Algorytmy mrówkowe (optymalizacja kolonii mrówek, Ant Colony optimisation)

Wielkość: px
Rozpocząć pokaz od strony:

Download "Algorytmy mrówkowe (optymalizacja kolonii mrówek, Ant Colony optimisation)"

Transkrypt

1 Algorytmy mrówkowe (optymalizacja kolonii mrówek, Ant Colony optimisation) Jest to technika probabilistyczna rozwiązywania problemów obliczeniowych, które mogą zostać sprowadzone do problemu znalezienie najkrótszych ścieżek w grafie. W rzeczywistym świecie mrówki wędrują losowo (początkowo) i po znalezieniu pożywienia wracają do mrowiska, wydzielając po drodze feromony. Jeżeli inna mrówka znajdzie taką ścieżkę z feromonami, porzuci losową wędrówkę i pójdzie za tą ścieżką, a gdy znajdzie pożywienie, również tą ścieżką wróci. Z czasem ścieżka feromonowa paruje. Im dłużej mrówka idzie drogą do pożywienia i z powrotem, tym więcej feromonów paruje. Gdy ścieżka jest krótka, gęstość feromonów jest wysoka (feromony nie zdążą wyparować, zanim mrówka zacznie wracać). Dzięki parowaniu feromonów można uniknąć zbieżności do rozwiązania lokalnego.gdyby nie było parowania feromonów, ścieżka wybrana przez pierwszą mrówkę, byłaby najbardziej atrakcyjną dla idących za nią mrówek. Wtedy przestrzeń rozwiązań zostałaby zawężona. Tak więc, gdy jedna mrówka znajdzie dobrą (krótką ) ścieżkę, inne mrówki będą za nią podążać, a następnie wracać tą ścieżką, co może doprowadzić to wędrówki wszystkich mrówek tą samą ścieżką. Algorytmy mrówkowe naśladowanie postępowania mrówek. Algorytm ten można zastosować do rozwiązywania problemu komiwojażera. Ma on przewagę nad symulowanym, wyżarzaniem w sytuacji, gdy graf zmienia się dynamicznie. Algorytm mrówkowy będzie się dostosowywał do zmian. (network routing) W AS sztuczne mrówki znajdują rozwiązanie (drogę) poruszając się po grafie problemu z jednego miasta do drugiego. Algorytm uruchamia t max iteracji. Podczas każdej z nich m mrówek szuka dróg wykonując n kroków, w których podejmowana jest probabilistyczna decyzja. W praktyce, kiedy w węźle i mrówka wybiera jako węzeł docelowy węzeł j, to krawędź (i,j) jest dodawana do aktualnie budowanej drogi. Te kroki są powtarzane, aż mrówka skończy budować swoją drogę. 1

2 Wymyślono trzy rodzaje algorytmu AS różniące się sposobem, w jaki uaktualniany jest szlak feromonowy. Te algorytmy to: gęstościowy (ant-density), w którym mrówki zostawiają stałą ilość feromonu podczas budowania drogi, ilościowy (ant-quantity), w którym mrówki zostawiają ilość feromonu odwrotnie proporcjonalną do długości wybranej krawędzi podczas budowania drogi, cykliczny (ant-cycle), w którym mrówki zostawiają feromon dopiero w momencie, gdy zbudują całą drogę. Eksperymenty wykazały, że wydajność algorytmu cyklicznego była znacznie wyższa, niż pozostałych dwóch, więc przestaniemy się nimi zajmować, a określenie AS będziemy odnosić do algorytmu cyklicznego. Problem komiwojażera: Mamy graf pełny. Znamy długość każdej z krawędzi d(i; j). Pseudokod: while(not warunek_końca) { generujrozwiązanie()//znajdz drogi dla m mrówek UaktualnijWartościFeromonów() } Mrówki poruszając się między miastami zostawiają ślad feromonowy o natężeniu τ(i, j) Natężenie feromonu na każdej z krawędzi będzie zmieniać się w trakcie rozwiązywania problemu (w miarę jak kolonia poznawać będzie otoczenie i wybierać najlepszą trasę.) Mrówki kierują się nie tylko feromonem ale preferują również krótkie odcinki podróży Odległości d oraz natężenie feromonu τ definiują funkcję preferencji: t(i; j) = τ (i; j)/d(i; j) β 2

3 Dla pojedynczej mrówki znajdującej się w mieście i wybieramy miasto j zgodnie z rozkładem prawdopodobieństwa danym wzorem: t( i, j) P( j) = t( i, k) gdzie N i nieodwiedzeni sąsiedzi miasta i k Ni Zmiany ilości feromonów: τ i,j = ρτ i,j + Δτ i,j - ρ wspólczynnik parowania (ρ<1) - Δτ i,j ilość zdeponowanego feromonu dana wzorem gdzie L k jest długością drogi k-tej mrówki (im krótsza droga, tym większa ilość feromonu zostawiona na jej krawędziach) Inne sposoby zmian natężenia feromonów OZNACZANIA GLOBALNE Zmieniamy natężenie tylko dla najkrótszej z tras (tylko dla mrówki, która znalazła najkrótszą trasę) τ i,j = ρτ i,j + αδτ i, gdzie α ufność z jaką mrówki podchodzą do najkrótszej trasy. Przyjmijmy α=0.1 OZNACZANIE LOKALNE Oznaczanie lokalne ma zniechęcić mrówkę do sprawdzania krawędzi, którą w tym samym obiegu sprawdziła inna mrówka. Oznaczanie wykonywane natychmiast po przejściu z miasta i do miasta j τ i,j = ρτ i,j + α/p gdzie p- bardzo duże 3

4 Uwagi praktyczne: Każda mrówka pamięta miasta już odwiedzone (w odpowiedniej kolejności) Każda mrówka pamięta miasta jeszcze nie odwiedzone Początkowo przyjmujemy dla każdej krawędzi: τ i,j =1/(d(i; j) β Przyjmijmy β=2 Mrówki umieszczamy losowo po miastach Algorytm dla każdej mrówki wygląda następująco: 1. Wylosuj miasto startowe 2. Uaktualnij listę miast odwiedzonych 3. Uaktualnij listę miast nie odwiedzonych 4. Oblicz rozkład prawdopodobieństwa, czyli P(j) dla każdego j z listy miast nie odwiedzonych 5. Wybierz miasto j spośród miast nie odwiedzonych zgodnie z rozkładem, czyli przykładowo: - niech sąsiedzi nie odwiedzeni to j, k, l - niech P(j)=P(k)=1/4 oraz P(l)=1/2 - wylosuj liczbę f z przedziału [0,1] - if (f<p(j)=1/4) wybierz miasto j Else if ( f< ( P(j)+P(k)=1/4) ) wybierz miasto k Else wybierz miasto l Przykładowo: niech f=3/8 Wtedy wybieramy miasto k, ponieważ: 4

5 Modyfikacje algorytmu: Dodatkowy parametr q 0 [ 0,1 ] q 0 = 0 oznacza pełny determinizm q 1 oznacza pełną nosowość 0 = Sposób postępowania: q 0,1 Losujemy [ ] - Jeśli q < q0 to mrówka idzie z miasta i do takiego miasta j, które maksymalizuje funkcję preferencji t(i,j) - Jeśli q > q0 to mrówka idzie z miasta i do takiego miasta j, wybranego zgodnie z rozkładem prawdopodobieństwa Zadanie: Zaimplementować powyższy algorytm, przyjmując α= 0.1 β= 2 q 0 = 0.9 M-liczba miast=20; P należy wybrać w sposób następujący: p=lm, gdzie L długość trasy wyznaczonej przez strategię najbliższego sąsiada [z każdego miasta idziemy do najbliższego]. Narysować długość ostatniej najlepszej drogi dla liczby mrówek m = 1, 2,10, 50. Jak długo trwa nauka w zależności od m? Przyjąć m = 10. Zbadać jak idzie mrówkom nauka, gdy: q 0, 0.25, 0.5,1 0 = Rozwiązać problem dla większej liczby miast. 5

Algorytmy mrówkowe. P. Oleksyk. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne

Algorytmy mrówkowe. P. Oleksyk. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne y mrówkowe P. Oleksyk Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne 14 kwietnia 2015 1 Geneza algorytmu - biologia 2 3 4 5 6 7 8 Geneza

Bardziej szczegółowo

Problem komiwojażera ACO. Zagadnienie optymalizacyjne, polegające na znalezieniu minimalnego cyklu Hamiltona w pełnym grafie ważonym.

Problem komiwojażera ACO. Zagadnienie optymalizacyjne, polegające na znalezieniu minimalnego cyklu Hamiltona w pełnym grafie ważonym. Problem komiwojażera ACO Zagadnienie optymalizacyjne, polegające na znalezieniu minimalnego cyklu Hamiltona w pełnym grafie ważonym. -Wikipedia Problem do rozwiązania zazwyczaj jest przedstawiany jako

Bardziej szczegółowo

Systemy mrówkowe. Opracowali: Dawid Strucker, Konrad Baranowski

Systemy mrówkowe. Opracowali: Dawid Strucker, Konrad Baranowski Systemy mrówkowe Opracowali: Dawid Strucker, Konrad Baranowski Wprowadzenie Algorytmy mrówkowe oparte są o zasadę inteligencji roju (ang. swarm intelligence). Służą głównie do znajdowania najkrótszej drogi

Bardziej szczegółowo

Algorytmy metaheurystyczne Wykład 6. Piotr Syga

Algorytmy metaheurystyczne Wykład 6. Piotr Syga Algorytmy metaheurystyczne Wykład 6 Piotr Syga 10.04.2017 Wprowadzenie Inspiracje Wprowadzenie ACS idea 1 Zaczynamy z pustym rozwiązaniem początkowym 2 Dzielimy problem na komponenty (przedmiot do zabrania,

Bardziej szczegółowo

Obliczenia Naturalne - Algorytmy Mrówkowe

Obliczenia Naturalne - Algorytmy Mrówkowe Plan Literatura Obliczenia Naturalne - Algorytmy Mrówkowe Paweł Paduch Politechnika Świętokrzyska 8 maja 2014 Paweł Paduch Obliczenia Naturalne - Algorytmy Mrówkowe 1 z 43 Plan wykładu Plan Literatura

Bardziej szczegółowo

Obliczenia inspirowane Naturą

Obliczenia inspirowane Naturą Obliczenia inspirowane Naturą Wykład 10 - Mrówki w labiryntach Jarosław Miszczak IITiS PAN Gliwice 05/05/2016 1 / 48 Na poprzednim wykładzie 1... 2... 3... 2 / 48 1 Motywacja biologiczna Podstawowe mechanizmy

Bardziej szczegółowo

Algorytmy mrówkowe. H. Bednarz. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne

Algorytmy mrówkowe. H. Bednarz. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne Algorytmy mrówkowe H. Bednarz Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne 13 kwietnia 2015 1 2 3 4 Przestrzeń poszukiwań Ograniczenia

Bardziej szczegółowo

Techniki optymalizacji

Techniki optymalizacji Techniki optymalizacji Metaheurystyki oparte na algorytmach lokalnego przeszukiwania Maciej Hapke maciej.hapke at put.poznan.pl GRASP Greedy Randomized Adaptive Search Procedure T.A. Feo, M.G.C. Resende,

Bardziej szczegółowo

Algorytmy mrówkowe (ang. Ant Colony Optimization)

Algorytmy mrówkowe (ang. Ant Colony Optimization) Algorytmy mrówkowe (ang. Ant Colony Optimization) 1. Wprowadzenie do ACO a) mrówki naturalne b) mrówki sztuczne c) literatura (kilka pozycji) 2. ACO i TSP 1. Wprowadzenie do ACO a) mrówki naturalne ślepe,

Bardziej szczegółowo

Algorytmy mrówkowe. Plan. » Algorytm mrówkowy» Warianty» CVRP» Demo» Środowisko dynamiczne» Pomysł modyfikacji» Testowanie

Algorytmy mrówkowe. Plan. » Algorytm mrówkowy» Warianty» CVRP» Demo» Środowisko dynamiczne» Pomysł modyfikacji» Testowanie Algorytmy mrówkowe w środowiskach dynamicznych Dariusz Maksim, promotor: prof. nzw. dr hab. Jacek Mańdziuk 1/51 Plan» Algorytm mrówkowy» Warianty» CVRP» Demo» Środowisko dynamiczne» Pomysł modyfikacji»

Bardziej szczegółowo

Wykorzystanie algorytmów mrówkowych w dynamicznym problem

Wykorzystanie algorytmów mrówkowych w dynamicznym problem Wykorzystanie algorytmów mrówkowych w dynamicznym problemie marszrutyzacji Promotor: dr inż. Aneta Poniszewska-Marańda Współpromotor: mgr inż. Łukasz Chomątek 14 czerwca 2013 Przedmiot i cele pracy dyplomowej

Bardziej szczegółowo

Wykorzystanie algorytmów mrówkowych w dynamicznym problem

Wykorzystanie algorytmów mrówkowych w dynamicznym problem Wykorzystanie algorytmów mrówkowych w dynamicznym problemie marszrutyzacji Promotor: dr inż. Aneta Poniszewska-Marańda Współpromotor: mgr inż. Łukasz Chomątek 18 stycznia 2013 Przedmiot i cele pracy dyplomowej

Bardziej szczegółowo

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA ALGORYTM MRÓWKOWY (ANT SYSTEM) ALGORYTM MRÓWKOWY. Algorytm mrówkowy

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA ALGORYTM MRÓWKOWY (ANT SYSTEM) ALGORYTM MRÓWKOWY. Algorytm mrówkowy PLAN WYKŁADU Algorytm mrówowy OPTYMALIZACJA GLOBALNA Wyład 8 dr inż. Agniesza Bołtuć (ANT SYSTEM) Inspiracja: Zachowanie mrówe podczas poszuiwania żywności, Zachowanie to polega na tym, że jeśli do żywności

Bardziej szczegółowo

Algorytmy mrówkowe wprowadzenie.

Algorytmy mrówkowe wprowadzenie. Algorytmy mrówkowe wprowadzenie. Jakub Zajkowski 1 Wstęp i rys historyczny Algorytmy mrówkowe to grupa procesów służących przede wszystkim do poszukiwania dróg w grafie. Z formalnego punktu widzenia algorytmy

Bardziej szczegółowo

Problem Komiwojażera - algorytmy metaheurystyczne

Problem Komiwojażera - algorytmy metaheurystyczne Problem Komiwojażera - algorytmy metaheurystyczne algorytm mrówkowy algorytm genetyczny by Bartosz Tomeczko. All rights reserved. 2010. TSP dlaczego metaheurystyki i heurystyki? TSP Travelling Salesman

Bardziej szczegółowo

Algorytmy Mrówkowe. Daniel Błaszkiewicz. 11 maja 2011. Instytut Informatyki Uniwersytetu Wrocławskiego

Algorytmy Mrówkowe. Daniel Błaszkiewicz. 11 maja 2011. Instytut Informatyki Uniwersytetu Wrocławskiego Algorytmy Mrówkowe Instytut Informatyki Uniwersytetu Wrocławskiego 11 maja 2011 Opis Mrówki w naturze Algorytmy to stosunkowo nowy gatunek algorytmów optymalizacyjnych stworzony przez Marco Dorigo w 1992

Bardziej szczegółowo

Wykład 4. Droga i cykl Eulera i Hamiltona

Wykład 4. Droga i cykl Eulera i Hamiltona Wykład 4. i Hamiltona Wykład 4. i Hamiltona 1 / 35 Grafy Eulera Niech G będzie grafem spójnym. Definicja Jeżeli w grafie G istnieje zamknięta droga prosta zawierająca wszystkie krawędzie grafu, to taką

Bardziej szczegółowo

Droga i cykl Eulera Przykłady zastosowania drogi i cyku Eulera Droga i cykl Hamiltona. Wykład 4. Droga i cykl Eulera i Hamiltona

Droga i cykl Eulera Przykłady zastosowania drogi i cyku Eulera Droga i cykl Hamiltona. Wykład 4. Droga i cykl Eulera i Hamiltona Wykład 4. Droga i cykl Eulera i Hamiltona 1 / 92 Grafy Eulera Droga i cykl Eulera Niech G będzie grafem spójnym. Definicja Jeżeli w grafie G istnieje zamknięta droga prosta zawierająca wszystkie krawędzie

Bardziej szczegółowo

Algorytmy mrówkowe w dynamicznych problemach transportowych

Algorytmy mrówkowe w dynamicznych problemach transportowych y w dynamicznych problemach transportowych prof. dr hab Jacek Mandziuk MiNI, PW 3 czerwca 2013 Cel pracy Zbadanie zachowania algorytmu go zwykłego oraz z zaimplementowanymi optymalizacjami dla problemów

Bardziej szczegółowo

Obliczenia z wykorzystaniem sztucznej inteligencji

Obliczenia z wykorzystaniem sztucznej inteligencji Obliczenia z wykorzystaniem sztucznej inteligencji wykład III Systemy mrówkowe Joanna Kołodziejczyk marzec 2016 Joanna Kołodziejczyk Obliczenia z wykorzystaniem sztucznej inteligencji marzec 2016 1 / 38

Bardziej szczegółowo

Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie

Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie Używane struktury danych: V - zbiór wierzchołków grafu, V = {1,2,3...,n} E - zbiór krawędzi grafu, E = {(i,j),...}, gdzie i, j Î V i istnieje

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą

Bardziej szczegółowo

Obliczenia z wykorzystaniem sztucznej inteligencji

Obliczenia z wykorzystaniem sztucznej inteligencji Obliczenia z wykorzystaniem sztucznej inteligencji wykład III Systemy mrówkowe Joanna Kołodziejczyk 31 marzec 2014 Plan wykładu 1 Inspiracje biologiczne Informacje ogólne Naturalna optymalizacja 2 Artificial

Bardziej szczegółowo

Algorytmy Mrówkowe. Daniel Błaszkiewicz 11 maja 2011

Algorytmy Mrówkowe. Daniel Błaszkiewicz 11 maja 2011 Algorytmy Mrówkowe Daniel Błaszkiewicz 11 maja 2011 1 Wprowadzenie Popularnym ostatnimi laty podejściem do tworzenia nowych klas algorytmów do szukania rozwiązań problemów nie mających algorytmów rozwiązujących

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5

Bardziej szczegółowo

Działanie algorytmu oparte jest na minimalizacji funkcji celu jako suma funkcji kosztu ( ) oraz funkcji heurystycznej ( ).

Działanie algorytmu oparte jest na minimalizacji funkcji celu jako suma funkcji kosztu ( ) oraz funkcji heurystycznej ( ). Algorytm A* Opracowanie: Joanna Raczyńska 1.Wstęp Algorytm A* jest heurystycznym algorytmem służącym do znajdowania najkrótszej ścieżki w grafie. Jest to algorytm zupełny i optymalny, co oznacza, że zawsze

Bardziej szczegółowo

Techniki optymalizacji

Techniki optymalizacji Techniki optymalizacji Algorytm kolonii mrówek Idea Smuga feromonowa 1 Sztuczne mrówki w TSP Sztuczna mrówka agent, który porusza się z miasta do miasta Mrówki preferują miasta połączone łukami z dużą

Bardziej szczegółowo

ALHE. prof. Jarosław Arabas semestr 15Z

ALHE. prof. Jarosław Arabas semestr 15Z ALHE prof. Jarosław Arabas semestr 15Z Wykład 5 Błądzenie przypadkowe, Algorytm wspinaczkowy, Przeszukiwanie ze zmiennym sąsiedztwem, Tabu, Symulowane wyżarzanie 1. Błądzenie przypadkowe: Pierwszym krokiem

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 12 Wykorzystanie sieci rekurencyjnych w optymalizacji grafowej

Wstęp do sieci neuronowych, wykład 12 Wykorzystanie sieci rekurencyjnych w optymalizacji grafowej Wstęp do sieci neuronowych, wykład 12 Wykorzystanie sieci rekurencyjnych w optymalizacji grafowej Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2013-01-09

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova

Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova M. Czoków, J. Piersa 2010-12-21 1 Definicja Własności Losowanie z rozkładu dyskretnego 2 3 Łańcuch Markova Definicja Własności Losowanie z rozkładu

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa

Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa M. Czoków, J. Piersa 2012-01-10 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego 3 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego

Bardziej szczegółowo

WYKORZYSTANIE ALGORYTMÓW GENETYCZNYCH I MRÓWKOWYCH W PROBLEMACH TRANSPORTOWYCH

WYKORZYSTANIE ALGORYTMÓW GENETYCZNYCH I MRÓWKOWYCH W PROBLEMACH TRANSPORTOWYCH Inżynieria Rolnicza 7(105)/2008 WYKORZYSTANIE ALGORYTMÓW GENETYCZNYCH I MRÓWKOWYCH W PROBLEMACH TRANSPORTOWYCH Justyna Zduńczuk, Wojciech Przystupa Katedra Zastosowań Matematyki, Uniwersytet Przyrodniczy

Bardziej szczegółowo

Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami

Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami dr inż. Mariusz Uchroński Wrocławskie Centrum Sieciowo-Superkomputerowe Agenda Cykliczny problem przepływowy

Bardziej szczegółowo

Planowanie drogi robota, algorytm A*

Planowanie drogi robota, algorytm A* Planowanie drogi robota, algorytm A* Karol Sydor 13 maja 2008 Założenia Uproszczenie przestrzeni Założenia Problem planowania trasy jest bardzo złożony i trudny. W celu uproszczenia problemu przyjmujemy

Bardziej szczegółowo

ZASTOSOWANIE ALGORYTMÓW MRÓWKOWYCH W ROZWIĄZANIU PROBLEMU SZEREGOWANIA ZADAŃ APPLICATION OF ANT COLONY SYSTEMS IN SOLVING OF TASK SCHEDULING PROBLEM

ZASTOSOWANIE ALGORYTMÓW MRÓWKOWYCH W ROZWIĄZANIU PROBLEMU SZEREGOWANIA ZADAŃ APPLICATION OF ANT COLONY SYSTEMS IN SOLVING OF TASK SCHEDULING PROBLEM GRZEGORZ FILO ZASTOSOWANIE ALGORYTMÓW MRÓWKOWYCH W ROZWIĄZANIU PROBLEMU SZEREGOWANIA ZADAŃ APPLICATION OF ANT COLONY SYSTEMS IN SOLVING OF TASK SCHEDULING PROBLEM S t r e s z c z e n i e A b s t r a c

Bardziej szczegółowo

Strategie Zespołowe (SZ) dr inż. Tomasz Białaszewski

Strategie Zespołowe (SZ) dr inż. Tomasz Białaszewski Strategie Zespołowe (SZ) dr inż. Tomasz Białaszewski Tematyka wykładu Algorytmy Inteligencji Roju (Swarm Intelligence, SI) Optymalizacja kolonią mrówek (Ant Colony Optimization, ACO) Optymalizacja rojem

Bardziej szczegółowo

OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) Algorytmy i Struktury Danych PIŁA

OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) Algorytmy i Struktury Danych PIŁA OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) 16.01.2003 Algorytmy i Struktury Danych PIŁA ALGORYTMY ZACHŁANNE czas [ms] Porównanie Algorytmów Rozwiązyjących problem TSP 100 000 000 000,000 10 000 000

Bardziej szczegółowo

Optymalizacja. Wybrane algorytmy

Optymalizacja. Wybrane algorytmy dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem

Bardziej szczegółowo

Znajdowanie wyjścia z labiryntu

Znajdowanie wyjścia z labiryntu Znajdowanie wyjścia z labiryntu Zadanie to wraz z problemem pakowania najcenniejszego plecaka należy do problemów optymalizacji, które dotyczą znajdowania najlepszego rozwiązania wśród wielu możliwych

Bardziej szczegółowo

Wybrane podstawowe rodzaje algorytmów

Wybrane podstawowe rodzaje algorytmów Wybrane podstawowe rodzaje algorytmów Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych

Bardziej szczegółowo

Programowanie Współbieżne. Algorytmy

Programowanie Współbieżne. Algorytmy Programowanie Współbieżne Algorytmy Sortowanie przez scalanie (mergesort) Algorytm : 1. JEŚLI jesteś rootem TO: pobierz/wczytaj tablice do posortowania JEŚLI_NIE to pobierz tablicę do posortowania od rodzica

Bardziej szczegółowo

1. Algorytmy przeszukiwania. Przeszukiwanie wszerz i w głąb.

1. Algorytmy przeszukiwania. Przeszukiwanie wszerz i w głąb. 1. Algorytmy przeszukiwania. Przeszukiwanie wszerz i w głąb. Algorytmy przeszukiwania w głąb i wszerz są najczęściej stosowanymi algorytmami przeszukiwania. Wykorzystuje się je do zbadania istnienia połączenie

Bardziej szczegółowo

Wyznaczanie optymalnej trasy problem komiwojażera

Wyznaczanie optymalnej trasy problem komiwojażera Wyznaczanie optymalnej trasy problem komiwojażera Optymalizacja w podejmowaniu decyzji Opracowała: mgr inż. Natalia Malinowska Wrocław, dn. 28.03.2017 Wydział Elektroniki Politechnika Wrocławska Plan prezentacji

Bardziej szczegółowo

Algorytm dyskretnego PSO z przeszukiwaniem lokalnym w problemie dynamicznej wersji TSP

Algorytm dyskretnego PSO z przeszukiwaniem lokalnym w problemie dynamicznej wersji TSP Algorytm dyskretnego PSO z przeszukiwaniem lokalnym w problemie dynamicznej wersji TSP Łukasz Strąk lukasz.strak@gmail.com Uniwersytet Śląski, Instytut Informatyki, Będzińska 39, 41-205 Sosnowiec 9 grudnia

Bardziej szczegółowo

Metoda UCT w stochastycznych problemach transportowych

Metoda UCT w stochastycznych problemach transportowych Metoda UCT w stochastycznych problemach transportowych mgr inż. Maciej Świechowski promotor: prof. Jacek Mańdziuk Seminarium Metody Inteligencji Obliczeniowej 25.06.2015 Plan prezentacji Krótkie przypomnienie

Bardziej szczegółowo

Przykłady problemów optymalizacyjnych

Przykłady problemów optymalizacyjnych Przykłady problemów optymalizacyjnych NAJKRÓTSZA ŚCIEŻKA W zadanym grafie G = (V, A) wyznacz najkrótsza ścieżkę od wierzchołka s do wierzchołka t. 2 7 5 5 3 9 5 s 8 3 1 t 2 2 5 5 1 5 4 Przykłady problemów

Bardziej szczegółowo

PRACA DYPLOMOWA MAGISTERSKA

PRACA DYPLOMOWA MAGISTERSKA Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania PRACA DYPLOMOWA MAGISTERSKA Konstrukcja autonomicznego robota mobilnego Małgorzata Bartoszewicz Promotor: prof. dr hab. inż. A. Milecki Zakres

Bardziej szczegółowo

Temat 9. Zabłocone miasto Minimalne drzewa rozpinające

Temat 9. Zabłocone miasto Minimalne drzewa rozpinające Temat 9 Zabłocone miasto Minimalne drzewa rozpinające Streszczenie Nasze życie związane jest z funkcjonowaniem wielu sieci: telefonicznych, energetycznych, komputerowych i drogowych. W przypadku każdej

Bardziej szczegółowo

Heurystyczne metody przeszukiwania

Heurystyczne metody przeszukiwania Heurystyczne metody przeszukiwania Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Pojęcie heurystyki Metody heurystyczne są jednym z ważniejszych narzędzi sztucznej inteligencji.

Bardziej szczegółowo

Spacery losowe generowanie realizacji procesu losowego

Spacery losowe generowanie realizacji procesu losowego Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z

Bardziej szczegółowo

Przykład planowania sieci publicznego transportu zbiorowego

Przykład planowania sieci publicznego transportu zbiorowego TRANSPORT PUBLICZNY Przykład planowania sieci publicznego transportu zbiorowego Źródło: Bieńczak M., 2015 Politechnika Poznańska, Wydział Maszyn Roboczych i Transportu 1 METODYKA ZAŁOśENIA Dostarczanie

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład. Prof. dr hab. inż. Jan Magott Algorytmy grafowe: podstawowe pojęcia, reprezentacja grafów, metody przeszukiwania, minimalne drzewa rozpinające, problemy

Bardziej szczegółowo

OPTYMALIZACJA W LOGISTYCE

OPTYMALIZACJA W LOGISTYCE OPTYMALIZACJA W LOGISTYCE Optymalizacja zadań bazy transportowej ( część 1 ) Opracowano na podstawie : Stanisław Krawczyk, Metody ilościowe w logistyce ( przedsiębiorstwa ), Wydawnictwo C. H. Beck, Warszawa

Bardziej szczegółowo

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 9 PRZESZUKIWANIE GRAFÓW Z

Bardziej szczegółowo

Optymalizacja. Przeszukiwanie tabu

Optymalizacja. Przeszukiwanie tabu dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Naturalny sposób powstania algorytmu Algorytm optymalizacji lokalnej Niezdolność wyjścia z lokalnych

Bardziej szczegółowo

Prawa potęgowe w grafach przepływu informacji dla geometrycznych sieci neuronowych

Prawa potęgowe w grafach przepływu informacji dla geometrycznych sieci neuronowych w grafach przepływu informacji dla geometrycznych sieci neuronowych www.mat.uni.torun.pl/~piersaj 2009-06-10 1 2 3 symulacji Graf przepływu ładunku Wspóczynnik klasteryzacji X (p) p α Rozkłady prawdopodobieństwa

Bardziej szczegółowo

Ćwiczenie 1 Planowanie trasy robota mobilnego w siatce kwadratów pól - Algorytm A

Ćwiczenie 1 Planowanie trasy robota mobilnego w siatce kwadratów pól - Algorytm A Ćwiczenie 1 Planowanie trasy robota mobilnego w siatce kwadratów pól - Algorytm A Zadanie do wykonania 1) Utwórz na pulpicie katalog w formacie Imię nazwisko, w którym umieść wszystkie pliki związane z

Bardziej szczegółowo

PLANOWANIE TRASY PRZEJŚCIA STATKU Z ZASTOSOWANIEM ALGORYTMU MRÓWKOWEGO

PLANOWANIE TRASY PRZEJŚCIA STATKU Z ZASTOSOWANIEM ALGORYTMU MRÓWKOWEGO Agnieszka Lazarowska Akademia Morska w Gdyni PLANOWANIE TRASY PRZEJŚCIA STATKU Z ZASTOSOWANIEM ALGORYTMU MRÓWKOWEGO W artykule zaprezentowano wyniki pracy badawczej, dotyczącej zastosowania jednej z metod

Bardziej szczegółowo

ZASTOSOWANIE ALGORYTMU MRÓWKOWEGO DO WYZNACZANIA MAKSYMALNEJ GRUPY WZAJEMNIE POŁĄCZONYCH ELEMENTÓW

ZASTOSOWANIE ALGORYTMU MRÓWKOWEGO DO WYZNACZANIA MAKSYMALNEJ GRUPY WZAJEMNIE POŁĄCZONYCH ELEMENTÓW KRZYSZTOF SCHIFF ZASTOSOWANIE ALGORYTMU MRÓWKOWEGO DO WYZNACZANIA MAKSYMALNEJ GRUPY WZAJEMNIE POŁĄCZONYCH ELEMENTÓW ANT ALGORITHMS FOR DETERMINING MAXIMUM GROUP OF INTERCONNECTED ELEMENTS Streszczenie

Bardziej szczegółowo

Seminarium IO. Zastosowanie algorytmu UCT w Dynamic Vehicle Routing Problem. Michał Okulewicz

Seminarium IO. Zastosowanie algorytmu UCT w Dynamic Vehicle Routing Problem. Michał Okulewicz Seminarium IO Zastosowanie algorytmu UCT w Dynamic Vehicle Routing Problem Michał Okulewicz 05.11.2013 Plan prezentacji Przypomnienie Problem DVRP Algorytm UCT Zastosowanie algorytmu UCT/PSO w DVRP Zastosowanie

Bardziej szczegółowo

Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek

Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek Algorytmy i str ruktury danych Metody algorytmiczne Bartman Jacek jbartman@univ.rzeszow.pl Metody algorytmiczne - wprowadzenia Znamy strukturę algorytmów Trudność tkwi natomiast w podaniu metod służących

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład 7 Prof. dr hab. inż. Jan Magott Problemy NP-zupełne Transformacją wielomianową problemu π 2 do problemu π 1 (π 2 π 1 ) jest funkcja f: D π2 D π1 spełniająca

Bardziej szczegółowo

Mrówka Pachycondyla apicalis

Mrówka Pachycondyla apicalis Mrówka Pachycondyla apicalis Mrówki Pachycondyla apicalis wystepują w lasach południowego Meksyku, północnej Argentyny i Kostaryki. Wystepuja zarówno w lasach wilgotnych jak i suchych. Mrówki te polują

Bardziej szczegółowo

Zadania laboratoryjne i projektowe - wersja β

Zadania laboratoryjne i projektowe - wersja β Zadania laboratoryjne i projektowe - wersja β 1 Laboratorium Dwa problemy do wyboru (jeden do realizacji). 1. Water Jug Problem, 2. Wieże Hanoi. Water Jug Problem Ograniczenia dla każdej z wersji: pojemniki

Bardziej szczegółowo

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA? /9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I

Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje:

Bardziej szczegółowo

Strategie ewolucyjne. Gnypowicz Damian Staniszczak Łukasz Woźniak Marek

Strategie ewolucyjne. Gnypowicz Damian Staniszczak Łukasz Woźniak Marek Strategie ewolucyjne Gnypowicz Damian Staniszczak Łukasz Woźniak Marek Strategie ewolucyjne, a algorytmy genetyczne Podobieństwa: Oba działają na populacjach rozwiązań Korzystają z zasad selecji i przetwarzania

Bardziej szczegółowo

Programowanie dynamiczne

Programowanie dynamiczne Programowanie dynamiczne Patryk Żywica 5 maja 2008 1 Spis treści 1 Problem wydawania reszty 3 1.1 Sformułowanie problemu...................... 3 1.2 Algorytm.............................. 3 1.2.1 Prosty

Bardziej szczegółowo

Metody przeszukiwania

Metody przeszukiwania Metody przeszukiwania Co to jest przeszukiwanie Przeszukiwanie polega na odnajdywaniu rozwiązania w dyskretnej przestrzeni rozwiązao. Zwykle przeszukiwanie polega na znalezieniu określonego rozwiązania

Bardziej szczegółowo

Tworzenie gier na urządzenia mobilne

Tworzenie gier na urządzenia mobilne Katedra Inżynierii Wiedzy Wykład 11 O czym dzisiaj? labirynty, dużo labiryntów; automaty komórkowe; algorytmy do budowy labiryntów; algorytmy do szukania wyjścia z labiryntów; Blueprints i drzewa zachowań

Bardziej szczegółowo

Zadanie transportowe i problem komiwojażera. Tadeusz Trzaskalik

Zadanie transportowe i problem komiwojażera. Tadeusz Trzaskalik Zadanie transportowe i problem komiwojażera Tadeusz Trzaskalik 3.. Wprowadzenie Słowa kluczowe Zbilansowane zadanie transportowe Rozwiązanie początkowe Metoda minimalnego elementu macierzy kosztów Metoda

Bardziej szczegółowo

PROGRAMOWANIE SIECIOWE. METODA ŚCIEŻKI KRYTYCZNEJ

PROGRAMOWANIE SIECIOWE. METODA ŚCIEŻKI KRYTYCZNEJ PROGRAMOWANIE SIECIOWE. METODA ŚCIEŻKI KRYTYCZNEJ Maciej Patan Uniwersytet Zielonogórski WPROWADZENIE Metody programowania sieciowego wprowadzono pod koniec lat pięćdziesiatych Ze względu na strukturę

Bardziej szczegółowo

Rzut oka na współczesną matematykę spotkanie 3: jak liczy kalkulator i o źródłach chaosu

Rzut oka na współczesną matematykę spotkanie 3: jak liczy kalkulator i o źródłach chaosu Rzut oka na współczesną matematykę spotkanie 3: jak liczy kalkulator i o źródłach chaosu P. Strzelecki pawelst@mimuw.edu.pl Instytut Matematyki, Uniwersytet Warszawski MISH UW, semestr zimowy 2011-12 P.

Bardziej szczegółowo

Algorytmy stochastyczne laboratorium 03

Algorytmy stochastyczne laboratorium 03 Algorytmy stochastyczne laboratorium 03 Jarosław Piersa 10 marca 2014 1 Projekty 1.1 Problem plecakowy (1p) Oznaczenia: dany zbiór przedmiotów x 1,.., x N, każdy przedmiot ma określoną wagę w(x i ) i wartość

Bardziej szczegółowo

Programowanie sieciowe. Tadeusz Trzaskalik

Programowanie sieciowe. Tadeusz Trzaskalik Programowanie Tadeusz Trzaskalik 8.1. Wprowadzenie Słowa kluczowe Drzewo rozpinające Minimalne drzewo rozpinające Najkrótsza droga w sieci Wierzchołek początkowy Maksymalny przepływ w sieci Źródło Ujście

Bardziej szczegółowo

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA ZADANIE KOMIWOJAŻERA METODY ROZWIĄZYWANIA. Specyfika zadania komiwojażera Reprezentacje Operatory

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA ZADANIE KOMIWOJAŻERA METODY ROZWIĄZYWANIA. Specyfika zadania komiwojażera Reprezentacje Operatory PLAN WYKŁADU Specyfika zadania komiwojażera Reprezentacje Operatory OPTYMALIZACJA GLOBALNA Wykład 5 dr inż. Agnieszka Bołtuć ZADANIE KOMIWOJAŻERA Koncepcja: komiwojażer musi odwiedzić każde miasto na swoim

Bardziej szczegółowo

Digraf. 13 maja 2017

Digraf. 13 maja 2017 Digraf 13 maja 2017 Graf skierowany, digraf, digraf prosty Definicja 1 Digraf prosty G to (V, E), gdzie V jest zbiorem wierzchołków, E jest rodziną zorientowanych krawędzi, między różnymi wierzchołkami,

Bardziej szczegółowo

Optymalizacja ciągła

Optymalizacja ciągła Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej

Bardziej szczegółowo

ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW

ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW NIEDETERMINISTYCZNE MASZYNY TURINGA Bartosz Zieliński Katedra Fizyki Teoretycznej i Informatyki Zima 2011-2012 NIEDETERMINISTYCZNE MASZYNY TURINGA DEFINICJA: NIEDETERMINISTYCZNA

Bardziej szczegółowo

Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona) f(x) = 0, gdzie. dla n=2 np.

Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona) f(x) = 0, gdzie. dla n=2 np. Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona f(x 0, f ( f, f,..., f n gdzie 2 x ( x, x 2,..., x n dla n2 np. f ( x, y 0 g( x, y 0 dla każdej wielowymiarowej rozwinięcie w szereg Taylora

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 12. PRZESZUKIWANIE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska ROZWIĄZYWANIE PROBLEMÓW JAKO PRZESZUKIWANIE Istotną rolę podczas

Bardziej szczegółowo

Zastosowanie algorytmów mrówkowych do rozwiązywania problemu komiwojażera

Zastosowanie algorytmów mrówkowych do rozwiązywania problemu komiwojażera 1 1. Wstęp... 2 2. Podstawowe pojęcia... 3 2.1. Sztuczna inteligencja... 3 2.2. Systemy mrówkowe... 4 2.3. Problem komiwojażera... 7 3. Algorytm rozwiązania problemu komiwojażera... 9 3.1. Zakres opracowania...

Bardziej szczegółowo

WYKŁAD 3 WYPEŁNIANIE OBSZARÓW. Plan wykładu: 1. Wypełnianie wieloboku

WYKŁAD 3 WYPEŁNIANIE OBSZARÓW. Plan wykładu: 1. Wypełnianie wieloboku WYKŁ 3 WYPŁNINI OSZRÓW. Wypełnianie wieloboku Zasada parzystości: Prosta, która nie przechodzi przez wierzchołek przecina wielobok parzystą ilość razy. Plan wykładu: Wypełnianie wieloboku Wypełnianie konturu

Bardziej szczegółowo

Matematyka od zaraz zatrudnię

Matematyka od zaraz zatrudnię Uniwersytet Jagielloński Gdzie jest matematyka? Soczewka, 26-28 listopada 2010 Kolorowanie grafów Dobre kolorowanie wierzchołków grafu, to nadanie im kolorów w taki sposób, że każde dwa wierzchołki połaczone

Bardziej szczegółowo

Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego

Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego Mariusz Uchroński 3 grudnia 2010 Plan prezentacji 1. Wprowadzenie 2.

Bardziej szczegółowo

Analiza stanów gry na potrzeby UCT w DVRP

Analiza stanów gry na potrzeby UCT w DVRP Analiza stanów gry na potrzeby UCT w DVRP Seminarium IO na MiNI 04.11.2014 Michał Okulewicz based on the decision DEC-2012/07/B/ST6/01527 Plan prezentacji Definicja problemu DVRP DVRP na potrzeby UCB Analiza

Bardziej szczegółowo

Ogólne wiadomości o grafach

Ogólne wiadomości o grafach Ogólne wiadomości o grafach Algorytmy i struktury danych Wykład 5. Rok akademicki: / Pojęcie grafu Graf zbiór wierzchołków połączonych za pomocą krawędzi. Podstawowe rodzaje grafów: grafy nieskierowane,

Bardziej szczegółowo

Zagadnienie transportowe

Zagadnienie transportowe 9//9 Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd.

Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd. Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 2013-11-26 Projekt pn. Wzmocnienie potencjału

Bardziej szczegółowo

Algorytm grawitacyjnych poszukiwań (Gravitational Search Algorithm - GSA)

Algorytm grawitacyjnych poszukiwań (Gravitational Search Algorithm - GSA) Algorytm grawitacyjnych poszukiwań (Gravitational Search Algorithm - GSA) Nowy algorytm optymalizacji oparty za prawach grawitacji Algorytm wykorzystujący prawa Newtona: Każda cząstka we wszechświecie

Bardziej szczegółowo

Algorytmika Problemów Trudnych

Algorytmika Problemów Trudnych Algorytmika Problemów Trudnych Wykład 9 Tomasz Krawczyk krawczyk@tcs.uj.edu.pl Kraków, semestr letni 2016/17 plan wykładu Algorytmy aproksymacyjne: Pojęcie algorytmu aproksymacyjnego i współczynnika aproksymowalności.

Bardziej szczegółowo

Algorytmy wyznaczania centralności w sieci Szymon Szylko

Algorytmy wyznaczania centralności w sieci Szymon Szylko Algorytmy wyznaczania centralności w sieci Szymon Szylko Zakład systemów Informacyjnych Wrocław 10.01.2008 Agenda prezentacji Cechy sieci Algorytmy grafowe Badanie centralności Algorytmy wyznaczania centralności

Bardziej szczegółowo

Grafy. Jeżeli, to elementy p i q nazywamy końcami krawędzi e. f a b c d e γ f {1} {1,2} {2,3} {2,3} {1,3}

Grafy. Jeżeli, to elementy p i q nazywamy końcami krawędzi e. f a b c d e γ f {1} {1,2} {2,3} {2,3} {1,3} Grafy Definicja grafu nieskierowanego. Grafem nieskierowanym nazywamy uporządkowaną trójkę: gdzie: V- niepusty zbiór wierzchołków grafu G E- zbiór wszystkich krawędzi grafu G - funkcja ze zbioru E w zbiór

Bardziej szczegółowo

Suma dwóch grafów. Zespolenie dwóch grafów

Suma dwóch grafów. Zespolenie dwóch grafów Suma dwóch grafów G 1 = ((G 1 ), E(G 1 )) G 2 = ((G 2 ), E(G 2 )) (G 1 ) i (G 2 ) rozłączne Suma G 1 G 2 graf ze zbiorem wierzchołków (G 1 ) (G 2 ) i rodziną krawędzi E(G 1 ) E(G 2 ) G 1 G 2 G 1 G 2 Zespolenie

Bardziej szczegółowo

TEORETYCZNE PODSTAWY INFORMATYKI

TEORETYCZNE PODSTAWY INFORMATYKI 1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 14c 2 Definicje indukcyjne Twierdzenia dowodzone przez indukcje Definicje indukcyjne Definicja drzewa

Bardziej szczegółowo

Rozwiązywanie równań nieliniowych

Rozwiązywanie równań nieliniowych Rozwiązywanie równań nieliniowych Marcin Orchel 1 Wstęp Przykłady wyznaczania miejsc zerowych funkcji f : f(ξ) = 0. Wyszukiwanie miejsc zerowych wielomianu n-tego stopnia. Wymiar tej przestrzeni wektorowej

Bardziej szczegółowo

Programowanie dynamiczne i algorytmy zachłanne

Programowanie dynamiczne i algorytmy zachłanne Programowanie dynamiczne i algorytmy zachłanne Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii

Bardziej szczegółowo

XII International PhD Workshop OWD 2010, October 2010 MODEL TEORETYCZNY ALGORYTMU MRÓWKOWEGO SAS

XII International PhD Workshop OWD 2010, October 2010 MODEL TEORETYCZNY ALGORYTMU MRÓWKOWEGO SAS XII International PhD Workshop OWD 2010, 23 26 October 2010 MODEL TEORETYCZNY ALGORYTMU MRÓWKOWEGO SAS Paweł Rembelski, Polsko-Japońska Wyższa Szkoła Technik Komputerowych (Opiekun naukowy: prof. Witold

Bardziej szczegółowo

Dowód probabilistyczny Uwagi do dowodu Bibliografia. Prawo Haczykowe. Łukasz Bieniasz-Krzywiec

Dowód probabilistyczny Uwagi do dowodu Bibliografia. Prawo Haczykowe. Łukasz Bieniasz-Krzywiec 09.10.2008 Plan prezentacji 1 Wstęp Diagram Ferrersa Tableau Young a Haczyk (Hook) Twierdzenie Haczykowe 2 3 4 Diagram Ferrersa Wstęp Diagram Ferrersa Tableau Young a Haczyk (Hook) Twierdzenie Haczykowe

Bardziej szczegółowo

Problemy optymalizacyjne - zastosowania

Problemy optymalizacyjne - zastosowania Problemy optymalizacyjne - zastosowania www.qed.pl/ai/nai2003 PLAN WYKŁADU Zło ono obliczeniowa - przypomnienie Problemy NP-zupełne klika jest NP-trudna inne problemy NP-trudne Inne zadania optymalizacyjne

Bardziej szczegółowo