwany operatorem nabla albo Hamiltona. W układzie współrzędnych kartezjańskich ma szczególnie prostą postać: x z,, lub i j k y x y z (0.69) Definicja Gradientem pola skalarnego nazywamy pole wektorowe, określone następująco: grad i x j y k z (0.70) *nabla z semickiego harfa, przypomina staroegipską harfę 5

Definicja 3 DYWERGENCJĄ pola wektorowego określone następująco: Pole elektryczne diva A A [ P, Q, R] P x Q y nazywamy pole skalarne, R z. (0.7) Własności dywergencji Niech A, B będą różniczkowalnymi polami wektorowymi,a będzie różniczkowalnym polem skalarnym. Wtedy: ) ) div( ka lb) kdiva ldivb, gdzie k, l R; div( A) diva grad A. 53

Pole elektryczne OGÓLNA ZALEŻNOŚĆ MIĘDZY SIŁĄ A ENERGIĄ POTENCJALNĄ F gradu ( r) U ( r) Przypominam, że wektorowy operator różniczkowy w układzie współrzędnych kartezjańskich ma postać:, zwany operatorem nabla, x, y, z E p (0.7) ( r) U( r) (0.73) Równanie (.0) pozwala policzyć siłę działającą na ładunek umieszczony w punkcie o energii potencjalnej U(r). Jeżeli znamy siłę, a chcemy obliczyć energię potencjalną posłużymy się zależnością wynikającą z równania (.5): U( r ) U( r ) r r F dr (0.74) Równania (0.66 ), (0.68) są słuszne dla każdego pola zachowawczego, np. pola elektrycznego, pola grawitacyjnego. 54

0.7.4. POTENCJAŁ ELEKTRYCZNY Potencjał V (r) jest to energia potencjalna przypadająca na jednostkowy ładunek: V ( r) U( r) q (0.75) Różnica potencjałów w dwóch punktach jest zatem równa: U V U( r ) U( r ) W( r r ) V ( r ) V ( r ) q q (0.76) i jest nazywana napięciem (U). U3: W układzie SI jednostką napięcia jest V [volt]. 55

Związki między wielkościami charakteryzującymi pole elektryczne 56

Dziękuję za uwagę! 57

BEZWIROWOŚĆ POLA ELEKTROSTATYCZNEGO Przypomnijmy def. pracy wykonanej przy przesunięciu ładunku między dwoma punktami: W( r r ) r F dl q Pole elektryczne jest polem zachowawczym, zatem praca wykonana po dowolnej drodze zamkniętej równa się zero. otrzymujemy: r dw E dl 0 Korzystając z prawa Stokes a: L E dl rot E 0 0 L r r E dl E dl rote ds 0 S podstawową własność pola elektrostatycznego: POLE ELEKTROSTATYCZNE JEST BEZWIROWE. 58