Trójwymiarowy obraz ryzyka
|
|
- Seweryn Olejnik
- 7 lat temu
- Przeglądów:
Transkrypt
1 Krzysztof PIASECKI Akademia Ekonomiczna w Poznaniu Trójwymiarowy obraz ryzyka Problem badawczy W (Buckley, 1987) i (Calzi, 1990) zaproponowano reprezentowanie wartości przyszłych inwestycji finansowych przy pomocy liczb rozmytych. Z propozycji tej w udany sposób korzystało następnie szereg badaczy dyskutując poszczególne rodzaje reprezentacji rozmytej wartości przyszłej i wskazując na przydatność tego pojęcia w finansach behawioralnych. Konsekwencją takiego podejścia jest między innymi przedstawianie stopy zwrotu z inwestycji jako liczby rozmytej. Wykorzystywanie takiej postaci stopy zwrotu w zarządzaniu finansami prowadzi do prognozowania rozmytych wartości stóp zwrotu. Formalnym obrazem takich prognoz są zbiory probabilistyczne (irota, 1981). W niniejszej pracy zostanie zaprezentowana pewna koncepcja reprezentacji ryzyka obciążającego stopę zwrotu prognozowaną w powyższy sposób. 1. Podstawowe pojęcia Rozważania nasze ograniczymy do rodziny 0,1 R wszystkich podzbiorów rozmytych w przestrzeni liczb rozmytych. Dowolny rozmyty podzbiór A 0, 1 R reprezentować będziemy przy pomocy jego funkcji przynależności A : R 0,1. W całej pracy zakładać będziemy, że działania sumy, iloczynu i dopełnienia zbiorów rozmytych zostały określone w sposób zaproponowany pierwotnie przez L. A. Zadeha. Liczbą rozmytą (Dubois, Prade, 1979) nazywamy każdy podzbiór rozmyty M 0, 1 R spełniający dodatkowo warunki x x 1 0 R : M 0, (1) x, z R : y min x, z y. () M M M Niech będzie dana ustalona przestrzeń probabilistyczna,, P. Wtedy dowolny probabilistyczny zbiór (irota, 1981) liczb rzeczywistych Ĥ jest dany jako rodzina R 0,1 : indeksowana przez zdarzenia elementarne. zbiorów rozmytych Każdy zbiór rozmyty jest reprezentowany przy pomocy funkcji przynależności, : R 0,1 jednoznacznie przez indeksowaną rodzinę funkcji przynależności, : R 0,1. Oznacza to, że zbiór probabilistyczny Ĥ jest reprezentowany. Stopień przynależenia dowolnej liczby rzeczywistej do zbioru probabilistycznego Ĥ określamy wtedy jako funkcję x, : 0,1. Dodatkowo zakładamy tutaj, że stopień przynależenia dowolnej liczby rzeczywistej do zbioru probabilistycznego jest zmienną losową na ciele zdarzeń losowych. W szczególnym przypadku dowolną zmienną losowej : R na możemy jednoznacznie opisać przy pomocy zbioru probabilistycznego ˆ reprezentowanego przez poniższą rodzinę funkcji przynależności
2 1 x, : x, (3) 0 x. ˆ 0, 1 : R 0,1 Oczekiwaniami zbioru probabilistycznego Ĥ nazywamy zbiór rozmyty R reprezentowany w jednoznaczny sposób przez funkcję przynależności określoną przy pomocy tożsamości, dp (4) x x i nazywaną dalej rozkładem oczekiwań. Jeśli zbiór probabilistyczny ˆ reprezentuje zmienna losową : R, to wtedy rozkład jego oczekiwań jest identyczny z funkcją gęstości rozkładu zmiennej losowej. Założenie, że zbiór probabilistyczny Ĥ jest reprezentowany przez indeksowaną rodzinę liczb rozmytych nie jest warunkiem dostatecznym na to, aby oczekiwania były liczbą rozmytą. Dla dowolnego podzbioru rozmytego A 0, 1 R wprowadzamy pojęcie wartości przeciętnej A x R A zdefiniowanej w następujący sposób A x dx. (5) Jeśli zbiór probabilistyczny ˆ reprezentuje zmienna losową : R, to wtedy wartość przeciętna jego oczekiwań ˆ jest identyczna z wartością oczekiwaną zmiennej losowej. Stanowi to przesłankę do uogólnienia pojęcia wartości oczekiwanej do przypadku dowolnego probabilistycznego zbioru Ĥ liczb rzeczywistych. Wartością oczekiwaną probabilistycznego zbioru Ĥ liczb rzeczywistych nazywamy liczbę Ĥ daną przy pomocy zależności ˆ x x, ˆ dpdx. (6) R Przyjęcie powyższej definicji oznacza, że wartość oczekiwaną identyfikujemy z wartością przeciętną oczekiwań. Posługiwanie się wartością oczekiwaną zamiast posługiwaniem się oczekiwaniami jest co prawda prostsze, ale oznacza rezygnację z dużej części dostępnej wiedzy. Dlatego wartym zalecenia jest zawsze poszerzenie analizy opartej na wartościach oczekiwanych o analizę opartą o rozkłady oczekiwań..model reprezentacji inwestycji Niech będzie dany zbiór elementarnych stanów rynku finansowego obejmujących też stany wiedzy ekspertów i inwestorów o tymże rynku finansowym. Dla pewnego ciała zdarzeń losowych P : 0,1. Jeśli znany jest rozkład prawdopodobieństwa - -
3 posiadane informacje o rynku finansowym nie pozwalają na sprecyzowanie takiego rozkładu, to wtedy możemy się posłużyć zasadą totalnej ignorancji Walda. Rozważamy efekty zainwestowania w pewien ustalony instrument finansowy na zadany okres czasu. Każdemu elementarnemu stanowi przypisujemy elementarną prognozę stopy zwrotu z tego instrumentu daną jako liczba rozmyta r reprezentowana przez funkcję przynależności, : R 0,1. W ten sposób otrzymujemy probabilistyczny zbiór R ˆ r : nazywany dalej prognozą stopy zwrotu. Zakładamy tutaj, że dla dowolnej liczby rzeczywistej x R jej stopień x, przynależności do prognozy stopy zwrotu Rˆ jest zmienna losową. Korzystają teraz kolejno z (4) i (6) wyznaczamy rozkład oczekiwań stopy zwrotu : R 0,1 dany przy pomocy tożsamości x x, dp, (7) oraz oczekiwaną stopę zwrotu r R x x, dpdx. (8) Zauważmy tutaj, że zastąpienie porównywania oczekiwanych stóp zwrotu poprzez porównywanie rozkładów oczekiwań prowadzi do uogólnienia kryterium dominacji stochastycznej (Bava,1975) do przypadku rozmytej relacji określonej na zbiorze stóp zwrotu prognozowanych przy pomocy zbiorów probabilistycznych. Korzystanie z prognozy stopy zwrotu przy zarządzaniu inwestycjami finansowymi jest między innymi obarczone ryzykiem niepewności wynikającym z niewiedzy na temat przyszłego stanu 0 świata finansowego. Cechy tego ryzyka zwyczajowo określa się przy pomocy analizy właściwości kwadratu różnicy pomiędzy poszczególnymi prognozami stopy zwrotu a oczekiwana stopą zwrotu. W przypadku prognoz stopy zwrotu danych jako liczby rozmyte, dla dowolnego stanu kwadrat różnicy elementarnej rozmytej prognozy stopy zwrotu r i oczekiwanej stopy zwrotu r jest liczbą rozmyta opisaną przy pomocy funkcji przynależności max r x,, r x, x, x 0, (9) 0 x 0. W ten sposób kwadrat różnicy prognozy stopy zwrotu Rˆ i oczekiwanej stopy zwrotu r został przedstawiony jako probabilistyczny zbiór ˆ jednoznacznie określony przez rodzinę funkcji przynależności (9) nazywany dalej kwadratem residuum stopy zwrotu.. Korzystają teraz kolejno z (4) i (6) wyznaczamy rozkład oczekiwań kwadratu residuum : R 0,1 dany przy pomocy tożsamości x x, dp, (10) oraz oczekiwany kwadrat residuum stopy zwrotu - 3 -
4 R x x, dpdx. (11) W przypadku elementarnych prognoz stopy zwrotu danych jako zmienne losowe, oczekiwany kwadrat residuum stopy zwrotu jest identyczny z wariancją stopy zwrotu. Dlatego wartość (11) nazywać będziemy wariancją stopy zwrotu także w przypadku rozmytych prognoz tejże stopy. Zarówno wariancja jak i rozkład oczekiwań kwadratu residuum mogą być wykorzystane jako oceny ryzyka niepewności. W ten sposób dowolny portfel dopuszczalny w teorii Markowitza może być reprezentowany przez parę lub przez parę R r, R 0, 1 r, R. W przypadku pierwszej pary zbiór portfeli efektywnych jest górna gałęzią krzywej Markowitza. Rodzi to pewne trudności aplikacyjne, gdyż inwestorzy inwestują na ogół w portfele lezące poniżej gałęzi portfeli efektywnych, a więc z punktu widzenia tej teorii w portfele nieefektywne. Natomiast w przypadku, kiedy ryzyko niepewności jest opisane przy pomocy rozkładu oczekiwań kwadratu residuum stopy zwrotu, zbiór portfeli efektywnych staje się podzbiorem rozmytym o nośniku rozpiętym nad zbiorem wszystkich portfeli niezdominowanych. W praktyce oznacza to, ze prawie każdy dostępny na rynku portfel dopuszczalny jest w pewnym stopniu portfelem efektywnym. Opis taki może służyć wyjaśnieniu bardziej efektywny sposób. r, R0, 1 R sposobu działania inwestorów, którzy zawsze działają w mniej lub Oznacza to, że oparcie teorii Markowitza na parze pozwala stworzyć modele formalne bliższych realiom rynku finansowego. Z tego powodu jako obraz ryzyka niepewności przyjmiemy rozkład oczekiwań kwadratu residuum : R 0,1. Korzystanie z prognozy stopy zwrotu danej jako probabilistyczny zbiór R ˆ r :, pociąga za sobą jeszcze ryzyko korzystania z informacji nieprecyzyjnej. Formalnym obrazem niejednoznacznej oceny stopy zwrotu jest rozkład oczekiwań stopy zwrotu : R 0,1 dany przy pomocy tożsamości (7). Każdą z wartości rozkładu oczekiwań x interpretujemy jako ocenianą w ujęciu logiki wielowartościowej wartość logiczną zdania Stopa zwrotu osiągnie wartość x. Wielu badaczy przedmiotu (np. Klir,1993) w obrazie nieprecyzyjności pojedynczej informacji wyróżnia niewyrazistość informacji oraz wieloznaczność informacji. Niewyrazistość informacji interpretujemy jako brak jednoznacznego rozróżnienia pomiędzy daną informacją i jej zaprzeczeniem. Jak istotne jest ryzyko niewyrazistości, łatwo można się przekonać prowadząc samochód we mgle. Ryzyko niewyraźności wynikające z - 4 -
5 niewyrazistości oczekiwań stopy zwrotu oceniamy przy pomocy miary entropowej zaproponowanej w (Czogała, Gottwald, Pedrycz, 1981). Przy przyjętych na wstępie założeniach o działaniach teoriomnogościowych miara ta jest równa miarom entropowym zaproponowanym w (Kaufmann, 1975) lub (Yager, 1979). Ryzyko niewyraźności obciążające stopę zwrotu oceniamy zatem przy pomocy miary entropii stopy zwrotu x, x min 1 dx. (1) R Pożądanym jest oczywiście korzystanie z prognoz stóp zwrotu o możliwie niskiej entropii. Niejednoznaczność informacji interpretujemy, jako brak jednoznacznego wyróżnienia pomiędzy wieloma wskazanymi alternatywami jednej rekomendowanej alternatywy. Jak istotne jest ryzyko niejednoznaczności chyba najlepiej przekonał się król Krezus pytając Pytię z Delft o efekty wywoływanej przezeń wojny z Cyrusem. Ryzyko niejednoznaczności wynikające z rozkładu oczekiwań stopy zwrotu oceniamy przy pomocy miary energetycznej zaproponowanej w (de Luca, Termini, 1975) i określonej w tym przypadku przy pomocy zależności x dx. (13) R Także i tutaj pożądanym jest korzystanie z prognoz stóp zwrotu o możliwie niskiej energii. Reasumując, globalne ryzyko obciążające stopę zwrotu przedstawiamy jako wektor,, 0,1 R R oceniający ryzyko niepewności, ryzyko niewyraźności i ryzyko niejednoznaczności. Jak już wspomniano, dwa ostatnie ryzyka składają się na ryzyko nieprecyzji oceniane przy pomocy wektora, R. Im mniejsze ryzyko nieprecyzji, tym wyższa efektywność informacji zebranych na temat badanej stopy zwrotu. W porównaniu z klasyczną teorią Markowicza nieprecyzja jest nowym aspektem oceny ryzyka. Powstaje tutaj natychmiast pytanie, czy takie poszerzenie oceny ryzyka jest celowym. Za uwzględnieniem w badaniu ryzyka nieprecyzji przemawiają dwa argumenty. Primo, jak wiemy zawsze istnieje możliwość ograniczenia ryzyka niepewności prognozy poprzez odpowiednie manipulacje obniżające precyzję prognozy. Niedościgłą mistrzynią była tutaj wspominana już Pytia z Delft, która odpowiedziała Krezusowi: Zginie duże królestwo. Krezus wszczynając wojnę unicestwił własne królestwo. Ryzyko - 5 -
6 niepewności wróżby Pytii było niewielkie. Pokonane królestwo najprawdopodobniej byłoby unicestwione. Jak wiemy, Krezus w swych planach nie uwzględnił ryzyka nieprecyzji. Jego los przekonuje nas, że popełnił tutaj błąd. Nie popełniajmy na rynkach kapitałowych błędu Krezusa. Secundo, uwzględnienie ryzyka wieloznaczności pozwoli odrzucać te z pośród wariantów inwestycyjnych, które co prawda są atrakcyjne z punktu widzenia klasycznej teorii Markowitza, ale niestety zebrane na ich temat informacje są nieprecyzyjne. Innymi słowy mówiąc, proponowany w tej pracy trójwymiarowy obraz ryzyka pozwala odrzucać warianty inwestycyjne dające prawie pewne wysokie zarobki w sytuacji, gdy tak naprawdę nasza wiedza na temat tych wariantów jest nie wiele warta. Miraż Eldorado zostaje w ten sposób odrzucony. Bibliografia Bawa V.(1975), Optimal rules for ordering uncertain prospects, Journal of Financial Economics, s Buckley I.J.(1987), The fuzzy mathematics of finance, Fuzzy Sets and Systems 1, s Calzi M.L. (1990), Towards a general setting for the fuzzy mathematics of finance, Fuzzy Sets and Systems 35, s Czogała E., Gottwald S., Pedrycz W. (1981), On the concepts of measures of fuzziness and their application in decision making, 8 th Trenniol World Congress IFAC, Kyoto. Dubois J., Prade., (1979), Fuzzy real algebra: some results, Fuzzy Sets and Systems, s irota K. (1981), Concepts of probabilistic sets, Fuzzy Sets and Systems 5, s Kaufmann A. (1975), Introduction to the Theory of Fuzzy Subsets, Vol.1 Fundamental Theoretical Elements, Academic Press New York. Klir G.J. (1993), Developments in uncertainty-based information, w Yovits M. (red.). Advances in Computers 36, s de Luca A., Termini S. (1979), Entropy and energy measures of fuzzy sets, w: Gupta M.M., Ragade R.K., Yager R.R. (red.): Advances in Fuzzy Set Theory and Application, North oland Amsterdam. Yager R.R. (1979), On the measure of fuzziness and negation, Part I: Membership in the unit interval, School of Business Administration Rep RRy , New Rochele
7 Trójwymiarowy obraz ryzyka Streszczenie Prognoza wartości stopy zwrotu jest dana jako probabilistyczny zbiór irota. Wtedy stopa zwrotu jest obciążona trzema rodzajami ryzyka: ryzykiem niepewności, ryzykiem niewyraźności i ryzykiem wieloznaczności. Ryzyka te są mierzone odpowiednio przez wariancję, miarę entropii i miarę energii. Three dimensional image of risk Abstract Forecast of return rate value is given as irota s probabilistic set. Then return rate is weighted by three kinds of risk: uncertainty, indistinctness and ambiguity. These risks are quantified respectively by dispersion, entropy measure and energy measure
Obraz ryzyka w rozmytych przestrzeniach probabilistycznych
1 Krzysztof PIAECKI Akademia Ekonomiczna w Poznaniu Obraz ryzyka w rozmytych przestrzeniach probabilistycznych Problem badawczy Buckley [1] i Calzi [] zaproponowali reprezentowanie wartości przyszłych
Zastosowanie testu CAPM do nieprecyzyjnego określenia efektywności papieru wartościowego
1 Krzysztof Piasecki Akademia Ekonomiczna w Poznaniu Zastosowanie testu CAPM do nieprecyzyjnego określenia ektywności papieru wartościowego Problem badawczy W klasycznym ujęciu instrument finansowy nazywamy
Stopa zwrotu obarczona ryzykiem nieprecyzji
Krzysztof Piasecki * Stopa zwrotu obarczona ryzykiem nieprecyzji Wstęp Zazwyczaj analiza właściwości dowolnego papieru wartościowe jest prowadzona, jako analiza własności jego stopy zwrotu. Dowolna stopa
O STOPIE ZWROTU OSZACOWANEJ PRZEZ INTUICYJNY ROZMYTY ZBIÓR PROBABILISTYCZNY 1
Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 248 2015 Uniwersytet Ekonomiczny w Poznaniu Wdział Informatyki i Gospodarki Elektronicznej Katedra Badań Operacyjnych
ZORIENTOWANA BEHAWIORALNA WARTOŚĆ BIEŻĄCA PORTFELA DWUSKŁADNIKOWEGO STUDIUM PRZYPADKU
Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 353 2018 Krzysztof Piasecki Uniwersytet Ekonomiczny w Poznaniu Wydział Zarządzania Katedra Inwestycji i Nieruchomości
PORTFEL DWUSKŁADNIKOWY PRZYPADEK WARTOŚCI BIEŻĄCEJ DANEJ JAKO TRÓJKĄTNA LICZBA ROZMYTA
Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 241 2015 Informatyka i Ekonometria 3 Uniwersytet Ekonomiczny w Poznaniu Wydział Informatyki i Gospodarki Elektronicznej
Interwałowe zbiory rozmyte
Interwałowe zbiory rozmyte 1. Wprowadzenie. Od momentu przedstawienia koncepcji klasycznych zbiorów rozmytych (typu 1), były one krytykowane za postać jaką przybiera funkcja przynależności. W przypadku
NIEPRECYZYJNY OPIS PORZĄDKU ZATRZYMANIA STRATY
Krzysztof Piasecki Uniwersytet Ekonomiczny w Poznaniu NIEPRECYZYJNY OPIS PORZĄDKU ZATRZYMANIA STRATY Streszczenie: W pracy porządek zatrzymanej straty został opisany, jako rozmyty preporządek. Wtedy optymalne
Postawy wobec ryzyka
Postawy wobec ryzyka Wskaźnik Sharpe a przykład zintegrowanej miary rentowności i ryzyka Konstrukcja wskaźnika odwołuje się do klasycznej teorii portfelowej Markowitza, której elementem jest mapa ryzyko
O sposobie nieprecyzyjnego określenia rozkładu stopy zwrotu Problem badawczy
Krzysztof Piasecki, Edyta Tomasik Akademia Ekonomiczna w Poznaniu O sposobie nieprecyzyjnego określenia rozkładu stopy zwrotu Problem badawczy Podstawowym problemem, przed jakim staje zarządzający ryzykiem
RODZINA EFEKTYWNYCH INSTRUMENTÓW FINANSOWYCH DANA JAKO INTUICYJNY ZBIÓR ROZMYTY 1
Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 331 2017 Krzysztof Piasecki Uniwersytet Ekonomiczny w Poznaniu Wydział Zarządzania k.piasecki@ue.poznan.pl
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA SYSTEMY ROZMYTE Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii Biomedycznej Laboratorium
Krzysztof Piasecki Uniwersytet Ekonomiczny w Poznaniu Rozmyte zbiory probabilistyczne w rachunku aktuarialnym Wstęp Określenie właściwych relacji
Krzysztof Piasecki Uniwersytet Ekonomiczny w Poznaniu Rozmyte zbiory probabilistyczne w rachunku aktuarialnym Wstęp Określenie właściwych relacji pomiędzy wielkością wypłacanych rekompensat a przychodem
Technologie i systemy oparte na logice rozmytej
Zagadnienia I Technologie i systemy oparte na logice rozmytej Mają zastosowania w sytuacjach kiedy nie posiadamy wystarczającej wiedzy o modelu matematycznym rządzącym danym zjawiskiem oraz tam gdzie zbudowanie
Rodzina efektywnych instrumentów finansowych dana, jako intuicyjny zbiór rozmyty
Krzysztof Piasecki Katedra Badań Operacyjnych, Uniwersytet Ekonomiczny w Poznaniu, Al. Niepodległości 10, 60-875 Poznań k.piasecki@ue.poznan.pl Rodzina efektywnych instrumentów finansowych dana, jako intuicyjny
Teoria portfelowa H. Markowitza
Aleksandra Szymura szymura.aleksandra@yahoo.com Teoria portfelowa H. Markowitza Za datę powstania teorii portfelowej uznaje się rok 95. Wtedy to H. Markowitz opublikował artykuł zawierający szczegółowe
INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Podstawowe pojęcia z logiki rozmytej Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sterowanie
1 Działania na zbiorach
M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej
Streszczenie rozprawy doktorskiej. mgr Aleksandry Rutkowskiej. Optymalizacja portfela papierów wartościowych w świetle teorii wiarygodności Liu
Streszczenie rozprawy doktorskiej mgr Aleksandry Rutkowskiej Optymalizacja portfela papierów wartościowych w świetle teorii wiarygodności Liu Rozprawa porusza zagadnienie optymalizacji portfela inwestycyjnego
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 10. WNIOSKOWANIE W LOGICE ROZMYTEJ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska WNIOSKOWANIE W LOGICE DWUWARTOŚCIOWEJ W logice
Inwestycje finansowe. Wycena obligacji. Stopa zwrotu z akcji. Ryzyko.
Inwestycje finansowe Wycena obligacji. Stopa zwrotu z akcji. yzyko. Inwestycje finansowe Instrumenty rynku pieniężnego (np. bony skarbowe). Instrumenty rynku walutowego. Obligacje. Akcje. Instrumenty pochodne.
Prawdopodobieństwo i statystyka
Wykład IV: 27 października 2014 Współczynnik korelacji Brak korelacji a niezależność Definicja współczynnika korelacji Współczynnikiem korelacji całkowalnych z kwadratem zmiennych losowych X i Y nazywamy
Inteligencja obliczeniowa
Ćwiczenie nr 1 Zbiory rozmyte logika rozmyta Tworzenie: termów zmiennej lingwistycznej o różnych kształtach, modyfikatorów, zmiennych o wielu termach; operacje przecięcia, połączenia i dopełnienia 1. Wprowadzenie
Inżynieria Wiedzy i Systemy Ekspertowe. Niepewność wiedzy. dr inż. Michał Bereta Politechnika Krakowska
Inżynieria Wiedzy i Systemy Ekspertowe Niepewność wiedzy dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Logika Rozmyta (Fuzzy Logic) Mimo
Zarządzanie ryzykiem projektów inwestycyjnych
351 Zeszyty Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Wyższa Szkoła Bankowa we Wrocławiu Zarządzanie ryzykiem projektów inwestycyjnych Streszczenie. Inwestycje to główny czynnik kreowania
INWESTYCJE Instrumenty finansowe, ryzyko SPIS TREŚCI
INWESTYCJE Instrumenty finansowe, ryzyko Jajuga Krzysztof, Jajuga Teresa SPIS TREŚCI Przedmowa Wprowadzenie - badania w zakresie inwestycji i finansów Literatura Rozdział 1. Rynki i instrumenty finansowe
Matematyka bankowa 1 1 wykład
Matematyka bankowa 1 1 wykład Dorota Klim Department of Nonlinear Analysis, Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland E-mail address: klimdr@math.uni.ldz.pl
Prawa wielkich liczb, centralne twierdzenia graniczne
, centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych..00 r. Zadanie. Proces szkód w pewnym ubezpieczeniu jest złożonym procesem Poissona z oczekiwaną liczbą szkód w ciągu roku równą λ i rozkładem wartości szkody o dystrybuancie
Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe
Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i
WYKŁAD 10 Rozmyta reprezentacja danych (modelowanie i wnioskowanie rozmyte)
WYKŁAD 10 Rozmyta reprezentacja danych (modelowanie i wnioskowanie rozmyte) Motywacje:! przezwyciężenie wad tradycyjnych algorytmów komputerowych, które zawodzą zwłaszcza w sytuacjach, w których człowiek
Podstawy metod probabilistycznych. dr Adam Kiersztyn
Podstawy metod probabilistycznych dr Adam Kiersztyn Przestrzeń zdarzeń elementarnych i zdarzenia losowe. Zjawiskiem lub doświadczeniem losowym nazywamy taki proces, którego przebiegu i ostatecznego wyniku
Pobrane z czasopisma Annales H - Oeconomia Data: 13/01/ :52:42
DOI:10.17951/h.2017.51.5.221 ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN POLONIA VOL. LI, 5 SECTIO H 2017 Uniwersytet Ekonomiczny w Poznaniu. Wydział Zarządzania krzysztof.piasecki@ue.poznan.pl
PROGRAMOWANIE DYNAMICZNE W ROZMYTYM OTOCZENIU DO STEROWANIA STATKIEM
Mostefa Mohamed-Seghir Akademia Morska w Gdyni PROGRAMOWANIE DYNAMICZNE W ROZMYTYM OTOCZENIU DO STEROWANIA STATKIEM W artykule przedstawiono propozycję zastosowania programowania dynamicznego do rozwiązywania
Weryfikacja hipotez statystycznych. KG (CC) Statystyka 26 V / 1
Weryfikacja hipotez statystycznych KG (CC) Statystyka 26 V 2009 1 / 1 Sformułowanie problemu Weryfikacja hipotez statystycznych jest drugą (po estymacji) metodą uogólniania wyników uzyskanych w próbie
Problemy złożone trudno jest analizować precyzyjnie Wiedza eksperta w złożonych przypadkach daje się opisać tylko w sposób nieprecyzyjny, np.
ZBIORY ROZMYTE Problemy złożone trudno jest analizować precyzyjnie Wiedza eksperta w złożonyc przypadkac daje się opisać tylko w sposób nieprecyzyjny, np. W dużym mieście, powinien istnieć regionalny port
Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa
Spis treści Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp Bardzo często interesujący
zdarzenie losowe - zdarzenie którego przebiegu czy wyniku nie da się przewidzieć na pewno.
Rachunek prawdopodobieństwa Podstawowym celem rachunku prawdopodobieństwa jest określanie szans zajścia pewnych zdarzeń. Pojęcie podstawowe rachunku prawdopodobieństwa to: zdarzenie losowe - zdarzenie
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 3..007 r. Zadanie. Każde z ryzyk pochodzących z pewnej populacji charakteryzuje się tym że przy danej wartości λ parametru ryzyka Λ rozkład wartości szkód z tego ryzyka
Wartość przyszła, wartość bieżąca, synergia kapitału. arytmetyki finansowej opisujących wartość przyszłą. Uzyskano w ten sposób
KRZYSZTOF PIASECKI * EFEKT SYNERGII KAPITAŁU W ARYTMETYCE FINANSOWEJ Słowa kluczowe: Wartość przyszła, wartość bieżąca, synergia kapitału Streszczenie: W pracy implementowano warunek synergii kapitału
BEHAWIORALNA WARTOŚĆ BIEŻĄCA W POSTACI SKIEROWANYCH LICZB ROZMYTYCH
OPTIMUM. STUDIA EKONOMICZNE NR 3 (87) 2017 dr Anna ŁYCZKOWSKA-HANĆKOWIAK Wyższa Szkoła Bankowa w Poznaniu e-mail: anna.lyczkowska-hanckowiak@wsb.poznan.pl DOI: 10.15290/ose.2017.03.87.09 BEHAWIORALNA WARTOŚĆ
domykanie relacji, relacja równoważności, rozkłady zbiorów
1 of 8 2012-03-28 17:45 Logika i teoria mnogości/wykład 5: Para uporządkowana iloczyn kartezjański relacje domykanie relacji relacja równoważności rozkłady zbiorów From Studia Informatyczne < Logika i
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta
Zbiory intuicyjne w prognozowaniu rynku finansowego
1 Krzysztof Piasecki Roger Ziomek Zbiory intuicyjne w prognozowaniu rynku finansowego Problem badawczy Jednym z zadań stojących przed inwestorem lokującym swoje środki finansowe na rynku kapitałowym, jest
HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N =
HISTOGRAM W pewnych przypadkach interesuje nas nie tylko określenie prawdziwej wartości mierzonej wielkości, ale także zbadanie całego rozkład prawdopodobieństwa wyników pomiarów. W takim przypadku wyniki
F t+ := s>t. F s = F t.
M. Beśka, Całka Stochastyczna, wykład 1 1 1 Wiadomości wstępne 1.1 Przestrzeń probabilistyczna z filtracją Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną i niech F = {F t } t 0 będzie rodziną
Hierarchiczna analiza skupień
Hierarchiczna analiza skupień Cel analizy Analiza skupień ma na celu wykrycie w zbiorze obserwacji klastrów, czyli rozłącznych podzbiorów obserwacji, wewnątrz których obserwacje są sobie w jakimś określonym
W2 Podstawy rachunku prawdopodobieństwa (przypomnienie)
W2 Podstawy rachunku prawdopodobieństwa (przypomnienie) Henryk Maciejewski Jacek Jarnicki Marek Woda www.zsk.iiar.pwr.edu.pl Rachunek prawdopodobieństwa - przypomnienie 1. Zdarzenia 2. Prawdopodobieństwo
Spis treści 3 SPIS TREŚCI
Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe
Wstęp do probabilistyki i statystyki Wykład 3. Prawdopodobieństwo i algebra zdarzeń
Wstęp do probabilistyki i statystyki Wykład 3. Prawdopodobieństwo i algebra zdarzeń dr inż. Krystyna Schneider, Katedra Elektroniki, AGH e-mail: kryschna@agh.edu.pl http://home.agh.edu.pl/~kryschna 1 Plan:
ROZMYTA WARTOŚĆ BIEŻĄCA PRÓBA UJĘCIA AKSJOMATYCZNEGO *
Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 295 2016 Krzysztof Piasecki Uniwersytet Ekonomiczny w Poznaniu Wydział Informatyki i Gospodarki Elektronicznej
ALGORYTM PROJEKTOWANIA ROZMYTYCH SYSTEMÓW EKSPERCKICH TYPU MAMDANI ZADEH OCENIAJĄCYCH EFEKTYWNOŚĆ WYKONANIA ZADANIA BOJOWEGO
Szybkobieżne Pojazdy Gąsienicowe (2) Nr 2, 24 Mirosław ADAMSKI Norbert GRZESIK ALGORYTM PROJEKTOWANIA CH SYSTEMÓW EKSPERCKICH TYPU MAMDANI ZADEH OCENIAJĄCYCH EFEKTYWNOŚĆ WYKONANIA ZADANIA BOJOWEGO. WSTĘP
Zmienne losowe. Statystyka w 3
Zmienne losowe Statystyka w Zmienna losowa Zmienna losowa jest funkcją, w której każdej wartości R odpowiada pewien podzbiór zbioru będący zdarzeniem losowym. Zmienna losowa powstaje poprzez przyporządkowanie
Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r.
Komisja Egzaminacyjna dla Aktuariuszy XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU Czas egzaminu: 100 minut
W narzędziu typu Excel, Calc czy Gnumeric napisz formułę logiczną która wyznaczy wartośd przynależności dla podanej temperatury do zbioru gorąco.
Zadanie 0 Wyobraźmy sobie, że chcemy oceniad czy dana temperatura świadczy o tym, że jest gorąco czy raczej zimno. A więc znając wartośd liczbową temperatury chcemy oceniad wartośd funkcji przynależności
FORMALIZACJA SUBIEKTYWNEJ NIEPEWNOŚCI
LOGITRANS - VII KONFERENCJA NAUKOWO-TECHNICZNA LOGISTYKA SYSTEMY TRANSPORTOWE BEZPIECZEŃSTWO W TRANSPORCIE Arkadiusz BARCZAK 1 niepewność subiektywna nieprecyzyjne prawdopodobieństwo zbiory losowe dystrybucja
Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k =
Matematyka ubezpieczeń majątkowych 0.0.006 r. Zadanie. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k 5 Pr( N = k) =, k = 0,,,... 6 6 Wartości kolejnych szkód Y, Y,, są i.i.d.,
W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:
W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: Zmienne losowe skokowe (dyskretne) przyjmujące co najwyżej przeliczalnie wiele wartości Zmienne losowe ciągłe
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 6 SYSTEMY ROZMYTE TYPU MAMDANIEGO
LOGIKA I TEORIA ZBIORÓW
LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja
Analiza zdarzeń Event studies
Analiza zdarzeń Event studies Dobromił Serwa akson.sgh.waw.pl/~dserwa/ef.htm Leratura Campbell J., Lo A., MacKinlay A.C.(997) he Econometrics of Financial Markets. Princeton Universy Press, Rozdział 4.
Matematyka ubezpieczeń majątkowych r.
Zadanie 1. W pewnej populacji podmiotów każdy podmiot narażony jest na ryzyko straty X o rozkładzie normalnym z wartością oczekiwaną równą μ i wariancją równą. Wszystkie podmioty z tej populacji kierują
PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek
PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Piotr Wiącek ROZKŁAD PRAWDOPODOBIEŃSTWA Jest to miara probabilistyczna określona na σ-ciele podzbiorów borelowskich pewnej przestrzeni metrycznej. σ-ciało podzbiorów
Rozkład Gaussa i test χ2
Rozkład Gaussa jest scharakteryzowany dwoma parametramiwartością oczekiwaną rozkładu μ oraz dyspersją σ: METODA 2 (dokładna) polega na zmianie zmiennych i na obliczeniu pk jako różnicy całek ze standaryzowanego
Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014
Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe
Wykład 9 Testy rangowe w problemie dwóch prób
Wykład 9 Testy rangowe w problemie dwóch prób Wrocław, 18 kwietnia 2018 Test rangowy Testem rangowym nazywamy test, w którym statystyka testowa jest konstruowana w oparciu o rangi współrzędnych wektora
Własność iteracyjności składek ubezpieczeniowych wyznaczonych w oparciu o teorię skumulowanej perspektywy Kahnemana-Tversky
Własność iteracyjności składek ubezpieczeniowych wyznaczonych w oparciu o teorię skumulowanej perspektywy Kahnemana-Tversky ego Marek Kałuszka Michał Krzeszowiec Ogólnopolska Konferencja Naukowa Zagadnienia
Procesy stochastyczne
Wykład I: Istnienie procesów stochastycznych 21 lutego 2017 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
Dobija M., Smaga E.; Podstawy matematyki finansowej i ubezpieczeniowej, PWN Warszawa- -Kraków 1995.
Bibliografia Dobija M., Smaga E.; Podstawy matematyki finansowej i ubezpieczeniowej, PWN Warszawa- -Kraków 1995. Elton E.J., Gruber M.J., Nowoczesna teoria portfelowa i analiza papierów wartościowych,
THE PART OF FUZZY SYSTEMS ASSISTING THE DECISION IN DI- AGNOSTICS OF FUEL ENGINE SUBASSEMBLIES DEFECTS
Journal of KONES Internal Combustion Engines 2005, vol. 12, 3-4 THE PART OF FUZZY SYSTEMS ASSISTING THE DECISION IN DI- AGNOSTICS OF FUEL ENGINE SUBASSEMBLIES DEFECTS Mariusz Topolski Politechnika Wrocławska,
Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Zbiór możliwych wyników eksperymentu będziemy nazywać przestrzenią zdarzeń elementarnych i oznaczać Ω, natomiast
Strategie VIP. Opis produktu. Tworzymy strategie oparte o systemy transakcyjne wyłącznie dla Ciebie. Strategia stworzona wyłącznie dla Ciebie
Tworzymy strategie oparte o systemy transakcyjne wyłącznie dla Ciebie Strategie VIP Strategia stworzona wyłącznie dla Ciebie Codziennie sygnał inwestycyjny na adres e-mail Konsultacje ze specjalistą Opis
Ogólnopolska Konferencja Naukowa Zagadnienia Aktuarialne - Teoria i praktyka Warszawa, 9 11 czerwca 2008
Przemysław Klusik Instytut Matematyczny, Uniwersytet Wrocławski Ogólnopolska Konferencja Naukowa Zagadnienia Aktuarialne - Teoria i praktyka Warszawa, 9 11 czerwca 2008 (UWr) Zagadnienia Aktuarialne -
Prawdopodobieństwo i statystyka
Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja
Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska)
Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska) Twierdzenie (o mnożeniu) Podstawowe pojęcia i wzory kombinatoryczne. Niech,, będą zbiorami mającymi odpowiednio,,
Zadanie 0 gdy nie mamy logiki rozmytej. Zadanie 1- gdy już mamy logikę rozmytą
Zadanie 0 gdy nie mamy logiki rozmytej Wyobraźmy sobie, że chcemy oceniad czy dana temperatura świadczy o tym, że jest gorąco czy raczej zimno. A więc znając wartośd liczbową temperatury chcemy oceniad
ANALIZA I ZARZADZANIE PORTFELEM. Specjalista ds. Analiz Giełdowych Łukasz Porębski
ANALIZA I ZARZADZANIE PORTFELEM Specjalista ds. Analiz Giełdowych Łukasz Porębski PLAN PREZENTACJI 1) Efektywnośd rynków finansowych 2) Teoria portfela Markowitza (Nobel w 1990 r.) 3) Dywersyfikacja 4)
Procesy stochastyczne
Wykład I: Istnienie procesów stochastycznych 2 marca 2015 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane są
System bonus-malus z mechanizmem korekty składki
System bonus-malus z mechanizmem korekty składki mgr Kamil Gala Ubezpieczeniowy Fundusz Gwarancyjny dr hab. Wojciech Bijak, prof. SGH Ubezpieczeniowy Fundusz Gwarancyjny, Szkoła Główna Handlowa Zagadnienia
Wpływ macierzy przejścia systemu bonus-malus ubezpieczeń komunikacyjnych OC na jego efektywność taryfikacyjną
Wpływ macierzy przejścia systemu bonus-malus ubezpieczeń komunikacyjnych OC na jego efektywność taryfikacyjną Anna Szymańska Katedra Metod Statystycznych Uniwersytet Łódzki Taryfikacja w ubezpieczeniach
Testowanie hipotez statystycznych
9 października 2008 ...czyli definicje na rozgrzewkę n-elementowa próba losowa - wektor n zmiennych losowych (X 1,..., X n ); intuicyjnie: wynik n eksperymentów realizacja próby (X 1,..., X n ) w ω Ω :
Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU
Analiza danych Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Różne aspekty analizy danych Reprezentacja graficzna danych Metody statystyczne: estymacja parametrów
Egzamin dla Aktuariuszy z 6 grudnia 2003 r.
Komisja Egzaminacyjna dla Aktuariuszy Egzamin dla Aktuariuszy z 6 grudnia 2003 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Ośrodek Doskonalenia Kadr
Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej
Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej c Copyright by Ireneusz Krech ikrech@ap.krakow.pl Instytut Matematyki Uniwersytet Pedagogiczny im. KEN w Krakowie
Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa
Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa 2.1. σ ciało (algebra) zdarzeń Katarzyna Rybarczyk-Krzywdzińska losowe Zdarzenie losowe to pewien podzbiór przestrzeni zdarzeń
Zbiory, relacje i funkcje
Zbiory, relacje i funkcje Zbiory będziemy zazwyczaj oznaczać dużymi literami A, B, C, X, Y, Z, natomiast elementy zbiorów zazwyczaj małymi. Podstawą zależność między elementem zbioru a zbiorem, czyli relację
Statystyka i eksploracja danych
Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,
Finanse behawioralne. Finanse 110630-1165
behawioralne Plan wykładu klasyczne a behawioralne Kiedy są przydatne narzędzia finansów behawioralnych? Przykłady modeli finansów behawioralnych klasyczne a behawioralne klasyczne opierają się dwóch założeniach:
Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru
Zadanie 1. są niezależne i mają rozkład z atomami: ( ),
Zadanie. Zmienne losowe są niezależne i mają rozkład z atomami: ( ) ( ) i gęstością: ( ) na przedziale ( ). Wobec tego ( ) wynosi: (A) 0.2295 (B) 0.2403 (C) 0.2457 (D) 0.25 (E) 0.269 Zadanie 2. Niech:
5. WNIOSKOWANIE PSYCHOMETRYCZNE
5. WNIOSKOWANIE PSYCHOMETRYCZNE Model klasyczny Gulliksena Wynik otrzymany i prawdziwy Błąd pomiaru Rzetelność pomiaru testem Standardowy błąd pomiaru Błąd estymacji wyniku prawdziwego Teoria Odpowiadania
Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa
Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 6 maja 005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 00 minut . Inwestorzy
STOPA DYSKONTOWA 1+ =
Piotr Cegielski, MAI, MRICS, CCIM STOPA DYSKONTOWA (Wybrane fragmenty artykułu opublikowanego w C.H. Beck Nieruchomości, numer 10 z 2011 r. Całość dostępna pod adresem internetowym: www.nieruchomosci.beck.pl)
Aksjomat synergii w arytmetyce finansowej
Krzysztof Piasecki Akademia Ekonomiczna w Poznaniu Aksjomat synergii w arytmetyce finansowej Problem badawczy Pieniądz odpowiednio traktowany zwiększa swą wartość wraz z upływem czasu. Jest to przyrost
Inne kryteria tworzenia portfela. Inne kryteria tworzenia portfela. Poziom bezpieczeństwa. Analiza i Zarządzanie Portfelem cz. 3. Dr Katarzyna Kuziak
Inne kryteria tworzenia portfela Analiza i Zarządzanie Portfelem cz. 3 Dr Katarzyna Kuziak. Minimalizacja ryzyka przy zadanym dochodzie Portfel efektywny w rozumieniu Markowitza odchylenie standardowe
Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania
Prognozowanie i Symulacje. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Szeregi czasowe 1 Szeregi czasowe 2 3 Szeregi czasowe Definicja 1 Szereg czasowy jest to proces stochastyczny z czasem dyskretnym
Proces inwestowania jest wyrzeczeniem się bieżącej konsumpcji na rzecz przyszłych, lecz niepewnych zysków [Hirschleifer, 1965, s. 509]. W przytoczonej definicji pojawiają się określenia zysku i niepewności,
STATYSTYKA MATEMATYCZNA WYKŁAD 4. WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X.
STATYSTYKA MATEMATYCZNA WYKŁAD 4 WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X. Wysuwamy hipotezy: zerową (podstawową H ( θ = θ i alternatywną H, która ma jedną z