Algorytmy mrówkowe (optymalizacja kolonii mrówek, Ant Colony optimisation)
|
|
- Zdzisław Morawski
- 5 lat temu
- Przeglądów:
Transkrypt
1 Algorytmy mrówkowe (optymalizacja kolonii mrówek, Ant Colony optimisation) Jest to technika probabilistyczna rozwiązywania problemów obliczeniowych, które mogą zostać sprowadzone do problemu znalezienie najkrótszych ścieżek w grafie. W rzeczywistym świecie mrówki wędrują losowo (początkowo) i po znalezieniu pożywienia wracają do mrowiska, wydzielając po drodze feromony. Jeżeli inna mrówka znajdzie taką ścieżkę z feromonami, porzuci losową wędrówkę i pójdzie za tą ścieżką, a gdy znajdzie pożywienie, również tą ścieżką wróci. Z czasem ścieżka feromonowa paruje. Im dłużej mrówka idzie drogą do pożywienia i z powrotem, tym więcej feromonów paruje. Gdy ścieżka jest krótka, gęstość feromonów jest wysoka (feromony nie zdążą wyparować, zanim mrówka zacznie wracać). Dzięki parowaniu feromonów można uniknąć zbieżności do rozwiązania lokalnego.gdyby nie było parowania feromonów, ścieżka wybrana przez pierwszą mrówkę, byłaby najbardziej atrakcyjną dla idących za nią mrówek. Wtedy przestrzeń rozwiązań zostałaby zawężona. Tak więc, gdy jedna mrówka znajdzie dobrą (krótką ) ścieżkę, inne mrówki będą za nią podążać, a następnie wracać tą ścieżką, co może doprowadzić to wędrówki wszystkich mrówek tą samą ścieżką. Algorytmy mrówkowe naśladowanie postępowania mrówek. Algorytm ten można zastosować do rozwiązywania problemu komiwojażera. Ma on przewagę nad symulowanym, wyżarzaniem w sytuacji, gdy graf zmienia się dynamicznie. Algorytm mrówkowy będzie się dostosowywał do zmian. (network routing) W AS sztuczne mrówki znajdują rozwiązanie (drogę) poruszając się po grafie problemu z jednego miasta do drugiego. Algorytm uruchamia t max iteracji. Podczas każdej z nich m mrówek szuka dróg wykonując n kroków, w których podejmowana jest probabilistyczna decyzja. W praktyce, kiedy w węźle i mrówka wybiera jako węzeł docelowy węzeł j, to krawędź (i,j) jest dodawana do aktualnie budowanej drogi. Te kroki są powtarzane, aż mrówka skończy budować swoją drogę. 1
2 Wymyślono trzy rodzaje algorytmu AS różniące się sposobem, w jaki uaktualniany jest szlak feromonowy. Te algorytmy to: gęstościowy (ant-density), w którym mrówki zostawiają stałą ilość feromonu podczas budowania drogi, ilościowy (ant-quantity), w którym mrówki zostawiają ilość feromonu odwrotnie proporcjonalną do długości wybranej krawędzi podczas budowania drogi, cykliczny (ant-cycle), w którym mrówki zostawiają feromon dopiero w momencie, gdy zbudują całą drogę. Eksperymenty wykazały, że wydajność algorytmu cyklicznego była znacznie wyższa, niż pozostałych dwóch, więc przestaniemy się nimi zajmować, a określenie AS będziemy odnosić do algorytmu cyklicznego. Problem komiwojażera: Mamy graf pełny. Znamy długość każdej z krawędzi d(i; j). Pseudokod: while(not warunek_końca) { generujrozwiązanie()//znajdz drogi dla m mrówek UaktualnijWartościFeromonów() } Mrówki poruszając się między miastami zostawiają ślad feromonowy o natężeniu τ(i, j) Natężenie feromonu na każdej z krawędzi będzie zmieniać się w trakcie rozwiązywania problemu (w miarę jak kolonia poznawać będzie otoczenie i wybierać najlepszą trasę.) Mrówki kierują się nie tylko feromonem ale preferują również krótkie odcinki podróży Odległości d oraz natężenie feromonu τ definiują funkcję preferencji: t(i; j) = τ (i; j)/d(i; j) β 2
3 Dla pojedynczej mrówki znajdującej się w mieście i wybieramy miasto j zgodnie z rozkładem prawdopodobieństwa danym wzorem: t( i, j) P( j) = t( i, k) gdzie N i nieodwiedzeni sąsiedzi miasta i k Ni Zmiany ilości feromonów: τ i,j = ρτ i,j + Δτ i,j - ρ wspólczynnik parowania (ρ<1) - Δτ i,j ilość zdeponowanego feromonu dana wzorem gdzie L k jest długością drogi k-tej mrówki (im krótsza droga, tym większa ilość feromonu zostawiona na jej krawędziach) Inne sposoby zmian natężenia feromonów OZNACZANIA GLOBALNE Zmieniamy natężenie tylko dla najkrótszej z tras (tylko dla mrówki, która znalazła najkrótszą trasę) τ i,j = ρτ i,j + αδτ i, gdzie α ufność z jaką mrówki podchodzą do najkrótszej trasy. Przyjmijmy α=0.1 OZNACZANIE LOKALNE Oznaczanie lokalne ma zniechęcić mrówkę do sprawdzania krawędzi, którą w tym samym obiegu sprawdziła inna mrówka. Oznaczanie wykonywane natychmiast po przejściu z miasta i do miasta j τ i,j = ρτ i,j + α/p gdzie p- bardzo duże 3
4 Uwagi praktyczne: Każda mrówka pamięta miasta już odwiedzone (w odpowiedniej kolejności) Każda mrówka pamięta miasta jeszcze nie odwiedzone Początkowo przyjmujemy dla każdej krawędzi: τ i,j =1/(d(i; j) β Przyjmijmy β=2 Mrówki umieszczamy losowo po miastach Algorytm dla każdej mrówki wygląda następująco: 1. Wylosuj miasto startowe 2. Uaktualnij listę miast odwiedzonych 3. Uaktualnij listę miast nie odwiedzonych 4. Oblicz rozkład prawdopodobieństwa, czyli P(j) dla każdego j z listy miast nie odwiedzonych 5. Wybierz miasto j spośród miast nie odwiedzonych zgodnie z rozkładem, czyli przykładowo: - niech sąsiedzi nie odwiedzeni to j, k, l - niech P(j)=P(k)=1/4 oraz P(l)=1/2 - wylosuj liczbę f z przedziału [0,1] - if (f<p(j)=1/4) wybierz miasto j Else if ( f< ( P(j)+P(k)=1/4) ) wybierz miasto k Else wybierz miasto l Przykładowo: niech f=3/8 Wtedy wybieramy miasto k, ponieważ: 4
5 Modyfikacje algorytmu: Dodatkowy parametr q 0 [ 0,1 ] q 0 = 0 oznacza pełny determinizm q 1 oznacza pełną nosowość 0 = Sposób postępowania: q 0,1 Losujemy [ ] - Jeśli q < q0 to mrówka idzie z miasta i do takiego miasta j, które maksymalizuje funkcję preferencji t(i,j) - Jeśli q > q0 to mrówka idzie z miasta i do takiego miasta j, wybranego zgodnie z rozkładem prawdopodobieństwa Zadanie: Zaimplementować powyższy algorytm, przyjmując α= 0.1 β= 2 q 0 = 0.9 M-liczba miast=20; P należy wybrać w sposób następujący: p=lm, gdzie L długość trasy wyznaczonej przez strategię najbliższego sąsiada [z każdego miasta idziemy do najbliższego]. Narysować długość ostatniej najlepszej drogi dla liczby mrówek m = 1, 2,10, 50. Jak długo trwa nauka w zależności od m? Przyjąć m = 10. Zbadać jak idzie mrówkom nauka, gdy: q 0, 0.25, 0.5,1 0 = Rozwiązać problem dla większej liczby miast. 5
Algorytmy mrówkowe. P. Oleksyk. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne
y mrówkowe P. Oleksyk Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne 14 kwietnia 2015 1 Geneza algorytmu - biologia 2 3 4 5 6 7 8 Geneza
Bardziej szczegółowoProblem komiwojażera ACO. Zagadnienie optymalizacyjne, polegające na znalezieniu minimalnego cyklu Hamiltona w pełnym grafie ważonym.
Problem komiwojażera ACO Zagadnienie optymalizacyjne, polegające na znalezieniu minimalnego cyklu Hamiltona w pełnym grafie ważonym. -Wikipedia Problem do rozwiązania zazwyczaj jest przedstawiany jako
Bardziej szczegółowoSystemy mrówkowe. Opracowali: Dawid Strucker, Konrad Baranowski
Systemy mrówkowe Opracowali: Dawid Strucker, Konrad Baranowski Wprowadzenie Algorytmy mrówkowe oparte są o zasadę inteligencji roju (ang. swarm intelligence). Służą głównie do znajdowania najkrótszej drogi
Bardziej szczegółowoAlgorytmy metaheurystyczne Wykład 6. Piotr Syga
Algorytmy metaheurystyczne Wykład 6 Piotr Syga 10.04.2017 Wprowadzenie Inspiracje Wprowadzenie ACS idea 1 Zaczynamy z pustym rozwiązaniem początkowym 2 Dzielimy problem na komponenty (przedmiot do zabrania,
Bardziej szczegółowoObliczenia Naturalne - Algorytmy Mrówkowe
Plan Literatura Obliczenia Naturalne - Algorytmy Mrówkowe Paweł Paduch Politechnika Świętokrzyska 8 maja 2014 Paweł Paduch Obliczenia Naturalne - Algorytmy Mrówkowe 1 z 43 Plan wykładu Plan Literatura
Bardziej szczegółowoObliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 10 - Mrówki w labiryntach Jarosław Miszczak IITiS PAN Gliwice 05/05/2016 1 / 48 Na poprzednim wykładzie 1... 2... 3... 2 / 48 1 Motywacja biologiczna Podstawowe mechanizmy
Bardziej szczegółowoAlgorytmy mrówkowe. H. Bednarz. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne
Algorytmy mrówkowe H. Bednarz Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne 13 kwietnia 2015 1 2 3 4 Przestrzeń poszukiwań Ograniczenia
Bardziej szczegółowoTechniki optymalizacji
Techniki optymalizacji Metaheurystyki oparte na algorytmach lokalnego przeszukiwania Maciej Hapke maciej.hapke at put.poznan.pl GRASP Greedy Randomized Adaptive Search Procedure T.A. Feo, M.G.C. Resende,
Bardziej szczegółowoAlgorytmy mrówkowe (ang. Ant Colony Optimization)
Algorytmy mrówkowe (ang. Ant Colony Optimization) 1. Wprowadzenie do ACO a) mrówki naturalne b) mrówki sztuczne c) literatura (kilka pozycji) 2. ACO i TSP 1. Wprowadzenie do ACO a) mrówki naturalne ślepe,
Bardziej szczegółowoAlgorytmy mrówkowe. Plan. » Algorytm mrówkowy» Warianty» CVRP» Demo» Środowisko dynamiczne» Pomysł modyfikacji» Testowanie
Algorytmy mrówkowe w środowiskach dynamicznych Dariusz Maksim, promotor: prof. nzw. dr hab. Jacek Mańdziuk 1/51 Plan» Algorytm mrówkowy» Warianty» CVRP» Demo» Środowisko dynamiczne» Pomysł modyfikacji»
Bardziej szczegółowoWykorzystanie algorytmów mrówkowych w dynamicznym problem
Wykorzystanie algorytmów mrówkowych w dynamicznym problemie marszrutyzacji Promotor: dr inż. Aneta Poniszewska-Marańda Współpromotor: mgr inż. Łukasz Chomątek 14 czerwca 2013 Przedmiot i cele pracy dyplomowej
Bardziej szczegółowoWykorzystanie algorytmów mrówkowych w dynamicznym problem
Wykorzystanie algorytmów mrówkowych w dynamicznym problemie marszrutyzacji Promotor: dr inż. Aneta Poniszewska-Marańda Współpromotor: mgr inż. Łukasz Chomątek 18 stycznia 2013 Przedmiot i cele pracy dyplomowej
Bardziej szczegółowoPLAN WYKŁADU OPTYMALIZACJA GLOBALNA ALGORYTM MRÓWKOWY (ANT SYSTEM) ALGORYTM MRÓWKOWY. Algorytm mrówkowy
PLAN WYKŁADU Algorytm mrówowy OPTYMALIZACJA GLOBALNA Wyład 8 dr inż. Agniesza Bołtuć (ANT SYSTEM) Inspiracja: Zachowanie mrówe podczas poszuiwania żywności, Zachowanie to polega na tym, że jeśli do żywności
Bardziej szczegółowoAlgorytmy mrówkowe wprowadzenie.
Algorytmy mrówkowe wprowadzenie. Jakub Zajkowski 1 Wstęp i rys historyczny Algorytmy mrówkowe to grupa procesów służących przede wszystkim do poszukiwania dróg w grafie. Z formalnego punktu widzenia algorytmy
Bardziej szczegółowoProblem Komiwojażera - algorytmy metaheurystyczne
Problem Komiwojażera - algorytmy metaheurystyczne algorytm mrówkowy algorytm genetyczny by Bartosz Tomeczko. All rights reserved. 2010. TSP dlaczego metaheurystyki i heurystyki? TSP Travelling Salesman
Bardziej szczegółowoAlgorytmy Mrówkowe. Daniel Błaszkiewicz. 11 maja 2011. Instytut Informatyki Uniwersytetu Wrocławskiego
Algorytmy Mrówkowe Instytut Informatyki Uniwersytetu Wrocławskiego 11 maja 2011 Opis Mrówki w naturze Algorytmy to stosunkowo nowy gatunek algorytmów optymalizacyjnych stworzony przez Marco Dorigo w 1992
Bardziej szczegółowoWykład 4. Droga i cykl Eulera i Hamiltona
Wykład 4. i Hamiltona Wykład 4. i Hamiltona 1 / 35 Grafy Eulera Niech G będzie grafem spójnym. Definicja Jeżeli w grafie G istnieje zamknięta droga prosta zawierająca wszystkie krawędzie grafu, to taką
Bardziej szczegółowoDroga i cykl Eulera Przykłady zastosowania drogi i cyku Eulera Droga i cykl Hamiltona. Wykład 4. Droga i cykl Eulera i Hamiltona
Wykład 4. Droga i cykl Eulera i Hamiltona 1 / 92 Grafy Eulera Droga i cykl Eulera Niech G będzie grafem spójnym. Definicja Jeżeli w grafie G istnieje zamknięta droga prosta zawierająca wszystkie krawędzie
Bardziej szczegółowoAlgorytmy mrówkowe w dynamicznych problemach transportowych
y w dynamicznych problemach transportowych prof. dr hab Jacek Mandziuk MiNI, PW 3 czerwca 2013 Cel pracy Zbadanie zachowania algorytmu go zwykłego oraz z zaimplementowanymi optymalizacjami dla problemów
Bardziej szczegółowoObliczenia z wykorzystaniem sztucznej inteligencji
Obliczenia z wykorzystaniem sztucznej inteligencji wykład III Systemy mrówkowe Joanna Kołodziejczyk marzec 2016 Joanna Kołodziejczyk Obliczenia z wykorzystaniem sztucznej inteligencji marzec 2016 1 / 38
Bardziej szczegółowoAlgorytm Dijkstry znajdowania najkrótszej ścieżki w grafie
Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie Używane struktury danych: V - zbiór wierzchołków grafu, V = {1,2,3...,n} E - zbiór krawędzi grafu, E = {(i,j),...}, gdzie i, j Î V i istnieje
Bardziej szczegółowoAlgorytmy genetyczne
Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą
Bardziej szczegółowoObliczenia z wykorzystaniem sztucznej inteligencji
Obliczenia z wykorzystaniem sztucznej inteligencji wykład III Systemy mrówkowe Joanna Kołodziejczyk 31 marzec 2014 Plan wykładu 1 Inspiracje biologiczne Informacje ogólne Naturalna optymalizacja 2 Artificial
Bardziej szczegółowoAlgorytmy Mrówkowe. Daniel Błaszkiewicz 11 maja 2011
Algorytmy Mrówkowe Daniel Błaszkiewicz 11 maja 2011 1 Wprowadzenie Popularnym ostatnimi laty podejściem do tworzenia nowych klas algorytmów do szukania rozwiązań problemów nie mających algorytmów rozwiązujących
Bardziej szczegółowoModele i narzędzia optymalizacji w systemach informatycznych zarządzania
Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5
Bardziej szczegółowoDziałanie algorytmu oparte jest na minimalizacji funkcji celu jako suma funkcji kosztu ( ) oraz funkcji heurystycznej ( ).
Algorytm A* Opracowanie: Joanna Raczyńska 1.Wstęp Algorytm A* jest heurystycznym algorytmem służącym do znajdowania najkrótszej ścieżki w grafie. Jest to algorytm zupełny i optymalny, co oznacza, że zawsze
Bardziej szczegółowoTechniki optymalizacji
Techniki optymalizacji Algorytm kolonii mrówek Idea Smuga feromonowa 1 Sztuczne mrówki w TSP Sztuczna mrówka agent, który porusza się z miasta do miasta Mrówki preferują miasta połączone łukami z dużą
Bardziej szczegółowoALHE. prof. Jarosław Arabas semestr 15Z
ALHE prof. Jarosław Arabas semestr 15Z Wykład 5 Błądzenie przypadkowe, Algorytm wspinaczkowy, Przeszukiwanie ze zmiennym sąsiedztwem, Tabu, Symulowane wyżarzanie 1. Błądzenie przypadkowe: Pierwszym krokiem
Bardziej szczegółowoWstęp do sieci neuronowych, wykład 12 Wykorzystanie sieci rekurencyjnych w optymalizacji grafowej
Wstęp do sieci neuronowych, wykład 12 Wykorzystanie sieci rekurencyjnych w optymalizacji grafowej Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2013-01-09
Bardziej szczegółowoWstęp do sieci neuronowych, wykład 11 Łańcuchy Markova
Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova M. Czoków, J. Piersa 2010-12-21 1 Definicja Własności Losowanie z rozkładu dyskretnego 2 3 Łańcuch Markova Definicja Własności Losowanie z rozkładu
Bardziej szczegółowoWstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa
Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa M. Czoków, J. Piersa 2012-01-10 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego 3 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego
Bardziej szczegółowoWYKORZYSTANIE ALGORYTMÓW GENETYCZNYCH I MRÓWKOWYCH W PROBLEMACH TRANSPORTOWYCH
Inżynieria Rolnicza 7(105)/2008 WYKORZYSTANIE ALGORYTMÓW GENETYCZNYCH I MRÓWKOWYCH W PROBLEMACH TRANSPORTOWYCH Justyna Zduńczuk, Wojciech Przystupa Katedra Zastosowań Matematyki, Uniwersytet Przyrodniczy
Bardziej szczegółowoRównoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami
Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami dr inż. Mariusz Uchroński Wrocławskie Centrum Sieciowo-Superkomputerowe Agenda Cykliczny problem przepływowy
Bardziej szczegółowoPlanowanie drogi robota, algorytm A*
Planowanie drogi robota, algorytm A* Karol Sydor 13 maja 2008 Założenia Uproszczenie przestrzeni Założenia Problem planowania trasy jest bardzo złożony i trudny. W celu uproszczenia problemu przyjmujemy
Bardziej szczegółowoZASTOSOWANIE ALGORYTMÓW MRÓWKOWYCH W ROZWIĄZANIU PROBLEMU SZEREGOWANIA ZADAŃ APPLICATION OF ANT COLONY SYSTEMS IN SOLVING OF TASK SCHEDULING PROBLEM
GRZEGORZ FILO ZASTOSOWANIE ALGORYTMÓW MRÓWKOWYCH W ROZWIĄZANIU PROBLEMU SZEREGOWANIA ZADAŃ APPLICATION OF ANT COLONY SYSTEMS IN SOLVING OF TASK SCHEDULING PROBLEM S t r e s z c z e n i e A b s t r a c
Bardziej szczegółowoStrategie Zespołowe (SZ) dr inż. Tomasz Białaszewski
Strategie Zespołowe (SZ) dr inż. Tomasz Białaszewski Tematyka wykładu Algorytmy Inteligencji Roju (Swarm Intelligence, SI) Optymalizacja kolonią mrówek (Ant Colony Optimization, ACO) Optymalizacja rojem
Bardziej szczegółowoOSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) Algorytmy i Struktury Danych PIŁA
OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) 16.01.2003 Algorytmy i Struktury Danych PIŁA ALGORYTMY ZACHŁANNE czas [ms] Porównanie Algorytmów Rozwiązyjących problem TSP 100 000 000 000,000 10 000 000
Bardziej szczegółowoOptymalizacja. Wybrane algorytmy
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem
Bardziej szczegółowoZnajdowanie wyjścia z labiryntu
Znajdowanie wyjścia z labiryntu Zadanie to wraz z problemem pakowania najcenniejszego plecaka należy do problemów optymalizacji, które dotyczą znajdowania najlepszego rozwiązania wśród wielu możliwych
Bardziej szczegółowoWybrane podstawowe rodzaje algorytmów
Wybrane podstawowe rodzaje algorytmów Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych
Bardziej szczegółowoProgramowanie Współbieżne. Algorytmy
Programowanie Współbieżne Algorytmy Sortowanie przez scalanie (mergesort) Algorytm : 1. JEŚLI jesteś rootem TO: pobierz/wczytaj tablice do posortowania JEŚLI_NIE to pobierz tablicę do posortowania od rodzica
Bardziej szczegółowo1. Algorytmy przeszukiwania. Przeszukiwanie wszerz i w głąb.
1. Algorytmy przeszukiwania. Przeszukiwanie wszerz i w głąb. Algorytmy przeszukiwania w głąb i wszerz są najczęściej stosowanymi algorytmami przeszukiwania. Wykorzystuje się je do zbadania istnienia połączenie
Bardziej szczegółowoWyznaczanie optymalnej trasy problem komiwojażera
Wyznaczanie optymalnej trasy problem komiwojażera Optymalizacja w podejmowaniu decyzji Opracowała: mgr inż. Natalia Malinowska Wrocław, dn. 28.03.2017 Wydział Elektroniki Politechnika Wrocławska Plan prezentacji
Bardziej szczegółowoAlgorytm dyskretnego PSO z przeszukiwaniem lokalnym w problemie dynamicznej wersji TSP
Algorytm dyskretnego PSO z przeszukiwaniem lokalnym w problemie dynamicznej wersji TSP Łukasz Strąk lukasz.strak@gmail.com Uniwersytet Śląski, Instytut Informatyki, Będzińska 39, 41-205 Sosnowiec 9 grudnia
Bardziej szczegółowoMetoda UCT w stochastycznych problemach transportowych
Metoda UCT w stochastycznych problemach transportowych mgr inż. Maciej Świechowski promotor: prof. Jacek Mańdziuk Seminarium Metody Inteligencji Obliczeniowej 25.06.2015 Plan prezentacji Krótkie przypomnienie
Bardziej szczegółowoPrzykłady problemów optymalizacyjnych
Przykłady problemów optymalizacyjnych NAJKRÓTSZA ŚCIEŻKA W zadanym grafie G = (V, A) wyznacz najkrótsza ścieżkę od wierzchołka s do wierzchołka t. 2 7 5 5 3 9 5 s 8 3 1 t 2 2 5 5 1 5 4 Przykłady problemów
Bardziej szczegółowoPRACA DYPLOMOWA MAGISTERSKA
Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania PRACA DYPLOMOWA MAGISTERSKA Konstrukcja autonomicznego robota mobilnego Małgorzata Bartoszewicz Promotor: prof. dr hab. inż. A. Milecki Zakres
Bardziej szczegółowoTemat 9. Zabłocone miasto Minimalne drzewa rozpinające
Temat 9 Zabłocone miasto Minimalne drzewa rozpinające Streszczenie Nasze życie związane jest z funkcjonowaniem wielu sieci: telefonicznych, energetycznych, komputerowych i drogowych. W przypadku każdej
Bardziej szczegółowoHeurystyczne metody przeszukiwania
Heurystyczne metody przeszukiwania Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Pojęcie heurystyki Metody heurystyczne są jednym z ważniejszych narzędzi sztucznej inteligencji.
Bardziej szczegółowoSpacery losowe generowanie realizacji procesu losowego
Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z
Bardziej szczegółowoPrzykład planowania sieci publicznego transportu zbiorowego
TRANSPORT PUBLICZNY Przykład planowania sieci publicznego transportu zbiorowego Źródło: Bieńczak M., 2015 Politechnika Poznańska, Wydział Maszyn Roboczych i Transportu 1 METODYKA ZAŁOśENIA Dostarczanie
Bardziej szczegółowoStruktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład. Prof. dr hab. inż. Jan Magott Algorytmy grafowe: podstawowe pojęcia, reprezentacja grafów, metody przeszukiwania, minimalne drzewa rozpinające, problemy
Bardziej szczegółowoOPTYMALIZACJA W LOGISTYCE
OPTYMALIZACJA W LOGISTYCE Optymalizacja zadań bazy transportowej ( część 1 ) Opracowano na podstawie : Stanisław Krawczyk, Metody ilościowe w logistyce ( przedsiębiorstwa ), Wydawnictwo C. H. Beck, Warszawa
Bardziej szczegółowoUniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 9 PRZESZUKIWANIE GRAFÓW Z
Bardziej szczegółowoOptymalizacja. Przeszukiwanie tabu
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Naturalny sposób powstania algorytmu Algorytm optymalizacji lokalnej Niezdolność wyjścia z lokalnych
Bardziej szczegółowoPrawa potęgowe w grafach przepływu informacji dla geometrycznych sieci neuronowych
w grafach przepływu informacji dla geometrycznych sieci neuronowych www.mat.uni.torun.pl/~piersaj 2009-06-10 1 2 3 symulacji Graf przepływu ładunku Wspóczynnik klasteryzacji X (p) p α Rozkłady prawdopodobieństwa
Bardziej szczegółowoĆwiczenie 1 Planowanie trasy robota mobilnego w siatce kwadratów pól - Algorytm A
Ćwiczenie 1 Planowanie trasy robota mobilnego w siatce kwadratów pól - Algorytm A Zadanie do wykonania 1) Utwórz na pulpicie katalog w formacie Imię nazwisko, w którym umieść wszystkie pliki związane z
Bardziej szczegółowoPLANOWANIE TRASY PRZEJŚCIA STATKU Z ZASTOSOWANIEM ALGORYTMU MRÓWKOWEGO
Agnieszka Lazarowska Akademia Morska w Gdyni PLANOWANIE TRASY PRZEJŚCIA STATKU Z ZASTOSOWANIEM ALGORYTMU MRÓWKOWEGO W artykule zaprezentowano wyniki pracy badawczej, dotyczącej zastosowania jednej z metod
Bardziej szczegółowoZASTOSOWANIE ALGORYTMU MRÓWKOWEGO DO WYZNACZANIA MAKSYMALNEJ GRUPY WZAJEMNIE POŁĄCZONYCH ELEMENTÓW
KRZYSZTOF SCHIFF ZASTOSOWANIE ALGORYTMU MRÓWKOWEGO DO WYZNACZANIA MAKSYMALNEJ GRUPY WZAJEMNIE POŁĄCZONYCH ELEMENTÓW ANT ALGORITHMS FOR DETERMINING MAXIMUM GROUP OF INTERCONNECTED ELEMENTS Streszczenie
Bardziej szczegółowoSeminarium IO. Zastosowanie algorytmu UCT w Dynamic Vehicle Routing Problem. Michał Okulewicz
Seminarium IO Zastosowanie algorytmu UCT w Dynamic Vehicle Routing Problem Michał Okulewicz 05.11.2013 Plan prezentacji Przypomnienie Problem DVRP Algorytm UCT Zastosowanie algorytmu UCT/PSO w DVRP Zastosowanie
Bardziej szczegółowoAlgorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek
Algorytmy i str ruktury danych Metody algorytmiczne Bartman Jacek jbartman@univ.rzeszow.pl Metody algorytmiczne - wprowadzenia Znamy strukturę algorytmów Trudność tkwi natomiast w podaniu metod służących
Bardziej szczegółowoStruktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład 7 Prof. dr hab. inż. Jan Magott Problemy NP-zupełne Transformacją wielomianową problemu π 2 do problemu π 1 (π 2 π 1 ) jest funkcja f: D π2 D π1 spełniająca
Bardziej szczegółowoMrówka Pachycondyla apicalis
Mrówka Pachycondyla apicalis Mrówki Pachycondyla apicalis wystepują w lasach południowego Meksyku, północnej Argentyny i Kostaryki. Wystepuja zarówno w lasach wilgotnych jak i suchych. Mrówki te polują
Bardziej szczegółowoZadania laboratoryjne i projektowe - wersja β
Zadania laboratoryjne i projektowe - wersja β 1 Laboratorium Dwa problemy do wyboru (jeden do realizacji). 1. Water Jug Problem, 2. Wieże Hanoi. Water Jug Problem Ograniczenia dla każdej z wersji: pojemniki
Bardziej szczegółowoPlan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?
/9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów
Bardziej szczegółowoTechniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I
Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje:
Bardziej szczegółowoStrategie ewolucyjne. Gnypowicz Damian Staniszczak Łukasz Woźniak Marek
Strategie ewolucyjne Gnypowicz Damian Staniszczak Łukasz Woźniak Marek Strategie ewolucyjne, a algorytmy genetyczne Podobieństwa: Oba działają na populacjach rozwiązań Korzystają z zasad selecji i przetwarzania
Bardziej szczegółowoProgramowanie dynamiczne
Programowanie dynamiczne Patryk Żywica 5 maja 2008 1 Spis treści 1 Problem wydawania reszty 3 1.1 Sformułowanie problemu...................... 3 1.2 Algorytm.............................. 3 1.2.1 Prosty
Bardziej szczegółowoMetody przeszukiwania
Metody przeszukiwania Co to jest przeszukiwanie Przeszukiwanie polega na odnajdywaniu rozwiązania w dyskretnej przestrzeni rozwiązao. Zwykle przeszukiwanie polega na znalezieniu określonego rozwiązania
Bardziej szczegółowoTworzenie gier na urządzenia mobilne
Katedra Inżynierii Wiedzy Wykład 11 O czym dzisiaj? labirynty, dużo labiryntów; automaty komórkowe; algorytmy do budowy labiryntów; algorytmy do szukania wyjścia z labiryntów; Blueprints i drzewa zachowań
Bardziej szczegółowoZadanie transportowe i problem komiwojażera. Tadeusz Trzaskalik
Zadanie transportowe i problem komiwojażera Tadeusz Trzaskalik 3.. Wprowadzenie Słowa kluczowe Zbilansowane zadanie transportowe Rozwiązanie początkowe Metoda minimalnego elementu macierzy kosztów Metoda
Bardziej szczegółowoPROGRAMOWANIE SIECIOWE. METODA ŚCIEŻKI KRYTYCZNEJ
PROGRAMOWANIE SIECIOWE. METODA ŚCIEŻKI KRYTYCZNEJ Maciej Patan Uniwersytet Zielonogórski WPROWADZENIE Metody programowania sieciowego wprowadzono pod koniec lat pięćdziesiatych Ze względu na strukturę
Bardziej szczegółowoRzut oka na współczesną matematykę spotkanie 3: jak liczy kalkulator i o źródłach chaosu
Rzut oka na współczesną matematykę spotkanie 3: jak liczy kalkulator i o źródłach chaosu P. Strzelecki pawelst@mimuw.edu.pl Instytut Matematyki, Uniwersytet Warszawski MISH UW, semestr zimowy 2011-12 P.
Bardziej szczegółowoAlgorytmy stochastyczne laboratorium 03
Algorytmy stochastyczne laboratorium 03 Jarosław Piersa 10 marca 2014 1 Projekty 1.1 Problem plecakowy (1p) Oznaczenia: dany zbiór przedmiotów x 1,.., x N, każdy przedmiot ma określoną wagę w(x i ) i wartość
Bardziej szczegółowoProgramowanie sieciowe. Tadeusz Trzaskalik
Programowanie Tadeusz Trzaskalik 8.1. Wprowadzenie Słowa kluczowe Drzewo rozpinające Minimalne drzewo rozpinające Najkrótsza droga w sieci Wierzchołek początkowy Maksymalny przepływ w sieci Źródło Ujście
Bardziej szczegółowoPLAN WYKŁADU OPTYMALIZACJA GLOBALNA ZADANIE KOMIWOJAŻERA METODY ROZWIĄZYWANIA. Specyfika zadania komiwojażera Reprezentacje Operatory
PLAN WYKŁADU Specyfika zadania komiwojażera Reprezentacje Operatory OPTYMALIZACJA GLOBALNA Wykład 5 dr inż. Agnieszka Bołtuć ZADANIE KOMIWOJAŻERA Koncepcja: komiwojażer musi odwiedzić każde miasto na swoim
Bardziej szczegółowoDigraf. 13 maja 2017
Digraf 13 maja 2017 Graf skierowany, digraf, digraf prosty Definicja 1 Digraf prosty G to (V, E), gdzie V jest zbiorem wierzchołków, E jest rodziną zorientowanych krawędzi, między różnymi wierzchołkami,
Bardziej szczegółowoOptymalizacja ciągła
Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej
Bardziej szczegółowoZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW
ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW NIEDETERMINISTYCZNE MASZYNY TURINGA Bartosz Zieliński Katedra Fizyki Teoretycznej i Informatyki Zima 2011-2012 NIEDETERMINISTYCZNE MASZYNY TURINGA DEFINICJA: NIEDETERMINISTYCZNA
Bardziej szczegółowoUkłady równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona) f(x) = 0, gdzie. dla n=2 np.
Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona f(x 0, f ( f, f,..., f n gdzie 2 x ( x, x 2,..., x n dla n2 np. f ( x, y 0 g( x, y 0 dla każdej wielowymiarowej rozwinięcie w szereg Taylora
Bardziej szczegółowoSZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 12. PRZESZUKIWANIE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska ROZWIĄZYWANIE PROBLEMÓW JAKO PRZESZUKIWANIE Istotną rolę podczas
Bardziej szczegółowoZastosowanie algorytmów mrówkowych do rozwiązywania problemu komiwojażera
1 1. Wstęp... 2 2. Podstawowe pojęcia... 3 2.1. Sztuczna inteligencja... 3 2.2. Systemy mrówkowe... 4 2.3. Problem komiwojażera... 7 3. Algorytm rozwiązania problemu komiwojażera... 9 3.1. Zakres opracowania...
Bardziej szczegółowoWYKŁAD 3 WYPEŁNIANIE OBSZARÓW. Plan wykładu: 1. Wypełnianie wieloboku
WYKŁ 3 WYPŁNINI OSZRÓW. Wypełnianie wieloboku Zasada parzystości: Prosta, która nie przechodzi przez wierzchołek przecina wielobok parzystą ilość razy. Plan wykładu: Wypełnianie wieloboku Wypełnianie konturu
Bardziej szczegółowoMatematyka od zaraz zatrudnię
Uniwersytet Jagielloński Gdzie jest matematyka? Soczewka, 26-28 listopada 2010 Kolorowanie grafów Dobre kolorowanie wierzchołków grafu, to nadanie im kolorów w taki sposób, że każde dwa wierzchołki połaczone
Bardziej szczegółowoPorównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego
Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego Mariusz Uchroński 3 grudnia 2010 Plan prezentacji 1. Wprowadzenie 2.
Bardziej szczegółowoAnaliza stanów gry na potrzeby UCT w DVRP
Analiza stanów gry na potrzeby UCT w DVRP Seminarium IO na MiNI 04.11.2014 Michał Okulewicz based on the decision DEC-2012/07/B/ST6/01527 Plan prezentacji Definicja problemu DVRP DVRP na potrzeby UCB Analiza
Bardziej szczegółowoOgólne wiadomości o grafach
Ogólne wiadomości o grafach Algorytmy i struktury danych Wykład 5. Rok akademicki: / Pojęcie grafu Graf zbiór wierzchołków połączonych za pomocą krawędzi. Podstawowe rodzaje grafów: grafy nieskierowane,
Bardziej szczegółowoZagadnienie transportowe
9//9 Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów
Bardziej szczegółowoWstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd.
Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 2013-11-26 Projekt pn. Wzmocnienie potencjału
Bardziej szczegółowoAlgorytm grawitacyjnych poszukiwań (Gravitational Search Algorithm - GSA)
Algorytm grawitacyjnych poszukiwań (Gravitational Search Algorithm - GSA) Nowy algorytm optymalizacji oparty za prawach grawitacji Algorytm wykorzystujący prawa Newtona: Każda cząstka we wszechświecie
Bardziej szczegółowoAlgorytmika Problemów Trudnych
Algorytmika Problemów Trudnych Wykład 9 Tomasz Krawczyk krawczyk@tcs.uj.edu.pl Kraków, semestr letni 2016/17 plan wykładu Algorytmy aproksymacyjne: Pojęcie algorytmu aproksymacyjnego i współczynnika aproksymowalności.
Bardziej szczegółowoAlgorytmy wyznaczania centralności w sieci Szymon Szylko
Algorytmy wyznaczania centralności w sieci Szymon Szylko Zakład systemów Informacyjnych Wrocław 10.01.2008 Agenda prezentacji Cechy sieci Algorytmy grafowe Badanie centralności Algorytmy wyznaczania centralności
Bardziej szczegółowoGrafy. Jeżeli, to elementy p i q nazywamy końcami krawędzi e. f a b c d e γ f {1} {1,2} {2,3} {2,3} {1,3}
Grafy Definicja grafu nieskierowanego. Grafem nieskierowanym nazywamy uporządkowaną trójkę: gdzie: V- niepusty zbiór wierzchołków grafu G E- zbiór wszystkich krawędzi grafu G - funkcja ze zbioru E w zbiór
Bardziej szczegółowoSuma dwóch grafów. Zespolenie dwóch grafów
Suma dwóch grafów G 1 = ((G 1 ), E(G 1 )) G 2 = ((G 2 ), E(G 2 )) (G 1 ) i (G 2 ) rozłączne Suma G 1 G 2 graf ze zbiorem wierzchołków (G 1 ) (G 2 ) i rodziną krawędzi E(G 1 ) E(G 2 ) G 1 G 2 G 1 G 2 Zespolenie
Bardziej szczegółowoTEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 14c 2 Definicje indukcyjne Twierdzenia dowodzone przez indukcje Definicje indukcyjne Definicja drzewa
Bardziej szczegółowoRozwiązywanie równań nieliniowych
Rozwiązywanie równań nieliniowych Marcin Orchel 1 Wstęp Przykłady wyznaczania miejsc zerowych funkcji f : f(ξ) = 0. Wyszukiwanie miejsc zerowych wielomianu n-tego stopnia. Wymiar tej przestrzeni wektorowej
Bardziej szczegółowoProgramowanie dynamiczne i algorytmy zachłanne
Programowanie dynamiczne i algorytmy zachłanne Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii
Bardziej szczegółowoXII International PhD Workshop OWD 2010, October 2010 MODEL TEORETYCZNY ALGORYTMU MRÓWKOWEGO SAS
XII International PhD Workshop OWD 2010, 23 26 October 2010 MODEL TEORETYCZNY ALGORYTMU MRÓWKOWEGO SAS Paweł Rembelski, Polsko-Japońska Wyższa Szkoła Technik Komputerowych (Opiekun naukowy: prof. Witold
Bardziej szczegółowoDowód probabilistyczny Uwagi do dowodu Bibliografia. Prawo Haczykowe. Łukasz Bieniasz-Krzywiec
09.10.2008 Plan prezentacji 1 Wstęp Diagram Ferrersa Tableau Young a Haczyk (Hook) Twierdzenie Haczykowe 2 3 4 Diagram Ferrersa Wstęp Diagram Ferrersa Tableau Young a Haczyk (Hook) Twierdzenie Haczykowe
Bardziej szczegółowoProblemy optymalizacyjne - zastosowania
Problemy optymalizacyjne - zastosowania www.qed.pl/ai/nai2003 PLAN WYKŁADU Zło ono obliczeniowa - przypomnienie Problemy NP-zupełne klika jest NP-trudna inne problemy NP-trudne Inne zadania optymalizacyjne
Bardziej szczegółowo