Procedura wyznaczania niepewności pomiarowych
|
|
- Sławomir Sikora
- 7 lat temu
- Przeglądów:
Transkrypt
1 Proedura wyznazania niepewnośi poiarowyh -0 Zakład Elektrostatyki i Elektroterii Dr inŝ Dorota Nowak-Woźny Proedura wyznazania niepewnośi poiarowyh Wstęp KaŜdy poiar lub obserwaja obarzona jest pewną niepewnośią (zaiast poprzednio stosowanego pojęia błędu poiaru Za błąd poiaru uwaŝa się wyraźne odstępstwo wyniku poiaru od wartośi poprawnej (np poyłka odzytu Błąd poiaru naleŝy bezwzględnie wyeliinować Niepewność poiaru jest związana z rozrzute ierzonej wielkośi Sprawozdanie powinno w sposób jasny i jednoznazny przedstawiać wyniki poiarów Zalea się podawanie kaŝdego wyniku poiaru x po danej wielkośi x raze z oszaowaną niepewnośią x w postai: x < x po > ± x akie przedstawienie wyników eksperyentayh zawiera inforaję w jaki przedziale wartośi i z jaki prawdopodobieństwe zawiera się rzezywista wartość ierzonej wielkośi x Ze względu na sposób wyznazania niepewnośi niepewnośi poiarowe dzieli się na niepewność typu A i niepewność typu B Niepewność typu A wyznaza się za pooą etod statystyznyh natoiast niepewność typu B za pooą innyh etod Rozpatrzy niepewnośi poiarowe dla poiarów bezpośrednih i pośrednih W poiarah pośrednih wielkość ierzona jest funkją wielkośi ierzonyh bezpośrednio Poiary bezpośrednie Niepewność typu A Niepewność typu A a harakter zysto przypadkowy Do ih oeny stosuje się etody statystyzne dla serii "n" wyników W szzegóośi określa się niepewność standardową x st : x st n( n n i ( x i x gdzie x jest wartośią średnią z serii n poiarów: x n n n i i Przy określaniu niepewnośi standardowej pełnej x naleŝy uwzględnić współzynnik rozszerzenia t: x t x st
2 Proedura wyznazania niepewnośi poiarowyh -0 Wartość współzynnika t odzytuje się z tabli rozkładu noraego dla liznej próby (n>30 lub rozkładu t-studenta dla próby ało liznej Weźy lizną próbę Chey wyznazyć przedział w który zawarta jest nieznana wartość rzezywista ierzonej wielkośi z prawdopodobieństwe 099 PoniewaŜ próba jest lizna dlatego odzytujey wartość współzynnika rozszerzenia z tabliy rozkładu noraego Dla rozpatrywanego przypadku t 6 Stąd x 6 x st Gdy wykonujey serię 0 poiarów (próba ało lizna n 0 wtedy naleŝy skorzystać z rozkładu t-studenta Dla 0 poiarów lizba stopni swobody równa jest n zyli 9 Dla poziou ufnośi 099 znajdujey pole leŝąe na przeięiu wiersza stopnia swobody równego 9 i koluny poziou ufnośi równego 099 Otrzyana wartość równa jest 35 Wartość ta jest większa od wartośi otrzyanej dla rozkładu noraego o jest zrozuiałe jeśli wziąć pod uwagę róŝnię w liznośi prób ablia rozkładu noraego t Φ(t Pozio ufnośi
3 Proedura wyznazania niepewnośi poiarowyh -0 Stopnie swobody n- ablia rozkładu t-studenta Pozio ufnośi ` Wartość współzynnika rozszerzenia t odzytuje się z pól leŝąyh na przeięiu odpowiednih kolun pozioów ufnośi i lizby stopni swobody; np dla poziou ufnośi 099 i 9 stopni swobody (0 poiarów współzynnik t przyjie wartość równą 86 Niepewność typu B Niepewność typu B spowodowana jest błędai systeatyznyi Źródłe tej niepewnośi są błędy aparatury poiarowej x ap Wartość ih określa się wskaźnikie klasy przyrządu x ap klasa zakres 00 3
4 Proedura wyznazania niepewnośi poiarowyh -0 Przy załoŝeniu Ŝe błędy aparatury ają harakter jednostajny niepewność standardową rozszerzoną wyraŝa się zaleŝnośią: xap x k xst k 3 Wartość współzynnika rozszerzenia k określa się w zaleŝnośi od Ŝądanego poziou ufnośi Przyjuje się wartośi zaieszzone w tabeli k Pozio ufnośi Poiary pośrednie Przy zastosowaniu pośrednih etod poiarowyh wielkość ierzona "y" jest funkją "" wielkośi x i (i ierzonyh bezpośrednio: y f x x x ( Niepewność standardowa łązna jest splote rozkładów o i-tyh odhyleniah standardowyh: y i y i gdzie y i jest pohodną ząstkową danej funkji y po ziennej x i : y yi xi x i x i jest niepewnośią standardową łązną wyznazoną na odpowiednih pozioah ufnośi zgodnie z zaleeniai opisanyi w punkie poiary bezpośrednie Przykłady Wyznazenie rezystanji na podstawie poiarów spadku napięia i natęŝenia prądu płynąego w obwodzie Szaowanie niepewnośi przeprowadza się zgodnie z poniŝszą proedurą: Opisać funkją szukaną wielkość: R 4
5 Proedura wyznazania niepewnośi poiarowyh -0 Oszaować niepewność wyznazenia spadku napięia: wylizyć średnią z serii poiarów ( śr oszaować niepewność standardową serii poiarów wyznazyć pełną niepewność standardową dla Ŝądanego poziou ufnośi ( 3 Oszaować niepewność wyznazenia natęŝenia prądu ( jak w punkie 4 Wyznazyć R etodą róznizki zupełnej: R R R R R stąd R lub R/R etodą róŝnizki logarytiznej: zlogarytujy obie strony równania: R ( polizy pohodną lewej i prawej strony tak logarytowanego równania: R R w ostatni równaniu zaieniono znak "" na znak "" ze względu na to Ŝe niepewnośi się dodają Po prostyh przekształeniah oŝna zauwaŝyć Ŝe ostatnie równanie jest ateatyznie równowaŝne równaniu otrzyaneu etodą róŝnizki zupełnej RóŜnia tkwi jedynie w sposobie przedstawienia niepewnośi W przypadku róŝnizki zupełnej ay do zynienie z niepewnośią bezwzględną (R natoiast w przypadku róŝnizki logarytiznej z niepewnośią względną (R/R Sposób wyboru etody zaleŝy od wykonująego ćwizenie lub od wskazówek opiekuna dydaktyznego Na ogół etodę róŝnizki logarytiznej stosuje się w przypadku gdy zaleŝność a postać ilozynu lub ilorazu Wtedy bowie oŝna uprośić so- 5
6 Proedura wyznazania niepewnośi poiarowyh -0 bie róŝnizkowanie korzystają z własnośi funkji logarytiznej a ianowiie takiej Ŝe logaryt ilozynu (ilorazu jest suą (róŝnią poszzegóyh składników JeŜeli równanie a postać bardziej skoplikowaną korzystanie z etody róŝnizki logarytiznej jest trudniejsze od etody róŝnizki zupełnej Wyznazenie sprawnośi urządzenia grzewzego Określić zaleŝność sprawnośi w dany układzie: gdzie jest zase w który teperatura wody zienia się o Oszaować niepewność wyznazenia spadku napięia : wylizyć średnią z serii poiarów ( śr oszaować niepewność standardową serii poiarów wyznazyć pełną niepewność standardową dla Ŝądanego poziou ufnośi ( 3 Oszaować niepewność wyznazenia natęŝenia prądu ( jak w punkie 4 Oszaować niepewność wyznazenia asy wody ( zgodnie z rozdziałe Niepewność typu B 5 Oszaować niepewność wyznazenia teperatury ( zgodnie z rozdziałe Niepewność typu B 6 Oszaować niepewność wyznazenia zasu ( grzania zgodnie z rozdziałe Niepewność typu B 7 Odzytać niepewność wyznazenia iepła właśiwego wody z tabli ( 8 Wyznazyć etodą róŝnizki zupełnej ( ( ( ( 6
7 Proedura wyznazania niepewnośi poiarowyh -0 7 Stąd otrzyujey zaleŝność przedstawiająą niepewność bezwzględną wyznazenia sprawnośi: ( lub niepewność względną: ( lub etodą róŝnizki logarytiznej aką saą zaleŝność z poinięie wielu Ŝudnyh oblizeń pohodnyh ząstkowyh oŝna otrzyać stosują etodę róŝnizki logarytiznej Stwierdzenie to jest prawdziwe wtedy i tylko wtedy gdy zaleŝność opisująa wyznazaną wielkość jest postai ilozynu lub ilorazu zlogarytujy obie strony równania opisująego sprawność ( zróŝnizkujy tę zaleŝność paiętają Ŝe niepewnośi zawsze się dodają ( ver 0/00
OPRACOWANIE WYNIKÓW POMIARU
OPRACOWANIE WYNIKÓW POMIARU 1. CEL ĆWICZENIA Celem ćwizenia jest poznanie podstawowyh zagadnień związanyh z opraowaniem wyników pomiaru.. WPROWADZENIE.1. Wstęp Umiejętność właśiwego opraowania wyników
Pomiary bezpośrednie Błędy graniczne przyrządów pomiarowych pomiary napięcia i prądu przyrządami analogowymi i cyfrowymi
Pomiary bezpośrednie Błędy granizne przyrządów pomiarowyh pomiary napięia i prądu przyrządami analogowymi i yfrowymi 1. Cel ćwizenia Poznanie źródeł informaji o warunkah uŝytkowania przyrządów pomiarowyh,
Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu
Zespół Szkół Tehniznyh im. J. i J. Śniadekih w Grudziądzu raownia elektryzna MontaŜ Maszyn nstrukja laboratoryjna omiar moy prądu stałego Opraował: mgr inŝ. Marin Jabłoński Cel ćwizenia: oznanie róŝnyh
Gaz doskonały w ujęciu teorii kinetycznej; ciśnienie gazu
Wykład 5 Gaz doskonały w ujęciu teorii kinetycznej; ciśnienie gazu Prędkość średnia kwadratowa cząsteczek gazu doskonałego Rozkład Maxwella prędkości cząsteczek gazu doskonałego Średnia energia kinetyczna
2... Pˆ - teoretyczna wielkość produkcji (wynikająca z modelu). X X,..., b b,...,
Główne zynniki produkji w teorii ekonoii: praa żywa (oznazenia: L, ), praa uprzediotowiona (kapitał) (oznazenia: K, ), zieia (zwłaszza w rolnitwie). Funkja produkji Cobba-Douglasa: b b b P ˆ b... k 0 k
FUNKCJA KWADRATOWA. Poziom podstawowy
FUNKCJA KWADRATOWA Poziom podstawowy Zadanie ( pkt) Wykres funkji y = ax + bx+ przehodzi przez punkty: A = (, ), B= (, ), C = (,) a) Wyznaz współzynniki a, b, (6 pkt) b) Zapisz wzór funkji w postai kanoniznej
CHARAKTERYSTYKA ROBOCZA LICZNIKA SCYNTYLACYJNEGO. CZAS MARTWY LICZNIKA SCYNTYLACYJNEGO i G-M
Zakład Radiocheii i Cheii Koloidów ĆWICZEIE 2 CHARAKTERYSTYKA ROBOCZA LICZIKA SCYTYLACYJEGO. CZAS MARTWY LICZIKA SCYTYLACYJEGO i G-M Instrukcje do ćwiczeń laboratoryjnych Zakład Radiocheii i Cheii Koloidów
4. WYZNACZANIE PARAMETRÓW HYDRAULICZNYCH STUDNI
4. WYZNACZANIE PARAMETRÓW HYDRAULICZNYCH STUDNI Na wielkość depresji zwieriadła wody w pompowanej studni wpływ mają zjawiska hydraulizne wywołane przepływem laminarnym, występująym w ujętej warstwie wodonośnej
XXXV OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne
XXXV OLIMPIADA FIZYCZNA ETAP III Zadanie doświadzalne ZADANIE D1 Nazwa zadania: Wyznazanie iepła pierwiastków (azot, ołów) Wyznaz iepło rowania iekłego azotu oraz iepło właśiwe ołowiu (wartość średnią
Grupa. Nr ćwicz. Celem ćwiczenia jest poznanie wybranych metod pomiaru właściwości rezystorów, kondensatorów i cewek.
Politehnika zeszowska Katedra Metrologii i Systemów Diagnostyznyh aboratorim Metrologii POMAY MPEDANCJ Grpa Nr ćwiz. 9... kierownik...... 4... Data Oena. Cel ćwizenia Celem ćwizenia jest poznanie wybranyh
Teoria błędów pomiarów geodezyjnych
PodstawyGeodezji Teoria błędów pomiarów geodezyjnych mgr inŝ. Geodeta Tomasz Miszczak e-mail: tomasz@miszczak.waw.pl Wyniki pomiarów geodezyjnych będące obserwacjami (L1, L2,, Ln) nigdy nie są bezbłędne.
Skrypt 18. Trygonometria
Projekt Innowayjny program nauzania matematyki dla lieów ogólnokształąyh współfinansowany ze środków Unii Europejskiej w ramah Europejskiego Funduszu Społeznego Skrypt 18 Trygonometria 1. Definije i wartośi
Składowe odpowiedzi czasowej. Wyznaczanie macierzy podstawowej
Składowe odpowiedzi zasowej. Wyznazanie maierzy podstawowej Analizowany układ przedstawia rys.. q (t A q 2, q 2 przepływy laminarne: h(t q 2 (t q 2 h, q 2 2 h 2 ( Przykładowe dane: A, 2, 2 2 (2 h2(t q
Ćwiczenie 362. Wyznaczanie ogniskowej soczewek metodą Bessela i pomiar promieni krzywizny za pomocą sferometru. Odległość przedmiotu od ekranu, [m] l
Nazwisko Data Nr na liśie Imię Wydział Ćwizenie 36 Dzień tyg Godzina Wyznazanie ogniskowej sozewek metodą Bessela i pomiar promieni krzywizny za pomoą serometr I Wyznazanie ogniskowej sozewki skpiająej
Powtórzenie na kolokwium nr 4. Dynamika punktu materialnego
Powtórzenie na olowiu nr 4 Dynaia puntu aterialnego 1 zadanie dynaii: znany jest ruh, szuay siły go wywołująej. Znane funje opisująe trajetorię ruhu różnizujey i podstawiay do równań ruhu. 2 zadanie dynaii:
= = a na podstawie zadania 6 po p. 3.6 wiemy, że. b 1. a 2 ab b 2
64 III. Zienne losowe jednowyiarowe D Ponieważ D (A) < D (B), więc należy wybrać partię A. Przykład 3.4. Obliczyć wariancję rozkładu jednostajnego. Ponieważ a na podstawie zadania 6 po p. 3.6 wiey, że
Resonant power amplifier boundary regime
dr inż M adowski, UR ćwizenia /8 Resonant power amplifier oundary regime x Resonant power amplifier in the B lass, oundary regime Data i =4 (imum of the urrent pulse of the olletor) e e =5 (imum admissile
Interpolacja. Interpolacja wykorzystująca wielomian Newtona
Interpolacja Funkcja y = f(x) jest dana w postaci dyskretnej: (1) y 1 = f(x 1 ), y 2 = f(x 2 ), y 3 = f(x 3 ), y n = f(x n ), y n +1 = f(x n +1 ), to znaczy, że w pewny przedziale x 1 ; x 2 Ú ziennej niezależnej
Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań
KAEDRA FIZYKI SOSOWANEJ PRACOWNIA 5 FIZYKI Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na ores drgań Wprowadzenie Ruch drgający naeży do najbardziej rozpowszechnionych ruchów w przyrodzie.
Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi
Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska D syst D śr m 1 3 5 2 4 6 śr j D 1
Krzywe stożkowe. 1 Powinowactwo prostokątne. 2 Elipsa. Niech l będzie ustaloną prostą i k ustaloną liczbą dodatnią.
Krzywe stożkowe 1 Powinowatwo prostokątne Nieh l będzie ustaloną prostą i k ustaloną lizbą dodatnią. Definija 1.1. Powinowatwem prostokątnym o osi l i stosunku k nazywamy przekształenie płaszzyzny, które
WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY
MIEJSCE NA KOD UCZESTNIKA KONKURSU WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY 2011/2012 Czas trwania: 90 inut Test składa się z dwóch części. W części pierwszej asz do rozwiązania 15 zadań
POMIARY REZYSTANCJI. Cel ćwiczenia. Program ćwiczenia
Pomiary rezystancji 1 POMY EZYSTNCJI Cel ćwiczenia Celem ćwiczenia jest poznanie typowych metod pomiaru rezystancji elementów liniowych i nieliniowych o wartościach od pojedynczych omów do kilku megaomów,
Zawartość. Zawartość
Opr. dr inż. Grzegorz Biesok. Wer. 2.05 2011 Zawartość Zawartość 1. Rozkład normalny... 3 2. Rozkład normalny standardowy... 5 3. Obliczanie prawdopodobieństw dla zmiennych o rozkładzie norm. z parametrami
MATEMATYKA POZIOM ROZSZERZONY
EGZAMIN MATURALNY W ROKU SZKOLNYM 06/07 FORMUŁA OD 05 ( NOWA MATURA ) MATEMATYKA POZIOM ROZSZERZONY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 07 Kluz punktowania zadań zamkniętyh Numer zadania
Poziom wymagań. Dział programowy: DZIAŁANIA NA LICZBACH NATURALNYCH
Kryteria oeniania z matematyki Zakres wymagań na poszzególne oeny szkolne dla klas IV V do programu nauzania Matematyka wokół nas nr KOS 5002 02/08 WYMGNI PROGRMOWE N POSZZEGÓLNE STOPNIE SZKOLNE KLS 4
Ćwiczenie 1. Metody określania niepewności pomiaru
Grzegorz Wielgoszewski Data wykonania ćwiczenia: Nr albumu 134651 7 października 01 Proszę podać obie daty. Grupa SO 7:30 Data sporządzenia sprawozdania: Stanowisko 13 3 listopada 01 Proszę pamiętać o
3. Oddziaływania na konstrukcje hal i wiat
3. Oddziaływania na konstrukje hal i wiat 3.1. Wprowadzenie W projektowaniu hal należy uwzględnić poniżej podane obiążenia i oddziaływania: stałe (od iężaru własnego elementów konstrukji nośnej, iężaru
Pomiar bezpośredni przyrządem wskazówkowym elektromechanicznym
. Rodzaj poiaru.. Poiar bezpośredni (prost) W przpadku poiaru pojednczej wielkości przrząde wskalowan w jej jednostkach wartość niedokładności ± określa graniczn błąd przrządu analogowego lub cfrowego
Analiza wymiarowa. amper - A Θ - jednostka temperatury termodynamicznej: kelwin - K J - jednostka światłości:
Analiza wyiarowa. Międzynarodowy Układ Jednostek Miar SI Układ jednostek to zbiór jednostek iar uznanych za podstawowe oraz innych jednostek, które nazywa się pochodnyi, które przez te podstawowe się wyraŝają.
2. Obwody prądu zmiennego
. Obwody prądu ziennego.. Definicje i wielkości charakteryzujące Spośród wielu oŝliwych przebiegów ziennych w czasie zajiey się jedynie przebiegai haronicznyi (sinusoidalnyi lub cosinusoidalnyi). Prądy
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta
WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH
WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH Dobrze przygotowane sprawozdanie powinno zawierać następujące elementy: 1. Krótki wstęp - maksymalnie pół strony. W krótki i zwięzły
Wyznaczanie charakterystyk przepływu cieczy przez przelewy
Ć w i c z e n i e 1 Wyznaczanie charakterystyk przepływu cieczy przez przelewy 1. Wprowadzenie Cele ćwiczenia jest eksperyentalne wyznaczenie charakterystyk przelewu. Przelew ierniczy, czyli przegroda
POWODZENIA! ZDANIA ZAMKNIĘTE. WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY 2009/2010 Czas trwania: 90 minut KOD UCZESTNIKA KONKURSU.
KOD UCZESTNIKA KONKURSU WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY 2009/2010 Czas trwania: 90 inut Test składa się z dwóch części. W części pierwszej asz do rozwiązania 15 zadań zakniętych,
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Izoterma rozpuszczalności w układzie trójskładnikowym. opracowała dr B. Nowicka
Katedra Cheii Fizyznej Uniwersytetu Łódzkiego Izotera rozpuszzalnośi w układzie trójskładnikowy opraowała dr B. Nowika ćwizenie nr 28 Zakres zagadnień obowiązująyh do ćwizenia 1. Stan równowagi układu
Temat wykładu: Całka nieoznaczona. Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy
Temat wykładu: Całka nieoznazona Kody kolorów: żółty nowe pojęie pomarańzowy uwaga kursywa komentarz * materiał nadobowiązkowy A n n a R a j f u r a, M a t e m a t y k a Zagadnienia. Terminologia i oznazenia.
BŁĘDY W POMIARACH BEZPOŚREDNICH
Podstawy Metrologii i Technik Eksperymentu Laboratorium BŁĘDY W POMIARACH BEZPOŚREDNICH Instrukcja do ćwiczenia nr 2 Zakład Miernictwa i Ochrony Atmosfery Wrocław, listopad 2010 r. Podstawy Metrologii
SZACOWANIE NIEPEWNOŚCI POMIARU ANALITYCZNEGO
SZACOWANIE NIEPEWNOŚCI POMIARU ANALITYCZNEGO Dr inż. Piotr Konieza Katedra Chemii Analityznej Wydział Chemizny Politehnia Gdańsa azor@hem.pg.gda.pl Podstawowe terminy i definije wartość ozeiwana wartość
Obliczanie niepewności rozszerzonej metodą analityczną opartą na splocie rozkładów wielkości wejściowych
Obliczanie niepewności rozszerzonej metodą analityczną opartą na splocie rozkładów wejściowych Paweł Fotowicz * Przedstawiono ścisłą metodę obliczania niepewności rozszerzonej, polegającą na wyznaczeniu
FIZYCZNE PODSTAWY ZALEŻNOŚCI OPISUJĄCYCH NATĘŻENIE PROMIENIOWANIA HAMOWANIA
FZYCZNE PODSAWY ZALEŻNOŚC OPSUJĄCYCH NAĘŻENE PROMENOWANA HAMOWANA Dominik SENCZYK Politehnika Poznańska Słowa kluzowe: natężenie promieniowania rentgenowskiego, promieniowanie hamowania, krótkofalowa grania
Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne
Instrukja do ćwizeń laboratoryjnyh z przedmiotu: adania operayjne Temat ćwizenia: Komputerowe wspomaganie rozwiązywania zadań programowania liniowego, dobór struktury asortymentowej Zahodniopomorski Uniwersytet
Wojewódzki Konkurs Przedmiotowy z Matematyki etap szkolny. Przykładowe rozwiązania i propozycja punktacji rozwiązań
Wojewódzki Konkurs Przedmiotowy z Matematyki etap szkolny Przykładowe rozwiązania i propozycja punktacji rozwiązań Ustalenia do punktowania zadań otwartych: 1. Jeśli uczeń przedstawił obok prawidłowej
Ćwiczenie nr 2 WYZNACZANIE GĘSTOŚCI CIAŁ STAŁYCH
Ćwiczenie nr WYZNACZANIE GĘSTOŚCI CIAŁ STAŁYCH Ćwiczenie nr WYZNACZANIE GĘSTOŚCI CIAŁ STAŁYCH wersja z dnia II 06 A Majhofer i R Nowak UWAGA! To ćwiczenie zarówno poiary jak i część rachunkowa wykonywane
Ćwiczenie nr 25: Interferencja fal akustycznych
Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 25: Interferencja
ANEMOMETRIA LASEROWA
1 Wstęp ANEMOMETRIA LASEROWA Anemometria laserowa pozwala na bezdotykowy pomiar prędkośi zastezek (elementów) rozpraszajayh światło Źródłem światła jest laser, którego wiazka jest dzielona się nadwiewiazki
Cel ćwiczenia: Podstawy teoretyczne:
Cel ćwiczenia: Cele ćwiczenia jest zapoznanie się z pracą regulatorów dwawnych w układzie regulacji teperatury. Podstawy teoretyczne: Regulator dwawny (dwupołoŝeniowy) realizuje algoryt: U ( t) U1 U 2
Laboratorium Inżynierii bioreaktorów Ćwiczenie 2: Rozkład czasu przybywania w reaktorach przepływowych
EL Laboratorium Inżynierii bioreaktorów Ćwizenie 2: Rozkład zasu przybywania w reaktorah przepływowyh Wyznazenie rzezywistego rozkładu zasu przebywania w reaktorze mieszalnikowym metodą skokową oraz w
Ćwiczenie 39 KLOCEK I WALEC NA RÓWNI POCHYŁEJ - STATYKA.
Ćwiczenie 39 KLOCEK WALEC A ÓW POCHYŁEJ - SAYKA. 39... Wiadoości ogólne Zjawiko tarcia jet jedny z najbardziej rozpowzechnionych w nazej codziennej rzeczywitości. W świecie w jaki żyjey tarcie jet dołownie
Pobieranie prób i rozkład z próby
Pobieranie prób i rozkład z próby Marcin Zajenkowski Marcin Zajenkowski () Pobieranie prób i rozkład z próby 1 / 15 Populacja i próba Populacja dowolnie określony zespół przedmiotów, obserwacji, osób itp.
J. (1.1) J. (1.2) PoniewaŜ czas pompowania jest równy t = 2 h = 7200 s, a więc moc na wale pompy wyniesie
EROELEKRA Ogólnopolska Olipiada Wiedzy Elektrycej i Elektronicej Rok szkolny 00/0 Odpowiedzi do zadań dla grupy elektrycej na zawody. stopnia adanie Dobierz oc silnika elektrycego prądu stałego wzbudzanego
ROZTWORY BUFOROWE. Ćwiczenie 1 Przygotowanie buforu octanowego
ROZTWORY BUFOROWE Zagadnienia: Roztwory buforowe Zasada działania roztworów buforowyh reakje Pojemność Występowanie roztworów buforowyh w przyrodzie i ih znazenie Ćwizenie 1 Przygotowanie buforu otanowego
WYKORZYSTANIE METODY BOOTSTRAPU DO BADANIA WPŁYWU POLA MAGNETYCZNEGO NA WŁASNOŚCI MECHANICZNE ŹDŹBEŁ ZBÓś
InŜynieria Rolniza 14/2005 Andrzej Bohniak, Mirosława Wesołowska-Janzarek Katedra Zastosowań Matematyki Akademia Rolniza w Lublinie WYKORZYSTANIE METODY BOOTSTRAPU DO BADANIA WPŁYWU POLA MAGNETYCZNEGO
MECHANIKA PŁYNÓW LABORATORIUM
MECHANIKA PŁYNÓW LABORATORIUM Ćwiczenie nr 7 Waga hydrostatyczna, wypór. Cele ćwiczenia jest wyznaczenie gęstości ciał stałych za poocą wagi hydrostatycznej i porównanie tej etody z etodai, w których ierzona
1.UKŁADY RÓWNAŃ LINIOWYCH
UKŁADY RÓWNAŃ 1.UKŁADY RÓWNAŃ LINIOWYCH Układ: a1x + b1y = c1 a x + by = c nazywamy układem równań liniowych. Rozwiązaniem układu jest kaŝda para liczb spełniająca kaŝde z równań. Przy rozwiązywaniu układów
Temat: SZACOWANIE NIEPEWNOŚCI POMIAROWYCH
Temat: SZCOWNIE NIEPEWNOŚCI POMIROWYCH - Jak oszacować niepewność pomiarów bezpośrednich? - Jak oszacować niepewność pomiarów pośrednich? - Jak oszacować niepewność przeciętną i standardową? - Jak zapisywać
Cieplne Maszyny Przepływowe. Temat 6 Przepływ przez sprężarki osiowe. Część I Podstawy teorii Cieplnych Maszyn Przepływowych. 6.1.
73 6.. Wstęp W sprężarkah pole przepływu jednowymiarowego rośnie tj. (α > α ) o prowadzi do: - oderwania warstwy przyśiennej - wzrostu strat i redukji odhylenia strugi - redukją przyrostu iśnienia statyznego.
Oszacowanie i rozkład t
Oszacowanie i rozkład t Marcin Zajenkowski Marcin Zajenkowski () Oszacowanie i rozkład t 1 / 31 Oszacowanie 1 Na podstawie danych z próby szacuje się wiele wartości w populacji, np.: jakie jest poparcie
Dr inŝ. Janusz Eichler Dr inŝ. Jacek Kasperski. ODSTĘPSTWA RZECZYWISTEGO OBIEGU ABSORPCYJNO-DYFUZYJNEGO OD OBIEGU TEORETYCZNEGO (część II).
Dr inŝ. Janusz Eihler Dr inŝ. Jaek Kasperski Zakład Chłodnitwa i Kriogeniki Instytut ehniki Cieplnej i Mehaniki Płynów I-20 Politehnika Wroławska ODSĘPSWA RZECZYWISEGO OBIEGU ABSORPCYJNO-DYFUZYJNEGO OD
EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015
EGZAMIN MATURALNY W ROKU SZKOLNYM 0/0 FORMUŁA OD 0 ( NOWA MATURA ) MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 0 Egzamin maturalny z matematyki nowa formuła Klucz
E wektor natęŝenia pola, a dr element obwodu, którego zwrot określa przyjęty kierunek obchodzenia danego oczka.
Lista 9. do kursu Fizyka; rok. ak. 2012/13 sem. letni W. InŜ. Środ.; kierunek InŜ. Środowiska Tabele wzorów matematycznych (http://www.if.pwr.wroc.pl/~wsalejda/mat-wzory.pdf) i fizycznych (http://www.if.pwr.wroc.pl/~wsalejda/wzf1.pdf;
Zadania ze statystyki, cz.6
Zadania ze statystyki, cz.6 Zad.1 Proszę wskazać, jaką część pola pod krzywą normalną wyznaczają wartości Z rozkładu dystrybuanty rozkładu normalnego: - Z > 1,25 - Z > 2,23 - Z < -1,23 - Z > -1,16 - Z
Niepewność korekcji oddziaływań systematycznych oraz dryftów czasowych
Mykhaylo DOROZHOVES Politehnika Rzeszowska, Katedra Metrologii i Systeów Diagnostyznyh doi:599/8569 iepewność ekji oddziaływań systeatyznyh oraz dryftów zasowyh Streszzenie W artykle przedstawiono analizę
WYDZIAŁ BIOLOGICZNO-CHEMICZNY. Instytut Chemii
UNIWERSYTET W BIAŁYMSTOKU WYDZIAŁ BIOLOGICZNO-CHEMICZNY Instytut Chemii r. ak. 0/03 INSTRUKCJE DO ĆWICZEŃ Z CHEMII IZYCZNEJ II III CHEMIA ĆWICZENIE ADSORPCJA KWASU ETANOWEGO NA WĘGLU AKTYWNYM WYMAGANIA
ANALIZA DOKŁADNOŚCI WYNIKU POMIARÓW
ĆWICZENIE 3 ANALIZA DOKŁADNOŚCI WYNIKU POMIARÓW 3.. Cel ćwiczenia Celem ćwiczenia jest nauczenie studentów określania błędów granicznych oraz niepewności całkowitej w pomiarach bezpośrednich i pośrednich
Badanie funkcji. Zad. 1: 2 3 Funkcja f jest określona wzorem f( x) = +
Badanie funkcji Zad : Funkcja f jest określona wzorem f( ) = + a) RozwiąŜ równanie f() = 5 b) Znajdź przedziały monotoniczności funkcji f c) Oblicz największą i najmniejszą wartość funkcji f w przedziale
Definicja szybkości reakcji
Definija szybkośi reakji Szybkość reakji definiuje się jako stosunek zmiany stężenia substratów lub produktów reakji do zasu potrzebnego do zajśia tej zmiany. v zas zmiana stężenia potrzebny do zajśia
6. Zamiana energii elektrycznej w ciepło
Cel ćwiczenia: 6. Zamiana energii elektrycznej w ciepło Dr inŝ. Dorota Nowak-Woźny Zapoznanie z metodami grzania rezystancyjnego pośredniego i bezpośredniego oraz ich zastosowaniami w przemyśle. Wyznaczenie
Obliczanie charakterystyk geometrycznych przekrojów poprzecznych pręta
5 Oblizanie harakterystyk geometryznyh przekrojów poprzeznyh pręta Zadanie 5.. Wyznazyć główne entralne momenty bezwładnośi przekroju poprzeznego dwuteownika o wymiarah 9 6 m (rys. 5.. Rozpatrywany przekrój
Dla powstania pola magnetycznego konieczny jest ruch ładunków elektrycznych, a więc przepływ prądu elektrycznego, natomiast pole elektryczne powstaje
Pole elektryzne Dla powstania pola magnetyznego koniezny jest ruh ładunków elektryznyh, a wię przepływ prądu elektryznego, natomiast pole elektryzne powstaje zawsze w przestrzeni otazająej ładunki elektryzne,
ABSORPCJA ROZTWORÓW BARWNIKÓW ORGANICZNYCH. ANALIZA SKŁADU ROZTWORU
Ćwizenie 26 BSORPCJ ROZTWORÓW BRWNIKÓW ORGNICZNYCH. NLIZ SKŁDU ROZTWORU paratura 1. Spektrofotometr 2. Roztwór fluoreseiny 2 10-4 mol/dm 3 (200 µm) 3. Roztwór różu bengalskiego 2 10-4 mol/dm 3 (200 µm)
Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.
Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy
1. CEL ĆWICZENIA 2. WPROWADZENIE
. CEL ĆWCZENA Cele ćwiczenia jest poznanie właściwości stałoprądowych oraz ziennoprądowych (dla ałych aplitud i ałych częstotliwości synałów) tranzystora poloweo złączoweo JFET na przykładzie tranzystora
Ć w i c z e n i e K 6. Wyznaczanie stałych materiałowych przy wykorzystaniu pomiarów tensometrycznych.
Akadeia Górniczo Hutnicza ydział Inżynierii Mechanicznej i Robotyki Katedra ytrzyałości, Zęczenia Materiałów i Konstrukcji Nazwisko i Iię: Nazwisko i Iię: ydział Górnictwa i Geoinżynierii Grupa nr: Ocena:
Podstawowe prawa elektrotechniki. Prawo Ohma i prawa Kirchhoffa.
Podstawowe prawa elektrotechniki. Prawo Ohma i prawa Kirchhoffa. Materiały dydaktyczne dla kierunku Technik Optyk (W) Kwalifikacyjnego kursu zawodowego. Prawo Ohma NatęŜenie prądu zaleŝy wprost proporcjonalnie
Ćwiczenie nr 2: ZaleŜność okresu drgań wahadła od amplitudy
Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 2: ZaleŜność okresu
LABORATORIUM Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz.
LABORATORIUM 4 1. Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz. I) WNIOSKOWANIE STATYSTYCZNE (STATISTICAL INFERENCE) Populacja
Inżynieria bioreaktorów - Rozkład czasu przybywania w reaktorach (2018/2019)
Inżynieria bioreaktorów - Rozkład zasu przybywania w reaktorah (218/219) CEL Wyznazenie rzezywistego rozkładu zasu przebywania w reaktorze mieszalnikowym metodą skokową i w dwóh reaktorah rurowyh metodą
RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA
RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA LISTA 10 1.Dokonano 8 pomiarów pewnej odległości (w m) i otrzymano: 201, 195, 207, 203, 191, 208, 198, 210. Wiedząc,że błąd pomiaru ma rozkład normalny
Pole magnetyczne ma tę własność, że jego dywergencja jest wszędzie równa zeru.
Dywergenja i rotaja pola magnetyznego Linie wektora B nie mają pozątku, ani końa. tąd wynika twierdzenie Gaussa dla wektora B : Φ = B d = B trumień wektora indukji magnetyznej przez dowolną powierzhnię
gdzie ω jest częstością kołową. Rozwiązaniem powyższego równania różniczkowego II-go stopnia jest wyrażenie (2) lub ( )
RUCH HARMONICZNY I. Ce ćwiczenia: wyznaczenie wartości przyspieszenia zieskiego poiar współczynnika sprężystości sprężyny k, zaznajoienie się z podstawowyi wiekościai w ruchu haroniczny. II. Przyrządy:
parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,
诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów
LISTA 4. 7.Przy sporządzaniu skali magnetometru dokonano 10 niezależnych pomiarów
LISTA 4 1.Na pewnym obszarze dokonano 40 pomiarów grubości warstwy piasku otrzymując w m.: 54, 58, 64, 69, 61, 56, 41, 48, 56, 61, 70, 55, 46, 57, 70, 55, 47, 62, 55, 60, 54,57,65,60,53,54, 49,58,62,59,55,50,58,
Układy równań liniowych. Ax = b (1)
Układy równań liniowych Dany jest układ m równań z n niewiadomymi. Liczba równań m nie musi być równa liczbie niewiadomych n, tj. mn. a a... a b n n a a... a b n n... a a... a b m m mn n m
10 zadań związanych z granicą i pochodną funkcji.
0 zadań związanych z granicą i pochodną funkcji Znajdź przedziały monotoniczności funkcji f() 4, określonej dla (0,) W przedziale ( 0,) wyrażenie 4 przyjmuje wartości ujemne, dlatego dla (0,) funkcja f()
Matura z matematyki?- MATURALNIE, Ŝe ZDAM! Zadania treningowe klasa I III ETAP
Matura z matematyki?- MATURALNIE, Ŝe ZDAM! Zadania treningowe klasa I III ETAP I Zadania zamknięte (pkt) Zadanie Liczba - jest miejscem zerowym funkcji liniowej = x + B. f ( x) = x C. f ( x) = x + D. f
F I N A N S E I P R A W O F I N A N S O W E
F I N A N S E I P R A W O F I N A N S O W E 0 1 4 Journal of Finane and Finanial Law 1/2014 Maiej Górski Mgr, absolwent Uniwersytetu Łódzkiego, Wydziału Ekonomizno-Sojologiznego, kierunku Finanse i Rahunkowość
Rozkłady statystyk z próby
Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny
Statystyka matematyczna
Statystyka matematyczna Wykład 8 Magdalena Alama-Bućko 7 maja 2018 Magdalena Alama-Bućko Statystyka matematyczna 7 maja 2018 1 / 19 Przypomnijmy najpierw omówione na poprzednim wykładzie postaci przedziałów
3) Naszkicuj wykres funkcji y=-xdo kwadratu+2x+1 i napisz równanie osi symetrii jej wykresu.
Zadanie: 1) Dana jest funkcja y=-+7.nie wykonując wykresu podaj a) miejsce zerowe b)czy funkcja jest rosnąca czy malejąca(uzasadnij) c)jaka jest rzędna punktu przecięcia wykresu z osią y. ) Wykres funkcji
WIELOMIANY I FUNKCJE WYMIERNE
WIELOMIANY I FUNKCJE WYMIERNE. RozwiąŜ nierówność.. Dla jakiej wartości parametru a R wielomian W() = ++ a dzieli się bez reszty przez +?. Rozwiązać nierówność: a) 5 b) + 4. Wyznaczyć wartości parametru
Procesy Chemiczne. Ćw. W4 Adsorpcja z roztworów na węglu aktywnym. Nadmiarowe izotermy adsorpcji. Politechnika Wrocławska
Politehnika Wroławska Proesy Chemizne Ćw. W4 Adsorpja z roztworów na węglu aktywnym. Nadmiarowe izotermy adsorpji Opraowane przez: Ewa Loren-Grabowska Wroław 2011 I. ADSORPCJA Równowagowe izotermy adsorpji
Laboratorium Metrologii
Laboratorium Metrologii Ćwiczenie nr 1 Metody określania niepewności pomiaru. I. Zagadnienia do przygotowania na kartkówkę: 1. Podstawowe założenia teorii niepewności. Wyjaśnić znaczenie pojęć randomizacja
POMIAR NAPIĘCIA STAŁEGO PRZYRZĄDAMI ANALOGOWYMI I CYFROWYMI. Cel ćwiczenia. Program ćwiczenia
Pomiar napięć stałych 1 POMIA NAPIĘCIA STAŁEGO PZYZĄDAMI ANALOGOWYMI I CYFOWYMI Cel ćwiczenia Celem ćwiczenia jest poznanie: - parametrów typowych woltomierzy prądu stałego oraz z warunków poprawnej ich
Asymptoty funkcji. Pochodna. Zastosowania pochodnej
Temat wykładu: Asymptoty unkcji. Pochodna. Zastosowania pochodnej Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy 1 1. Asymptoty unkcji Zagadnienia 2. Pochodna
Metody numeryczne. dr Artur Woike. Ćwiczenia nr 2. Rozwiązywanie równań nieliniowych metody połowienia, regula falsi i siecznych.
Ćwiczenia nr 2 metody połowienia, regula falsi i siecznych. Sformułowanie zagadnienia Niech będzie dane równanie postaci f (x) = 0, gdzie f jest pewną funkcją nieliniową (jeżeli f jest liniowa to zagadnienie
KATALOG WYMAGAŃ PROGRAMOWYCH NA POSZCZEGÓLNE STOPNIE SZKOLNE W KLASIE 6
KTLOG WYMGŃ PROGRMOWYH N POSZZEGÓLNE STOPNIE SZKOLNE W KLSIE 6 Przedstawiamy, jakie umiejętnośi z danego działu powinien zdobyć uzeń, aby uzyskać poszzególne stopnie. Na oenę dopuszzająy uzeń powinien
Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/
Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, bud. CIW, p. 221 e-mail: zdzislaw.otachel@up.lublin.pl
BADANIE POWTARZALNOŚCI PRZYRZĄDU POMIAROWEGO
Zakład Metrologii i Systemów Pomiarowych P o l i t e c h n i k a P o z n ańska ul. Jana Pawła II 24 60-965 POZNAŃ (budynek Centrum Mechatroniki, Biomechaniki i Nanoinżynierii) www.zmisp.mt.put.poznan.pl