CMB -II (Promieniowanie 3K)

Wielkość: px
Rozpocząć pokaz od strony:

Download "CMB -II (Promieniowanie 3K)"

Transkrypt

1 CMB -II (Promieniowanie 3K) Polaryzacja [rysunki+idea wg Hu&White (1997) New Astronomy, 2, 323] Anizotropia wtórna

2 Rozpraszanie na swobodnych elektronach Fala niespolaryzowana pobudzony elektron rozproszone prostopadle To jest szczególny przypadek: linia widzenia (ta na ukos na 2D rysunku) jest prostopadła do pierwotnego kierunku propagacji fali. W kierunku obserwatora można wysłać tylko składową prostopadłą do linii widzenia (fale EM są poprzeczne). (To jest b. schematyczne amplituda fali rozproszonej będzie na ogół dużo niższa od padającej, większość promieniowania będzie się rozchodzić w pierwotnym kierunku, a pewna część także w innych.)

3 Rozpraszanie na swobodnych elektronach Dwie fale niespolaryzowane pobudzony elektron rozproszone: po,,pół'' Fala padająca od lewej,,dostarcza'' obserwatorowi promieniowanie spolaryzowane,,pionowo'', a fala padająca,,z góry'' spolaryzowane,,poziomo''. Padające promieniowanie było izotropowe, więc obie składowe rozproszonego promieniowania są równe i nie jest ono spolaryzowane.

4 Rozpraszanie na swobodnych elektronach Dwie fale niespolaryzowane pobudzony elektron rozproszone: po,,pół'' Fala padająca od lewej,,dostarcza'' obserwatorowi promieniowanie spolaryzowane,,pionowo'', a fala padająca,,z góry'' spolaryzowane,,poziomo''. Padająca,,z góry'' fala miała mniejszą amplitudę, więc rozproszona składowa,,pozioma'' jest słabsza. Fala rozproszona jest częściowo spolaryzowana.

5 Zaburzenia skalarne (gęstości) Elektron w warstwie ostatniego rozproszenia widzi materię napływającą do zagęszczenia. (zagęszczenie jest,,zimne'', bo efekty towarzyszącego mu pola grawitacyjnego przeważają.) Promieniowanie docierające,,z góry i z dołu'' (czyli wzdłuż wektora falowego) ma wyższą temperaturę (efekt Dopplera) niż z kierunków prostopadłych fala rozproszona jest spolaryzowana liniowo, prostopadle do wektora falowego zaburzenia gęstości (i) prostopadle do prędkości materii

6 Zaburzenia skalarne (gęstości) Mapa polaryzacji na sferze niebieskiej dla promieniowania rozproszonego przez pojedynczy elektron z poprzedniej strony. (Znaki pomarańczowe, mod E) (Znaki fioletowe przedstawiają mod B; nie jest on produktem rozpraszania przez 1 elektron)

7 Zaburzenia wektorowe (wiry prędkości) Zaburzenia wektorowe są możliwe. Jeśli istniały w czasie rekombinacji to mogły pozostawić ślad... Elektron w warstwie ostatniego rozproszenia, w węźle zaburzenia prędkości, widzi materię przepływającą w przeciwnych kierunkach,,ponad i pod''. Maksymalny efekt widać z kierunku prostopadłego do wektora falowego i do wektora prędkosci jest to liniowa polaryzacja pod kątem 45deg do tych wektorów.

8 Zaburzenia wektorowe (wiry prędkości) Mapa polaryzacji na sferze niebieskiej dla promieniowania rozproszonego przez pojedynczy elektron z poprzedniej strony. (Znaki pomarańczowe mod E)

9 Zaburzenia tensorowe (fale grawitacyjne) Jeśli tego typu zaburzenia istniały w czasie rekombinacji jako efekt wcześniejszej ewolucji Wszechświata, to mogły pozostawić ślad... Elektron w warstwie ostatniego rozproszenia, w max/min fali grawitacyjnej, widzi w płaszczyźnie prostopadłej do wektora falowego miejsca cieplejsze I zimniejsze we wzajemnie prostopadych kierunkach. Maksymalny efekt widać z kierunku równoległego do wektora falowego.

10 Zaburzenia tensorowe (fale grawitacyjne) Mapa polaryzacji na sferze niebieskiej dla promieniowania rozproszonego przez pojedynczy elektron z poprzedniej strony. (Znaki pomarańczowe mod E)

11 Pojedyncza fala płaska Zaburzenie gęstości w kształcie fali płaskiej o wektorze falowym w pionie i długości fali =1/3 średnicy sfery ostatniego rozproszenia. Polaryzacja zmienia się tak samo wzdłuż każdego południka: jej kierunek jest na zmianę N S i E W, a amplituda ~sin^2\theta (zero na biegunach, max na równiku). Polaryzacja prostopadła do gorących grzbietów i równoległa do zimnych dolin fali.

12 Pojedyncza gorąca plama (duża skala) W przecięciu 4 grzbietów znajduje się gorąca plama. Kierunki polaryzacji, prostopadłe do grzbietów, tworzą charakterystyczny układ wokół gorącej plamy.

13 Mod E wokół zimnej/gorącej plamy W przypadku zimnej plamy byłoby na odwrót. Powyższe układy polaryzacji nazywamy modem E. Zaburzenia gęstości produkują tylko E i prowadzą do korelacji pomiądzy fluktuacjami temperatury a polaryzacją. (Q, U parametry Stokesa)

14 Pojedynczy wir W przecięciu 4 grzbietów zaburzeń prędkości znajduje się oko wiru.

15 Mod B wokół wiru Kierunki polaryzacji pod kątem 45 deg do grzbietów (dolin) fal układają się w charakterystyczny sposób wokół wiru. Tworzy to tzw. mod B polaryzacji.

16 (a) Mapy polaryzacji dla pojedynczej fali płaskiej przy różnych typach zaburzeń; (b) widma mocy dla polaryzacji typu E, B odpowiadające pojedynczej fali plaskiej (typu S/V/T) o kr=100 Zaburzenia gęstości dają tylko mod E!

17 (Przewidywania 1997) Widmo anizotropii fluktuacji temperatury (niebieska), widmo mocy składowej E polaryzacji (czerwona), ich korelacja (zielona). Uwzględnienie wtórnych fluktuacji związanych z rozpraszaniem po powtórnej jonizacji (fiolet).

18 Pierwszy pomiar: DASI DASI (Biegun Płd.) An image of the intensity and polarization of the cosmic microwave background radiation made with the Degree Angular Scale Interferometer (DASI) telescope. The small temperature variations of the cosmic microwave background are shown in false color, with yellow hot and red cold. [Kovac i in. (2002) Nature, 420, 772]

19 Pierwszy pomiar: DASI Widmo anizotropii fluktuacji temperatury i ich korelacji ze składową E polaryzacji. [Kovac i in. (2002) Nature, 420, 772]

20 WMAP 3y Mapa temperatury i polaryzacji promieniowania tła na podstawie 3 lat obserwacji WMAP

21 WMAP 7y Polaryzacja wokół zimnej (góra) i gorącej (dół) plamy. [Komatsu i in. (2011) ApJS, 192, 18]

22 [WMAP Science Team] Mierzone korelacje pomiędzy fluktuacjami temperatury a składowymi E (góra) i B (dół) polaryzacji. [7 letnie wyniki WMAP] Uwaga: naniesiono (l+1)c_l, a nie: l(l+1)c_l!

23 Planck (czekamy...) Oczekiwana dokładność pomiaru modu B przez satelitę Planck.

24 CMB fast: podstawy Po rekombinacji fotony stają się gazem nieoddziaływujących cząstek, czasem rozpraszających się na swobodnych elektronach. Ich rozkład w przestrzeni fazowej opisuje funkcja f spełniająca równanie Boltzmana: Gdzie f+ oznacza funkcję rozdziału dla rozproszonych fotonów. Całkując po pędach mamy równanie na fluktuacje gęstości energii fotonów: 1996ApJ [Peebles & Yu 1970, ApJ, 162, 815]

25 CMB fast Fluktuacje gęstości energii można zastąpić fluktuacjami temperatury, które można rozłożyć na fale płaskie. Pojedynczą składową można przedstawić jako szereg multipolowy: Gdzie el oznacza numer multipola, k wektor falowy a n kierunek propagacji. 1996ApJ [Seljak & Zaldarriaga (1996) ApJL, 469, L437]

26 CMB fast Konsekwencją równania Boltzmana jest następujący układ równań na fluktuacje temperatury i polaryzację dla zaburzeń skalarnych: gdzie (S) oznacza mod skalarny, T fluktuacje temperatury, P fluktuacje polaryzacji. Człony zderzeniowe są w nawiasach {}, a współczynnik przed nimi to tempo rozpraszania. 1996ApJ [Seljak & Zaldarriaga (1996) ApJL, 469, L437]

27 CMB fast W rozbiciu na multipole otrzymujemy powyższy układ równań. Dla wyższych mamy sprzężenie multipola l tylko z l 1 oraz l+1. Aby otrzymać widmo anizotropi do l~1000 trzeba rozwiązać układ kilku tysięcy równań. Trzeba też umiejętnie urwać układ równań. (Pozostanie niekomletny, gdyz któreś l+1 musimy już pominąć.) 1996ApJ [Seljak & Zaldarriaga (1996) ApJL, 469, L437]

28 CMB fast Formalnie można przedstawić fluktuacje temperatury (tu i teraz) jako całkę wzdłuż trajektorii fotonów: W funkcjach podcałkowych występują tylko niskie multipole, które trzeba liczyć na bieżąco, np używając poprzedniego układu równań ale wydatnioe zmniejszonego. Całkowanie przez części pozwala zamienić pojawiające się pod całką \mu prze pochodne po \tau. 1996ApJ [Seljak & Zaldarriaga (1996) ApJL, 469, L437]

29 CMB fast Te przekształcenia dają ostatecznie: W funkcjach podcałkowych występują tylko niskie multipole. Seljak i Zaldarriaga pokazują, że potrzeba ich niewielkiej liczby! 1996ApJ [Seljak & Zaldarriaga (1996) ApJL, 469, L437]

30 CMB fast Użycie 7 najniższych multipoli daje b. dokładne (?) widmo anizotropii... CMBfast było używane przy dopasowywaniu modeli kosmologicznych. Nadal można tego podejścia używać dla otrzymania widma anizotropii w modelu, w którym znamy widmo zaburzeń w momencie rekombinacji. 1996ApJ [Seljak & Zaldarriaga (1996) ApJL, 469, L437]

31 (2008) Rept. Prog. Phys. 70:066102

32 Anizotropia wtórna: grawitacja Efekt Sachsa Wolfe'a (SW) i scałkowany (ISW): Pierwszy człon (SW) pokazuje wpływ różnicy potencjału grawitacyjnego pomiędzy obserwatorem a miejscem na sferze ostatniego rozproszenia. Drugi (ISW) to wpływ niejednorodności po drodze. Badając wpływ pojedynczych zaburzeń gęstości w dużej skali natrafiamy na scenariusz Reesa i Sciamy (RS): fotony wpadają do zaburzenia o mniejszej amplitudzie, a opuszczają zaburzenie większe. Powinno to prowadzić do utraty energii przez wszystkie fotony z danego kierunku, co mogłoby być obserwowalne jako korelacja położeń zimnych plam i obecności wielkoskalowej struktury w danym kierunku.

33 Anizotropia wtórna: grawitacja Wpływ efektu Sachsa Wolfe'a (ISW) i jego nieliniowego rozszerzenia (RS) na widmo anizotropii CMB [Cooray (2002) PhysRevD 65, ]

34 Anizotropia wtórna: grawitacja Poszukiwanie korelacji fluktuacji temperatury z położeniem struktury. Obserwacje nie wykluczają braku korelacji. [Rassat i in (2007) MNRAS, 377, 1085]

35 Anizotropia wtórna: soczewkowanie grawitacyjne Ugięcie promieni nie zmienia energii propagujących się fotonów, ale powoduje, że obserwowane fotony zostały (na sferze ostatniego rozproszenia) wysłane z innego miejsca : Rozwinięcie daje: Gdzie: Określa przesunięcie miejsca emisji w stosunku do niezakrzywionego promienia.

36

37 Soczewkowanie: polaryzacja Ugięcie promieni deformuje również mapy polaryzacji. Jeśli polaryzacja określona jest przez kombinacje parametrów Stokesa jako P=Q+/ iu to, podobnie jak dla temperatury, mamy: Żmudne rachunki pokazują, że: Czyli mody E i B sprzęgają się. Jeśli początkowo mod B nie jest obecny, jak w przypadku polaryzacji wywołanej przez zaburzenia gęstości, soczewkowanie może go wygenerować:

38 Soczewkowanie: wpływ na widmo Widmo anizotropii temperatury (góra) i korelacje fluktuacji T i pol. E (dół). Na czerwono: wkład soczewkowania, dominujący przy el>3000. [Hu (2000) Phys.Rev.D, 62, ]

39 Soczewkowanie: symulacja Syntetyczna mapa temperatury i polaryzacji uwzględniająca soczewkowanie.

40 South Pole Telescope [Reichardt i in. (2011) arxiv: ] Widmo anizotropii dla wysokich multipoli (el>3000). W tej części wyniki są silnie zakłócone przez tło promieniowania synchrotronowego i w podczerwieni, co objawia się silną zależnością od częstości.

41 Anizotropia wtórna

42 Anizotropia wtórna Rozpraszanie na swobodnych elektronach usuwa z wiązki skierowanej ku obserwatorowi część,,pierwotnych'' fotonów pochodzących ze sfery ostatniego rozproszenia. Jednocześnie dostarcza do wiązki,,wtórne'' fotony, które przedtem zmierzały w innym kierunku. Obszar rozpraszający,,widzi'' fotony ze,,swojej'' sfery ostatniego rozproszenia. Ponieważ p stwo rozproszenia w danym kierunku zależy od polaryzacji przed i po, rozproszone promieniowanie jest

43 Anizotropia wtórna Wikipedia Wektory n, n' oznaczają kierunki polaryzacji przed I po rozproszeniu. Przy polaryzacji równoległej do płaszczyzny rozproszenia ( radial na rysunku) rozpraszana składowa zależy od kierunku rozproszenia. Składowa o polaryzacji prostopadłej nie. (r_e jest klasycznym promieniem elektronu, całkowanie po sferze dałoby przekrój Thomsona.)

44 Anizotropia wtórna Basu: CMB lectures Natężenie rozproszonego do obserwatora promieniowania jest uśrednione po sferze pierwotnego rozproszenia widocznej z obszaru rozpraszającego wtórnie, jest więc ~izotropowe. Polaryzacja rozproszonego w danym obszarze promieniowania jest proporcjonalna do momentu kwadrupolowego fluktuacji temperatury widocznego na jego sferze pierwotnego rozproszenia. Sąsiednie obszary po rekombinacji są do siebie podobne w skali ~ct(reionization) >>ct (recombination) my, obserwatorzy na Ziemi widzimy na sferze niebieskiej niewiele takich obszarów i wkład do anizotropii polaryzacji odpowiada małym el.

45

46 Zhang, Pen & Trac (2004):

47

48 Efekt Suniajewa i Zeldowicza [Adapted from L. Van Speybroeck] [Carlstrom i in. (2002) ARAA, 40, 643] Efekt S Z jakościowo. Elektrony w gazie o kt~1kev rozpraszają fotony CMB nadając im wyższą energię. Liczba fotonów zostaje zachowana, ubywa tych o niskich częstościach (<218 GHz), przybywa wysokoenergetycznych. Widmo ulega deformacji (na rysunku wyolbrzymionej). Pomiary w niskich częstościach dają niższą temperaturę promieniowania.

49 [Birkinshaw (1999) Phys.Rept.310:97 195] Pojedyncze rozproszenie fotonu. Elektron porusza się w prawo.

50 Efekt termiczny Elektrony mają rozkład termiczny Rozproszenia przez elektrony poruszające się w kierunku obserwatora są,,bardziej widoczne'': rozproszone fotony mają energie średnio (1+kT_e/mc^2) razy wyższe Prawdopodobieństwo rozproszenia (<<1) jest równe grubości optycznej Miarą efektu (p stwo razy względna zmiana energii) jest parametr y: Dla niskich częstości temperatura zmienia się o:

51 [Carlstrom i in. (2002) ARAA, 40, 643] Zmiana natężenia (po lewej) i temperatury RJ (po prawej) wskutek efektu S Z.

52 Zmiany obserwowanej temperatury RJ dla dwóch typowych wartości parametru y. [

53 Kinematyczny efekt S Z Gromady galaktyk mają ruchy własne z prędkościami ~kilkaset km/s <<c. Promieniowanie z ich kierunku składa się w małej części z fotonów rozproszonych i przesuniętych ze względu na efekt Dopplera wywołany ruchem gromady. Daje to: Obserwowane widmo jest sumą dwóch widm Plancka. W częstości 218 GHz termiczny efekt S Z nie przejawia się. Obserwacje w tej częstości pozwalają więc wydzielić efekt kinematyczny. (Może to służyć pomiarowi prędkości własnej gromady względem układu odniesienia CMB)

54 South Pole Telescope [U.Chicago]

55 Pomiar temperatury CMB (po lewej) i odpowiadająca mu mapa opt IR (po prawej). [ An SZ selected sample of the most massive galaxy clusters in the 2500 square degree South Pole Telescope survey Williamson i in. (2011) arxiv: ]

56 Pomiar temperatury CMB (po lewej) i odpowiadająca mu mapa opt IR (po prawej). [ An SZ selected sample of the most massive galaxy clusters in the 2500 square degree South Pole Telescope survey Williamson i in. (2011) arxiv: ]

57 Anizotropia wtórna

58 Problem: promieniowanie źródeł astronomicznych

59 Jeszcze parę zdjęć

60 Jeszcze parę zdjęć

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące: Rozważania rozpoczniemy od fal elektromagnetycznych w próżni Dla próżni równania Maxwella w tzw postaci różniczkowej są następujące:, gdzie E oznacza pole elektryczne, B indukcję pola magnetycznego a i

Bardziej szczegółowo

Wszechświat: spis inwentarza. Typy obiektów Rozmieszczenie w przestrzeni Symetrie

Wszechświat: spis inwentarza. Typy obiektów Rozmieszczenie w przestrzeni Symetrie Wszechświat: spis inwentarza Typy obiektów Rozmieszczenie w przestrzeni Symetrie Curtis i Shapley 1920 Heber D. Curtis 1872-1942 Mgławice spiralne są układami gwiazd równoważnymi Drodze Mlecznej Mgławice

Bardziej szczegółowo

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017 Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne

Bardziej szczegółowo

Promieniowanie 21 cm rys i narracja: Struktura nadsubtelna atomu wodoru Procesy wzbudzenia Widmo sygnału z całego nieba Tomografia 21 cm Las 21 cm

Promieniowanie 21 cm rys i narracja: Struktura nadsubtelna atomu wodoru Procesy wzbudzenia Widmo sygnału z całego nieba Tomografia 21 cm Las 21 cm Promieniowanie 21 cm rys i narracja: Struktura nadsubtelna atomu wodoru Procesy wzbudzenia Widmo sygnału z całego nieba Tomografia 21 cm Las 21 cm Obłoki HI Struktura nadsubtelna atomu wodoru ==> możliwe

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania (3.7), pomimo swojej prostoty, nie posiadają poza nielicznymi przypadkami ścisłych rozwiązań,

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Soczewkowanie 7. Propagacja światła w niejednorodnym Wszechświecie Słabe soczewkowanie

Soczewkowanie 7. Propagacja światła w niejednorodnym Wszechświecie Słabe soczewkowanie Soczewkowanie 7 Propagacja światła w niejednorodnym Wszechświecie Słabe soczewkowanie W modelu kosmologicznym [jednorodnym] W modelu kosmologicznym [jednorodnym] W modelu kosmologicznym [ogólniej] Trajektorie

Bardziej szczegółowo

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. 1 Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. natężenie natężenie teoria klasyczna wynik eksperymentu

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Ruch falowy Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Fala rozchodzi się w przestrzeni niosąc ze sobą energię, ale niekoniecznie musi

Bardziej szczegółowo

5.1. Powstawanie i rozchodzenie się fal mechanicznych.

5.1. Powstawanie i rozchodzenie się fal mechanicznych. 5. Fale mechaniczne 5.1. Powstawanie i rozchodzenie się fal mechanicznych. Ruch falowy jest zjawiskiem bardzo rozpowszechnionym w przyrodzie. Spotkałeś się z pewnością w życiu codziennym z takimi pojęciami

Bardziej szczegółowo

Wykład 17: Optyka falowa cz.2.

Wykład 17: Optyka falowa cz.2. Wykład 17: Optyka falowa cz.2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Interferencja w cienkich warstwach Załamanie

Bardziej szczegółowo

Moment pędu fali elektromagnetycznej

Moment pędu fali elektromagnetycznej napisał Michał Wierzbicki Moment pędu fali elektromagnetycznej Definicja momentu pędu pola elektromagnetycznego Gęstość momentu pędu pola J w elektrodynamice definuje się za pomocą wzoru: J = r P = ɛ 0

Bardziej szczegółowo

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.

Bardziej szczegółowo

Wzajemne relacje pomiędzy promieniowaniem a materią wynikają ze zjawisk związanych z oddziaływaniem promieniowania z materią. Do podstawowych zjawisk

Wzajemne relacje pomiędzy promieniowaniem a materią wynikają ze zjawisk związanych z oddziaływaniem promieniowania z materią. Do podstawowych zjawisk Wzajemne relacje pomiędzy promieniowaniem a materią wynikają ze zjawisk związanych z oddziaływaniem promieniowania z materią. Do podstawowych zjawisk fizycznych tego rodzaju należą zjawiska odbicia i załamania

Bardziej szczegółowo

Spis treści. Przedmowa PRZESTRZEŃ I CZAS W FIZYCE NEWTONOWSKIEJ ORAZ SZCZEGÓLNEJ TEORII. 1 Grawitacja 3. 2 Geometria jako fizyka 14

Spis treści. Przedmowa PRZESTRZEŃ I CZAS W FIZYCE NEWTONOWSKIEJ ORAZ SZCZEGÓLNEJ TEORII. 1 Grawitacja 3. 2 Geometria jako fizyka 14 Spis treści Przedmowa xi I PRZESTRZEŃ I CZAS W FIZYCE NEWTONOWSKIEJ ORAZ SZCZEGÓLNEJ TEORII WZGLĘDNOŚCI 1 1 Grawitacja 3 2 Geometria jako fizyka 14 2.1 Grawitacja to geometria 14 2.2 Geometria a doświadczenie

Bardziej szczegółowo

Widmo fal elektromagnetycznych

Widmo fal elektromagnetycznych Czym są fale elektromagnetyczne? Widmo fal elektromagnetycznych dr inż. Romuald Kędzierski Podstawowe pojęcia związane z falami - przypomnienie pole falowe część przestrzeni objęta w danej chwili falą

Bardziej szczegółowo

PODSTAWY MECHANIKI KWANTOWEJ

PODSTAWY MECHANIKI KWANTOWEJ PODSTAWY MECHANIKI KWANTOWEJ De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie

Bardziej szczegółowo

Fala EM w izotropowym ośrodku absorbującym

Fala EM w izotropowym ośrodku absorbującym Fala EM w izotropowym ośrodku absorbującym Fala EM powoduje generację zmienne pole elektryczne E Zmienne co do kierunku i natężenia, Pole E Nie wywołuje w ośrodku prądu elektrycznego Powoduje ruch elektronów

Bardziej szczegółowo

fotony i splątanie Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW

fotony i splątanie Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW fotony i splątanie Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW wektory pojedyncze fotony paradoks EPR Wielkości wektorowe w fizyce punkt zaczepienia

Bardziej szczegółowo

interpretacje mechaniki kwantowej fotony i splątanie

interpretacje mechaniki kwantowej fotony i splątanie mechaniki kwantowej fotony i splątanie Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW Twierdzenie o nieklonowaniu Jak sklonować stan kwantowy? klonowanie

Bardziej szczegółowo

Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów

Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów Wykład VI Fale t t + Dt Rodzaje fal 1. Fale mechaniczne 2. Fale elektromagnetyczne 3. Fale materii dyfrakcja elektronów Fala podłużna v Przemieszczenia elementów spirali ( w prawo i w lewo) są równoległe

Bardziej szczegółowo

Inflacja. Problemy modeli Friedmana Inflacja: oczekiwania Inflacja: pierwotne zaburzenia gęstości Inflacja a obserwacje CMB

Inflacja. Problemy modeli Friedmana Inflacja: oczekiwania Inflacja: pierwotne zaburzenia gęstości Inflacja a obserwacje CMB Inflacja Problemy modeli Friedmana Inflacja: oczekiwania Inflacja: pierwotne zaburzenia gęstości Inflacja a obserwacje CMB Problem horyzontu We wczesnej, relatywistycznej epoce ekspansji rozmiar obszaru,

Bardziej szczegółowo

Ruch falowy. Parametry: Długość Częstotliwość Prędkość. Częstotliwość i częstość kołowa MICHAŁ MARZANTOWICZ

Ruch falowy. Parametry: Długość Częstotliwość Prędkość. Częstotliwość i częstość kołowa MICHAŁ MARZANTOWICZ Ruch falowy Parametry: Długość Częstotliwość Prędkość Częstotliwość i częstość kołowa Opis ruchu falowego Równanie fali biegnącej (w dodatnim kierunku osi x) v x t f 2 2 2 2 2 x v t Równanie różniczkowe

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz

Bardziej szczegółowo

Promieniowanie cieplne ciał.

Promieniowanie cieplne ciał. Wypromieniowanie fal elektromagnetycznych przez ciała Promieniowanie cieplne (termiczne) Luminescencja Chemiluminescencja Elektroluminescencja Katodoluminescencja Fotoluminescencja Emitowanie fal elektromagnetycznych

Bardziej szczegółowo

Oddziaływanie promieniowania X z materią. Podstawowe mechanizmy

Oddziaływanie promieniowania X z materią. Podstawowe mechanizmy Oddziaływanie promieniowania X z materią Podstawowe mechanizmy Promieniowanie od oscylującego elektronu Rozpraszanie Thomsona Dyspersja podejście klasyczne Fala padająca Wymuszony, tłumiony oscylator harmoniczny

Bardziej szczegółowo

Zjawisko interferencji fal

Zjawisko interferencji fal Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natężenia fal) w którym zachodzi stabilne w czasie ich

Bardziej szczegółowo

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne W3. Zjawiska transportu Zjawiska transportu zachodzą gdy układ dąży do stanu równowagi. W zjawiskach

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6

Bardziej szczegółowo

Stałe : h=6, Js h= 4, eVs 1eV= J nie zależy

Stałe : h=6, Js h= 4, eVs 1eV= J nie zależy T_atom-All 1 Nazwisko i imię klasa Stałe : h=6,626 10 34 Js h= 4,14 10 15 evs 1eV=1.60217657 10-19 J Zaznacz zjawiska świadczące o falowej naturze światła a) zjawisko fotoelektryczne b) interferencja c)

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka, Michał Karpiński Wydział

Bardziej szczegółowo

Ewolucja Wszechświata

Ewolucja Wszechświata Ewolucja Wszechświata Wykład 6 Mikrofalowe promieniowanie tła Rozseparowanie materii i promieniowania 380 000 lat Temperatura 3000 K Protony i jądra przyłączają elektrony (rekombinacja) tworzą się atomy.

Bardziej szczegółowo

Kosmografia. czyli rozkład obiektów w przestrzeni

Kosmografia. czyli rozkład obiektów w przestrzeni Kosmografia czyli rozkład obiektów w przestrzeni Oparte na materiałach z licznych, trudnych do wyliczenia i zapamiętania źródeł, którym pozostaję wdzięczny Jednostki odległości: rok św. = 9.5*10^{12} km

Bardziej szczegółowo

Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska Podstawy fizyki Wykład 11 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 3, Wydawnictwa Naukowe PWN, Warszawa 2003. K.Sierański, K.Jezierski,

Bardziej szczegółowo

Galaktyki aktywne I. (,,galaktyki o aktywnych jądrach'') (,,aktywne jądra galaktyk'') ( active galactic nuclei =AGN)

Galaktyki aktywne I. (,,galaktyki o aktywnych jądrach'') (,,aktywne jądra galaktyk'') ( active galactic nuclei =AGN) Galaktyki aktywne I (,,galaktyki o aktywnych jądrach'') (,,aktywne jądra galaktyk'') ( active galactic nuclei =AGN) System klasyfikacji Hubble a (1936) Galaktyki normalne / zwyczajne -różnoraka morfologia

Bardziej szczegółowo

Polecam - The Dark Universe by R. Kolb (Wykłady w CERN (2008))

Polecam - The Dark Universe by R. Kolb (Wykłady w CERN (2008)) Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 15 Maria Krawczyk, Wydział Fizyki UW 12.01. 2010 Ciemny Wszechświat Polecam - The Dark Universe by R. Kolb (Wykłady w CERN (2008)) http://indico.cern.ch/conferencedisplay.py?confid=24743

Bardziej szczegółowo

Teoria Wielkiego Wybuchu FIZYKA 3 MICHAŁ MARZANTOWICZ

Teoria Wielkiego Wybuchu FIZYKA 3 MICHAŁ MARZANTOWICZ Teoria Wielkiego Wybuchu Epoki rozwoju Wszechświata Wczesny Wszechświat Epoka Plancka (10-43 s): jedno podstawowe oddziaływanie Wielka Unifikacja (10-36 s): oddzielenie siły grawitacji od reszty oddziaływań

Bardziej szczegółowo

Własności optyczne materii. Jak zachowuje się światło w zetknięciu z materią?

Własności optyczne materii. Jak zachowuje się światło w zetknięciu z materią? Własności optyczne materii Jak zachowuje się światło w zetknięciu z materią? Właściwości optyczne materiału wynikają ze zjawisk: Absorpcji Załamania Odbicia Rozpraszania Własności elektrycznych Refrakcja

Bardziej szczegółowo

Analiza spektralna widma gwiezdnego

Analiza spektralna widma gwiezdnego Analiza spektralna widma gwiezdnego JG &WJ 13 kwietnia 2007 Wprowadzenie Wprowadzenie- światło- podstawowe źródło informacji Wprowadzenie- światło- podstawowe źródło informacji Wprowadzenie- światło- podstawowe

Bardziej szczegółowo

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0.. Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54

Bardziej szczegółowo

Ekspansja Wszechświata

Ekspansja Wszechświata Ekspansja Wszechświata Odkrycie Hubble a w 1929 r. Galaktyki oddalają się od nas z prędkościami wprost proporcjonalnymi do odległości. Prędkości mierzymy za pomocą przesunięcia ku czerwieni efekt Dopplera

Bardziej szczegółowo

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE FIZYKA STOSOWANA II Liceum Ogólnokształcące im. Adama Asnyka w Bielsku-Białej

WYMAGANIA EDUKACYJNE FIZYKA STOSOWANA II Liceum Ogólnokształcące im. Adama Asnyka w Bielsku-Białej WYMAGANIA EDUKACYJNE FIZYKA STOSOWANA II Liceum Ogólnokształcące im. Adama Asnyka w Bielsku-Białej OSIĄGNIĘCIA UCZNIÓW Z ZAKRESIE KSZTAŁCENIA W kolumnie "wymagania na poziom podstawowy" opisano wymagania

Bardziej szczegółowo

Rozmycie pasma spektralnego

Rozmycie pasma spektralnego Rozmycie pasma spektralnego Rozmycie pasma spektralnego Z doświadczenia wiemy, że absorpcja lub emisja promieniowania przez badaną substancję występuje nie tylko przy częstości rezonansowej, tj. częstości

Bardziej szczegółowo

BADANIE INTERFERENCJI MIKROFAL PRZY UŻYCIU INTERFEROMETRU MICHELSONA

BADANIE INTERFERENCJI MIKROFAL PRZY UŻYCIU INTERFEROMETRU MICHELSONA ZDNIE 11 BDNIE INTERFERENCJI MIKROFL PRZY UŻYCIU INTERFEROMETRU MICHELSON 1. UKŁD DOŚWIDCZLNY nadajnik mikrofal odbiornik mikrofal 2 reflektory płytka półprzepuszczalna prowadnice do ustawienia reflektorów

Bardziej szczegółowo

OPTYKA FALOWA. W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę

OPTYKA FALOWA. W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę OPTYKA FALOWA W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę falową. W roku 8 Thomas Young wykonał doświadczenie, które pozwoliło wyznaczyć długość fali światła.

Bardziej szczegółowo

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą

Bardziej szczegółowo

Fal podłużna. Polaryzacja fali podłużnej

Fal podłużna. Polaryzacja fali podłużnej Fala dźwiękowa Podział fal Fala oznacza energię wypełniającą pewien obszar w przestrzeni. Wyróżniamy trzy główne rodzaje fal: Mechaniczne najbardziej znane, typowe przykłady to fale na wodzie czy fale

Bardziej szczegółowo

Fala elektromagnetyczna o określonej częstotliwości ma inną długość fali w ośrodku niż w próżni. Jako przykłady policzmy:

Fala elektromagnetyczna o określonej częstotliwości ma inną długość fali w ośrodku niż w próżni. Jako przykłady policzmy: Rozważania rozpoczniemy od ośrodków jednorodnych. W takich ośrodkach zależność między indukcją pola elektrycznego a natężeniem pola oraz między indukcją pola magnetycznego a natężeniem pola opisana jest

Bardziej szczegółowo

Laboratorium Optyki Falowej

Laboratorium Optyki Falowej Marzec 2019 Laboratorium Optyki Falowej Instrukcja do ćwiczenia pt: Filtracja optyczna Opracował: dr hab. Jan Masajada Tematyka (Zagadnienia, które należy znać przed wykonaniem ćwiczenia): 1. Obraz fourierowski

Bardziej szczegółowo

Promieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X

Promieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X Promieniowanie X Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X Lampa rentgenowska Lampa rentgenowska Promieniowanie rentgenowskie

Bardziej szczegółowo

n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24)

n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24) n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A 1 2 / B hν exp( ) 1 kt (24) Powyższe równanie określające gęstość widmową energii promieniowania

Bardziej szczegółowo

Wykład FIZYKA I. 11. Fale mechaniczne. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 11. Fale mechaniczne.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 11. Fale mechaniczne Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html FALA Falą nazywamy każde rozprzestrzeniające

Bardziej szczegółowo

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi) Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek

Bardziej szczegółowo

UMO-2011/01/B/ST7/06234

UMO-2011/01/B/ST7/06234 Załącznik nr 9 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej

Bardziej szczegółowo

PDF stworzony przez wersję demonstracyjną pdffactory

PDF stworzony przez wersję demonstracyjną pdffactory Promieniowanie elektromagnetyczne (fala elektromagnetyczna) rozchodzące się w przestrzeni zaburzenie pola elektromagnetycznego. Zaburzenie to ma charakter fali poprzecznej, w której składowa elektryczna

Bardziej szczegółowo

IV. Transmisja. /~bezet

IV. Transmisja.  /~bezet Światłowody IV. Transmisja BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet 1. Tłumienność 10 7 10 6 Tłumienność [db/km] 10 5 10 4 10 3 10 2 10 SiO 2 Tłumienność szkła w latach (za A.

Bardziej szczegółowo

Przejścia promieniste

Przejścia promieniste Przejście promieniste proces rekombinacji elektronu i dziury (przejście ze stanu o większej energii do stanu o energii mniejszej), w wyniku którego następuje emisja promieniowania. E Długość wyemitowanej

Bardziej szczegółowo

Absorpcja związana z defektami kryształu

Absorpcja związana z defektami kryształu W rzeczywistych materiałach sieć krystaliczna nie jest idealna występują różnego rodzaju defekty. Podział najważniejszych defektów ze względu na właściwości optyczne: - inny atom w węźle sieci: C A atom

Bardziej szczegółowo

Ćwiczenia z mikroskopii optycznej

Ćwiczenia z mikroskopii optycznej Ćwiczenia z mikroskopii optycznej Anna Gorczyca Rok akademicki 2013/2014 Literatura D. Halliday, R. Resnick, Fizyka t. 2, PWN 1999 r. J.R.Meyer-Arendt, Wstęp do optyki, PWN Warszawa 1979 M. Pluta, Mikroskopia

Bardziej szczegółowo

Spis treści. Wykaz ważniejszych oznaczeń. Przedmowa 15. Wprowadzenie Ruch falowy w ośrodku płynnym Pola akustyczne źródeł rzeczywistych

Spis treści. Wykaz ważniejszych oznaczeń. Przedmowa 15. Wprowadzenie Ruch falowy w ośrodku płynnym Pola akustyczne źródeł rzeczywistych Spis treści Wykaz ważniejszych oznaczeń u Przedmowa 15 Wprowadzenie 17 1. Ruch falowy w ośrodku płynnym 23 1.1. Dźwięk jako drgania ośrodka sprężystego 1.2. Fale i liczba falowa 1.3. Przestrzeń liczb falowych

Bardziej szczegółowo

Kwantowa natura promieniowania

Kwantowa natura promieniowania Kwantowa natura promieniowania Promieniowanie ciała doskonale czarnego Ciało doskonale czarne ciało, które absorbuje całe padające na nie promieniowanie bez względu na częstotliwość. Promieniowanie ciała

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 1 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2015/16

Bardziej szczegółowo

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 17.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Równania Maxwella r-nie falowe

Bardziej szczegółowo

Termodynamika. Część 11. Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 11. Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna. Janusz Brzychczyk, Instytut Fizyki UJ Termodynamika Część 11 Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna Janusz Brzychczyk, Instytut Fizyki UJ Układ otwarty rozkład wielki kanoniczny Rozważamy układ w równowadze termicznej

Bardziej szczegółowo

Zjawisko interferencji fal

Zjawisko interferencji fal Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natężenia fal) w którym zachodzi stabilne w czasie ich

Bardziej szczegółowo

Jednowymiarowa mechanika kwantowa Rozpraszanie na potencjale Na początek rozważmy najprostszy przypadek: próg potencjału

Jednowymiarowa mechanika kwantowa Rozpraszanie na potencjale Na początek rozważmy najprostszy przypadek: próg potencjału Fizyka 2 Wykład 4 1 Jednowymiarowa mechanika kwantowa Rozpraszanie na potencjale Na początek rozważmy najprostszy przypadek: próg potencjału Niezależne od czasu równanie Schödingera ma postać: 2 d ( x)

Bardziej szczegółowo

Światło fala, czy strumień cząstek?

Światło fala, czy strumień cząstek? 1 Światło fala, czy strumień cząstek? Teoria falowa wyjaśnia: Odbicie Załamanie Interferencję Dyfrakcję Polaryzację Efekt fotoelektryczny Efekt Comptona Teoria korpuskularna wyjaśnia: Odbicie Załamanie

Bardziej szczegółowo

REZONANSY : IDENTYFIKACJA WŁAŚCIWOŚCI PRZEZ ANALIZĘ FAL PARCJALNYCH, WYKRESY ARGANDA

REZONANSY : IDENTYFIKACJA WŁAŚCIWOŚCI PRZEZ ANALIZĘ FAL PARCJALNYCH, WYKRESY ARGANDA REZONANSY : IDENTYFIKACJA WŁAŚCIWOŚCI PRZEZ ANALIZĘ FAL PARCJALNYCH, WYKRESY ARGANDA Opis układu cząsteczek w mechanice kwantowej: 1. Funkcja falowa, 2. Wektora stanu ψ. TRANSFORMACJE UKŁADU CZĄSTEK: 1.

Bardziej szczegółowo

Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki

Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Spis treści Przedmowa... 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce?... 13 1. Analiza wektorowa... 19 1.1. Algebra

Bardziej szczegółowo

OPTYKA. Leszek Błaszkieiwcz

OPTYKA. Leszek Błaszkieiwcz OPTYKA Leszek Błaszkieiwcz Ojcem optyki jest Witelon (1230-1314) Zjawisko odbicia fal promień odbity normalna promień padający Leszek Błaszkieiwcz Rys. Zjawisko załamania fal normalna promień padający

Bardziej szczegółowo

Podstawy fizyki wykład 8

Podstawy fizyki wykład 8 Podstawy fizyki wykład 8 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Optyka geometryczna Polaryzacja Odbicie zwierciadła Załamanie soczewki Optyka falowa Interferencja Dyfrakcja światła D.

Bardziej szczegółowo

Plan Zajęć. Ćwiczenia rachunkowe

Plan Zajęć. Ćwiczenia rachunkowe Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin

Bardziej szczegółowo

FIZYKA-egzamin opracowanie pozostałych pytań

FIZYKA-egzamin opracowanie pozostałych pytań FIZYKA-egzamin opracowanie pozostałych pytań Andrzej Przybyszewski Michał Witczak Marcin Talarek. Definicja pracy na odcinku A-B 2. Zdefiniować różnicę energii potencjalnych gdy ciało przenosimy z do B

Bardziej szczegółowo

- Strumień mocy, który wpływa do obszaru ograniczonego powierzchnią A ( z minusem wpływa z plusem wypływa)

- Strumień mocy, który wpływa do obszaru ograniczonego powierzchnią A ( z minusem wpływa z plusem wypływa) 37. Straty na histerezę. Sens fizyczny. Energia dostarczona do cewki ferromagnetykiem jest znacznie większa od energii otrzymanej. Energia ta jest tworzona w ferromagnetyku opisanym pętlą histerezy, stąd

Bardziej szczegółowo

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Siły - wektory Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub

Bardziej szczegółowo

2008/2009. Seweryn Kowalski IVp IF pok.424

2008/2009. Seweryn Kowalski IVp IF pok.424 2008/2009 seweryn.kowalski@us.edu.pl Seweryn Kowalski IVp IF pok.424 Plan wykładu Wstęp, podstawowe jednostki fizyki jądrowej, Własności jądra atomowego, Metody wyznaczania własności jądra atomowego, Wyznaczanie

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania optyki półklasycznej Posłużymy się teraz równaniem (2.4), i Ψ t = ĤΨ ażeby wyprowadzić

Bardziej szczegółowo

III. EFEKT COMPTONA (1923)

III. EFEKT COMPTONA (1923) III. EFEKT COMPTONA (1923) Zjawisko zmiany długości fali promieniowania roentgenowskiego rozpraszanego na swobodnych elektronach. Zjawisko to stoi u podstaw mechaniki kwantowej. III.1. EFEKT COMPTONA Rys.III.1.

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 19, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 19, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 19, 27.04.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 18 - przypomnienie

Bardziej szczegółowo

I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona

I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona r. akad. 004/005 I.4 Promieniowanie rentgenowskie. Efekt Comptona Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona Jan Królikowski Fizyka IVBC 1 r. akad. 004/005 0.01 nm=0.1 A

Bardziej szczegółowo

Kosmologia. Elementy fizyki czastek elementarnych. Wykład IX. Prawo Hubbla

Kosmologia. Elementy fizyki czastek elementarnych. Wykład IX. Prawo Hubbla Kosmologia Wykład IX Prawo Hubbla Elementy fizyki czastek elementarnych Wielki Wybuch i ewolucja Wszechświata Promieniowanie tła Eksperyment WMAP W jakim (Wszech)świecie żyjemy?... Efekt Dopplera Prawo

Bardziej szczegółowo

39 DUALIZM KORPUSKULARNO FALOWY.

39 DUALIZM KORPUSKULARNO FALOWY. Włodzimierz Wolczyński 39 DUALIZM KORPUSKULARNO FALOWY. ZJAWISKO FOTOELEKTRYCZNE. FALE DE BROGILE Fale radiowe Fale radiowe ultrakrótkie Mikrofale Podczerwień IR Światło Ultrafiolet UV Promienie X (Rentgena)

Bardziej szczegółowo

VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale.

VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale. VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale. Światło wykazuje zjawisko dyfrakcyjne. Rys.VII.1.Światło padające na

Bardziej szczegółowo

40. Międzynarodowa Olimpiada Fizyczna Meksyk, lipca 2009 r. DWÓJŁOMNOŚĆ MIKI

40. Międzynarodowa Olimpiada Fizyczna Meksyk, lipca 2009 r. DWÓJŁOMNOŚĆ MIKI ZADANIE DOŚWIADCZALNE 2 DWÓJŁOMNOŚĆ MIKI W tym doświadczeniu zmierzysz dwójłomność miki (kryształu szeroko używanego w optycznych elementach polaryzujących). WYPOSAŻENIE Oprócz elementów 1), 2) i 3) powinieneś

Bardziej szczegółowo

dr inż. Beata Brożek-Pluska SERS La boratorium La serowej

dr inż. Beata Brożek-Pluska SERS La boratorium La serowej dr inż. Beata Brożek-Pluska La boratorium La serowej Spektroskopii Molekularnej PŁ Powierzchniowo wzmocniona sp ektroskopia Ramana (Surface Enhanced Raman Spectroscopy) Cząsteczki zaadsorbowane na chropowatych

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Pojęcia podstawowe Punkt materialny Ciało, którego rozmiary można w danym zagadnieniu zaniedbać. Zazwyczaj przyjmujemy, że punkt materialny powinien być dostatecznie mały. Nie jest

Bardziej szczegółowo

Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej

Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło widzialne jest to promieniowanie elektromagnetyczne (zaburzenie poła elektromagnetycznego rozchodzące

Bardziej szczegółowo

Ćwiczenie: "Zagadnienia optyki"

Ćwiczenie: Zagadnienia optyki Ćwiczenie: "Zagadnienia optyki" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1.

Bardziej szczegółowo

Zespolona funkcja dielektryczna metalu

Zespolona funkcja dielektryczna metalu Zespolona funkcja dielektryczna metalu Przenikalność elektryczna ośrodków absorbujących promieniowanie elektromagnetyczne jest zespolona, a także zależna od częstości promieniowania, które przenika przez

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrównawcze z izyki -Zestaw 13 -eoria Drgania i ale. Ruch drgający harmoniczny, równanie ali płaskiej, eekt Dopplera, ale stojące. Siła harmoniczna, ruch drgający harmoniczny Siłą harmoniczną (sprężystości)

Bardziej szczegółowo

Wykład FIZYKA II 8. Optyka falowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ Nakładanie się fal nazywamy ogólnie superpozycją. Nakładanie

Bardziej szczegółowo

Wykład I Krzysztof Golec-Biernat Optyka 1 / 16

Wykład I Krzysztof Golec-Biernat Optyka 1 / 16 Optyka Wykład I Krzysztof Golec-Biernat Fale 1 Uniwersytet Rzeszowski, 4 października 2017 Wykład I Krzysztof Golec-Biernat Optyka 1 / 16 Uwagi wstępne 30 h wykładu wykład przy pomocy transparencji lub

Bardziej szczegółowo

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 19, Mateusz Winkowski, Łukasz Zinkiewicz

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 19, Mateusz Winkowski, Łukasz Zinkiewicz Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 9, 08.2.207 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 8 - przypomnienie

Bardziej szczegółowo

Budowa Galaktyki. Materia rozproszona Rozkład przestrzenny materii Krzywa rotacji i ramiona spiralne

Budowa Galaktyki. Materia rozproszona Rozkład przestrzenny materii Krzywa rotacji i ramiona spiralne Budowa Galaktyki Materia rozproszona Rozkład przestrzenny materii Krzywa rotacji i ramiona spiralne Gwiazdy w otoczeniu Słońca Gaz międzygwiazdowy Hartmann (1904) Delta Orionis (gwiazda podwójna) obserwowana

Bardziej szczegółowo

Falowa natura światła

Falowa natura światła Falowa natura światła Christiaan Huygens Thomas Young James Clerk Maxwell Światło jest falą elektromagnetyczną Barwa światło zależy od jej długości (częstości). Optyka geometryczna Optyka geometryczna

Bardziej szczegółowo