FIZYKA KOMPUTEROWA SPRAWOZDANIE Z ZADANIA 4. RUCH W POLU GRAWITACYJNYM GWIAZDY PODWÓJNEJ
|
|
- Damian Piotrowski
- 7 lat temu
- Przeglądów:
Transkrypt
1 FIZYKA KOMPUTEROWA SPRAWOZDANIE Z ZADANIA 4. RUCH W POLU GRAWITACYJNYM GWIAZDY PODWÓJNEJ Krystian Stasiak, nr albumu: Maciej Malinowski, nr albumu: Treść zadania: Dwie gwiazdy o masach M 1 i M 2 krążą wokół siebie w odległości D. Należy przeanalizowad ruch niewielkiej planety w takim układzie (dla uproszczenia przyjąd, że porusza się ona w płaszczyźnie obu gwiazd). W układzie odniesienia obracającym się razem z gwiazdami (prędkośd kątową Ω należy samemu wyliczyd) równania ruchu mają postad: gdzie G to uniwersalna stała grawitacyjna. Ponadto przyjęto, że w obracającym się układzie odniesienia gwiazdy znajdują się na osi 0X. Ich odległości X 1 oraz X 2 od ich wspólnego środka masy (który znajduje się w środku układu współrzędnych) należy samemu wyliczyd. W rozwiązaniu trzeba pokazad trajektorię planety zarówno w układzie obracającym się jak i nieruchomym. Wykreślid zależności czasowe odległości planety od środka układu jak i kąta w stosunku do osi 0X. W przypadku periodycznej orbity określid czas obiegu. Należy przeanalizowad różne jakościowo przypadki zarówno różne początkowe położenia i prędkości planety, jak i różne proporcje mas M 1 / M 2. Wśród analizowanych przypadków powinny się znaleźd tzw. punkty Lagrange a. Założenia: Przyjmujemy, że pierwsza gwiazda ma ujemną współrzędną początkową x (X 1 ), a druga dodatnią. Środek masy znajduje się między gwiazdami, więc równie dobrze można by przyjąd na odwrót, bez jakościowych zmian. Wykonanie: Rozważone zostały wszystkie punkty Lagrange a (L1, L2, L3, L4, L5) oraz 4 inne warte uwagi przypadki. Zauważmy, współrzędne początkowe gwiazd - X 1 oraz X 2 spełniają zależności:
2 Zatem: Z warunku równowagi siły odśrodkowej z siłą przyciągania dla dowolnej gwiazdy (aby uniknąd problemów ze znakami, wybieramy drugą), podstawiając prędkośd liniową jako iloczyn prędkości obrotowej i promienia, otrzymujemy: Co po przekształceniach, oraz rozwinięciu X 2 według wyznaczonego powyżej wzoru, daje wynik: Przy rozwiązywaniu zadania potrzebne było także zapisanie relacji pomiędzy (traktowanymi z odpowiednimi znakami) siłami przyciągania przez gwiazdy oraz siłą bezwładności planety, które muszą byd spełnione w punktach Lagrange a L1, L2 oraz L3. Współrzędne tych punktów są wyznaczane numerycznie za pomocą procedury fsolve. Do rozwiązywania podanego układu równao różniczkowych wykorzystano oczywiście procedurę ode. Dla każdego z przypadków rozważono 1000 równomiernie rozłożonych w czasie punktów. Czas mierzony w obrotach układu gwiazd jest elementem każdego z zestawów danych (dobieranym tak, żeby wykresy były czytelne). Procedura ode pozwala uzyskad informację o współrzędnych x oraz y planety w czasie. Obróbka tych danych polega na przygotowaniu współrzędnych w układzie obróconym o kąt Ωt, (za pomocą macierzy przez dla każdej chwili czasu t), a także wektora odległości od środka masy układu w czasie (za pomocą procedury norm) oraz kąta nachylenia względem osi OX (za pomocą dwuargumentowego wywołania procedury atan). Wskazane wykresy dla każdego z rozważanych przypadków zostały sporządzone za pomocą procedury plot2d, która jest właściwa także do rysowania krzywych na płaszczyźnie, takich jak trajektoria planety (która porusza się wyłącznie w stałej płaszczyźnie, w której obraca się układ).
3 W celu przygotowania trajektorii gwiazd w czasie, wystarczyło zapisad ruch po okręgu jako złożenie faz. Dla pierwszej gwiazdy otrzymujemy, ; dla drugiej analogicznie, tyle że z X 2 zamiast X 1. Przeciwne znaki X 2 oraz X 1 gwarantują, że gwiazdy zawsze będą dokładnie po przeciwnych stronach środka masy układu. Dobrym pomysłem usprawniającym testowanie różnych zestawów danych było przygotowanie funkcji generujących całe zestawy dzięki temu zamiast komentowania wielu linijek kodu w scilabie (co zapewne wprowadziłoby duży bałagan w kodzie), wystarczy w jednym miejscu podmieniad nazwę wykorzystanej funkcji. Punkty Lagrange a Dla następującego zestawu parametrów: M 1 M 2 D 2 * [kg] [kg] 3 * [m] Z których wyniknęło, że: X 1-1 * [m] X 2 2 * [m] Ω 8,6106 * 10-8 [Hz] Rozważone zostały wszystkie punkty Lagrange a. Dzięki możliwościom programu scilab, nie są potrzebne żadne przybliżenia wynikające z różnicy masy dwóch ciał (takie przybliżenia stosuje się np. do wyznaczania punktów Lagrange a dla układu Ziemia-Słooce bądź Ziemia- Księżyc) współrzędne punktów wyznaczane są numerycznie za pomocą fsolve. Potwierdzeniem jakości tych obliczeo są zamieszczone poniżej wykresy planeta umieszczona w którymkolwiek z wyznaczonych punktów nie poruszy się względem obracającego się układu gwiazd nawet o metr (oczywiście jest to przypadek bardzo wyidealizowany). Wyznaczony punkt L1 ma współrzędne początkowe *7,1225 * m; 0]. Wymienione w treści wykresy dla tego punktu są poniżej. Na pierwszych dwóch wykresach zaznaczono trajektorie oraz położenia początkowe ciał (gwiazd na czerwono, planety na niebiesko). Gwiazdy można rozróżnid na podstawie położeo początkowych (pierwsza jest po lewej).
4 Wyznaczony punkt L2 ma współrzędne początkowe *3,7471 * m; 0]. Dla tego punktu uzyskano następujące wykresy (wykres odległości od środka masy w czasie pominięto, gdyż jest stałą i wynika to już z pierwszego wykresu):
5 Wyznaczony punkt L3 ma współrzędne początkowe *-3,4091 * m; 0]. Dla tego punktu uzyskano następujące wykresy: Punkty L4 = [5 * m; 2,5981 * m] oraz L5 = [5 * m; -2,5981 * m+ są symetryczne do siebie względem osi OX. Dlatego nie warto zamieszczad niemalże identycznych wykresów dla obu z nich. Dla L4 wykresy mają postad: Przypadek I Planeta znajdująca się początkowo wewnątrz układu gwiezdnego może zostad ściągnięta przez pole grawitacyjne jednej z gwiazd i dalej po prostu krążyd wokół tej gwiazdy. Stanie się tak np. w przypadku, gdy masy gwiazd będą różne od siebie, a planeta będzie się znajdywała w środku masy układu. Aby orbita miała atrakcyjniejszy kształt, rozważamy planetę z prędkością początkową skierowaną w górę. Zacznie ona krążyd wokół cięższej gwiazdy, po orbicie o ciekawym kształcie.
6 Przyjęte parametry: M 1 M 2 D x 0 0 y 0 0 V x0 0 2 * [kg] [kg] 3 * [m] V y [m/s] l. obrotów 0,97 Wielkości wyznaczone: X 1 X 2 Ω Wykresy: -1 * [m] 2 * [m] 8,6106 * 10-8 [Hz] W tym przypadku mamy do czynienia z orbitą periodyczną. Jest ona powtarzalna z okresem równym czasowi jednego pełnego obrotu układu gwiezdnego, czyli wynoszącego
7 około 1448 dni. Na taki a nie inny kształt trajektorii istotny wpływ ma oczywiście prędkośd początkowa oraz stosunek mas gwiazd próby dla innych wartości można łatwo przeprowadzad zmieniając nieznacznie kod programu, bądź dodając nowe funkcje generujące zestawy danych. Przypadek II Jeżeli znajdująca się wewnątrz układu planeta będzie miała odpowiednio dużą prędkośd, zacznie poruszad się po ciekawym torze wokół obu gwiazd. Wówczas jednak, po dłuższym czasie, doprowadzi to do rozpędzenia się powyżej prędkości ucieczki i opuszczenia układu (oddalania się od niego po spirali). Przyjęte parametry: M 1 M 2 D x 0 0 y * [kg] [kg] 3 * [m] V x0 0 V y [m/s] Wielkości wyznaczone: X 1-1 * [m] X 2 2 * [m] Ω 8,6106 * 10-8 [Hz] Wykresy dla początkowych 4,5 obrotów:
8 Dla tego przypadku wykonaliśmy dodatkowe wykresy, przedstawiające przebieg zjawisk dla 13 pełnych obrotów układu są one mniej czytelne, ale pozwalają stwierdzid ucieczkę planety (po dośd długim ruchu w pobliżu gwiazd): Jak widad, czasem nie wystarczy popatrzed na trajektorie z początkowych faz ruchu, aby rozstrzygnąd dalsze zachowanie planety (trudno byłoby przewidzied ucieczkę planety patrząc tylko na pierwszą serię wykresów).
9 Przypadek III Planeta znajdująca się nieznacznie bliżej środka masy układu, niż punkt L2 lub L3, zostanie przyciągnięta i zacznie poruszad się po skomplikowanej orbicie wokół obu gwiazd. Nawet niewielka zmiana (w tym przypadku o jeden metr) robi różnicę. Przyjęte parametry: M 1 M 2 D x 0 y 0 0 V x0 0 V y0 0 l. obrotów 5 Wielkości wyznaczone: X 1 X 2 Ω Wykresy: 2 * [kg] 5 * [kg] 3 * [m] współrzędna x punktu L2 pomniejszona o 1m -6 * [m] 2,4 * [m] 7,8604 * 10-8 [Hz]
10 Przez pewien czas planeta niemalże wyłącznie obraca się z układem, ale bardzo powoli zbliża się do środka masy. Jednak w pewnym momencie następuje nagłe, gwałtowne zbliżanie się do środka masy układu, a następnie ruch po skomplikowanej orbicie wokół obu gwiazd. Przypadek IV Planeta znajdująca się nieznacznie dalej od środka masy układu, niż punkt L2 lub L3, zostanie zacznie się oddalad od układu. Także w tym przypadku nawet niewielka zmiana (w tym przypadku o jeden metr) powoduje zajście zjawiska. Przyjęte parametry: M 1 M 2 D x 0 y 0 0 V x0 0 V y0 0 l. obrotów 4,5 2 * [kg] 5 * [kg] 3 * [m] współrzędna x punktu L2 zwiększona o 1m Wielkości wyznaczone: X 1-6 * [m] X 2 2,4 * [m] Ω 7,8604 * 10-8 [Hz]
11 Wykresy: Także w tym przypadku, przez pewien czas planeta niemalże wyłącznie obraca się z układem. Jednakże, w przeciwieostwie do przypadku III, bardzo powoli oddala się od środka masy. W pewnym momencie następuje nagłe, gwałtowne oddalanie się do środka masy układu, które później po prostu równomiernie trwa (przekroczona zostaje prędkośd ucieczki). Wnioski: Ciało znajdujące się dokładnie w punkcie Lagrange a postaje nieruchome względem układu gwiazd, jednakże nawet najmniejsze przesunięcie doprowadzi do stopniowej utraty równowagi, aż w koocu do znacznego oddalenia się od punktu Lagrange a i szybkiego ruchu względem gwiazd. Jednakże wyposażenie teleskopu bądź stacji kosmicznej która ma byd umieszczona w punkcie Lagrange a nawet w niewielki silnik korygujący położenie mogłoby rozwiązad problem, gdyż początkowa faza wychylania się jest bardzo łagodna. Jednakże, punkty Lagrange a są punktami równowagi chwiejnej (jeżeli nastąpi wychylenie, to będzie ono samoczynnie narastało).
12 Ciekawym zjawiskiem jest, że nieruchoma z początku planeta będąca w pobliżu układu dwóch gwiazd może zbliżając się do nich nabrad na tyle dużej prędkości, aby zacząd oddalad się od układu i nigdy do niego nie wrócid (tzn. przekroczyd prędkośd ucieczki). Aby prawidłowo opisad zachowanie planety w układzie dwóch gwiazd, bardzo ważne czasami okazuje się przeprowadzenie symulacji dla dłuższego czasu (tak jak to miało miejsce w przypadku II). Każdy z dobieranych parametrów ma istotny wpływ na zachowanie planety w układzie. W zależności od doboru parametrów, orbita planety może przybierad ciekawe, często bardzo skomplikowane kształty. Możliwe przypadki można podzielid na przypadki ucieczki, oraz przypadki przyciągnięcia do układu. Jeżeli następuje ucieczka planety, to jej tor poza układem gwiazd jest spiralą. Bibliografia: dr inż. A. Brozi, Wykłady z fizyki komputerowej, Politechnika Łódzka 2009r. D. Halliday, R. Resnick, J. Walker, Podstawy Fizyki, tom 2., Wydawnictwo Naukowe PWN, Warszawa 2005 Informacje z Wikipedii o punktach Lagrange a (
Trajektoria rzuconego ukośnie granatu w układzie odniesienia skręcającego samolotu
Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2009/2010 sem. 3. grupa II Termin: 10 XI 2009 Zadanie: Trajektoria rzuconego ukośnie granatu w układzie odniesienia skręcającego samolotu
Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne.
PRACA Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne. Rozważmy sytuację, gdy w krótkim czasie działająca siła spowodowała przemieszczenie ciała o bardzo małą wielkość Δs Wtedy praca wykonana
SPRAWDZIAN NR Merkury krąży wokół Słońca po orbicie, którą możemy uznać za kołową.
SPRAWDZIAN NR 1 IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Merkury krąży wokół Słońca po orbicie, którą możemy uznać za kołową. Zaznacz poprawne dokończenie zdania. Siłę powodującą ruch Merkurego wokół Słońca
Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.
Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny
Grawitacja - powtórka
Grawitacja - powtórka 1. Oceń prawdziwość każdego zdania. Zaznacz, jeśli zdanie jest prawdziwe, lub, jeśli jest A. Jednorodne pole grawitacyjne istniejące w obszarze sali lekcyjnej jest wycinkiem centralnego
Sztuczny satelita Ziemi. Ruch w polu grawitacyjnym
Sztuczny satelita Ziemi Ruch w polu grawitacyjnym Sztuczny satelita Ziemi Jest to obiekt, któremu na pewnej wysokości nad powierzchnią Ziemi nadano prędkość wystarczającą do uzyskania przez niego ruchu
Układ RLC z diodą. Zadanie: Nazwisko i imię: Nr. albumu: Grzegorz Graczyk. Nazwisko i imię: Nr. albumu:
Politechnika Łódzka TIMS Kierunek: Informatyka rok akademicki: 2009/2010 sem. 3. grupa II Zadanie: Układ z diodą Termin: 5 I 2010 Nr. albumu: 150875 Nazwisko i imię: Grzegorz Graczyk Nr. albumu: 151021
Zadanie na egzamin 2011
Zadanie na egzamin 0 Zaproponował: Jacek Ciborowski. Wersja A dla medyków Na stacji kolejowej znajduje się peron, z którym wiążemy układ odniesienia U. Po szynach, z prędkością V = c/ względem peronu,
Z przedstawionych poniżej stwierdzeń dotyczących wartości pędów wybierz poprawne. Otocz kółkiem jedną z odpowiedzi (A, B, C, D lub E).
Zadanie 1. (0 3) Podczas gry w badmintona zawodniczka uderzyła lotkę na wysokości 2 m, nadając jej poziomą prędkość o wartości 5. Lotka upadła w pewnej odległości od zawodniczki. Jest to odległość o jedną
Wyznaczanie stosunku e/m elektronu
Ćwiczenie 27 Wyznaczanie stosunku e/m elektronu 27.1. Zasada ćwiczenia Elektrony przyspieszane w polu elektrycznym wpadają w pole magnetyczne, skierowane prostopadle do kierunku ich ruchu. Wyznacza się
Sprawozdanie z zad. nr 4 Wahadło Matematyczne z Fizyki Komputerowej. Szymon Wawrzyniak / Artur Angiel / Gr. 5 / Poniedziałek 12:15
Sprawozdanie z zad. nr 4 Wahadło Matematyczne z Fizyki Komputerowej Szymon Wawrzyniak / Artur Angiel / Gr. 5 / Poniedziałek 12:15 =============================================== =========================
Pozorne orbity planet Z notatek prof. Antoniego Opolskiego. Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN
Pozorne orbity planet Z notatek prof. Antoniego Opolskiego Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN Początek Młody miłośnik astronomii patrzy w niebo Młody miłośnik astronomii
Sprawdzian Na rysunku przedstawiono siłę, którą kula o masie m przyciąga kulę o masie 2m.
Imię i nazwisko Data Klasa Wersja A Sprawdzian 1. 1. Orbita każdej planety jest elipsą, a Słońce znajduje się w jednym z jej ognisk. Treść tego prawa podał a) Kopernik. b) Newton. c) Galileusz. d) Kepler..
KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury
KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )
14 POLE GRAWITACYJNE. Włodzimierz Wolczyński. Wzór Newtona. G- stała grawitacji 6, Natężenie pola grawitacyjnego.
Włodzimierz Wolczyński 14 POLE GRAWITACYJNE Wzór Newtona M r m G- stała grawitacji Natężenie pola grawitacyjnego 6,67 10 jednostka [ N/kg] Przyspieszenie grawitacyjne jednostka [m/s 2 ] Praca w polu grawitacyjnym
Wstęp. Ruch po okręgu w kartezjańskim układzie współrzędnych
Wstęp Ruch po okręgu jest najprostszym przypadkiem płaskich ruchów krzywoliniowych. W ogólnym przypadku ruch po okręgu opisujemy równaniami: gdzie: dowolna funkcja czasu. Ruch odbywa się po okręgu o środku
Podstawy fizyki sezon 1 VII. Pole grawitacyjne*
Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha * Resnick, Halliday,
14R2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM ROZSZERZONY
14R2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM ROZSZERZONY Ruch jednostajny po okręgu Dynamika bryły sztywnej Pole grawitacyjne Rozwiązanie zadań należy zapisać w wyznaczonych
Fizyka 11. Janusz Andrzejewski
Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna
Aktualizacja, maj 2008 rok
1 00015 Mechanika nieba C Dane osobowe właściciela arkusza 00015 Mechanika nieba C Arkusz I i II Czas pracy 120/150 minut Instrukcja dla zdającego 1. Proszę sprawdzić, czy arkusz egzaminacyjny zawiera
Astronomia. Znając przyspieszenie grawitacyjne planety (ciała), obliczyć możemy ciężar ciała drugiego.
Astronomia M = masa ciała G = stała grawitacji (6,67 10-11 [N m 2 /kg 2 ]) R, r = odległość dwóch ciał/promień Fg = ciężar ciała g = przyspieszenie grawitacyjne ( 9,8 m/s²) V I = pierwsza prędkość kosmiczna
Fizyka 1(mechanika) AF14. Wykład 5
Fizyka 1(mechanika) 1100-1AF14 Wykład 5 Jerzy Łusakowski 30.10.2017 Plan wykładu Ziemia jako układ nieinercjalny Fizyka 1(mechanika) 1100-1AF14 Wykład 5 Dwaj obserwatorzy- związek między mierzonymi współrzędnymi
METODY OBLICZENIOWE. Projekt nr 3.4. Dariusz Ostrowski, Wojciech Muła 2FD/L03
METODY OBLICZENIOWE Projekt nr 3.4 Dariusz Ostrowski, Wojciech Muła 2FD/L03 Zadanie Nasze zadanie składało się z dwóch części: 1. Sformułowanie, przy użyciu metody Lagrange a II rodzaju, równania różniczkowego
W efekcie złożenia tych dwóch ruchów ciało porusza się ruchem złożonym po torze, który w tym przypadku jest łukiem paraboli.
1. Pocisk wystrzelony poziomo leciał t k = 10 *s+, spadł w odległości S = 600 *m+. Oblicz prędkośd początkową pocisku V0 =?, i z jakiej wysokości został wystrzelony, jak daleko zaleciałby ten pocisk, gdyby
Wstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 10 Tomasz Kwiatkowski 8 grudzień 2010 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 10 1/36 Plan wykładu Wyznaczanie mas ciał niebieskich Gwiazdy podwójne Optycznie
LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA
LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA CZĘŚĆ TEORETYCZNA Za każde zadanie można otrzymać maksymalnie 0 punktów. Zadanie 1. przedmiot. Gdzie znajduje się obraz i jakie jest jego powiększenie? Dla jakich
Informatyczne Systemy Sterowania
Adam Wiernasz Nr albumu: 161455 e-mail: 161455@student.pwr.wroc.pl Informatyczne Systemy Sterowania Laboratorium nr 1 Prowadzący: Dr inż. Magdalena Turowska I. Wykaz modeli matematycznych członów dynamicznych
GRAWITACJA MODUŁ 6 SCENARIUSZ TEMATYCZNY LEKCJA NR 2 FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA.
MODUŁ 6 SCENARIUSZ TEMATYCZNY GRAWITACJA OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI Z ELEMENTAMI TECHNOLOGII
Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia.
Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia. Grupa 1. Kinematyka 1. W ciągu dwóch sekund od wystrzelenia z powierzchni ziemi pocisk przemieścił się o 40 m w poziomie i o 53
ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał.
ZASADY DYNAMIKI Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał Dynamika klasyczna zbudowana jest na trzech zasadach podanych przez Newtona w 1687 roku I zasada dynamiki Istnieją
Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)
Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek
DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu
Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających
8. TRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA OSTREGO.
WYKŁAD 6 1 8. TRYGONOMETRIA. 8.1. FUNKCJE TRYGONOMETRYCZNE KĄTA OSTREGO. SINUSEM kąta nazywamy stosunek przyprostokątnej leżącej naprzeciw kąta do przeciwprostokątnej w trójkącie prostokątnym : =. COSINUSEM
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to
Prawa ruchu: dynamika
Prawa ruchu: dynamika Fizyka I (B+C) Wykład X: Dynamika ruchu po okręgu siła dośrodkowa Prawa ruchu w układzie nieinercjalnym siły bezwładności Prawa ruchu w układzie obracajacym się siła odśrodkowa siła
PF11- Dynamika bryły sztywnej.
Instytut Fizyki im. Mariana Smoluchowskiego Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Jagiellońskiego Zajęcia laboratoryjne w I Pracowni Fizycznej dla uczniów szkół ponadgimnazjalych
Treści dopełniające Uczeń potrafi:
P Lp. Temat lekcji Treści podstawowe 1 Elementy działań na wektorach podać przykłady wielkości fizycznych skalarnych i wektorowych, wymienić cechy wektora, dodać wektory, odjąć wektor od wektora, pomnożyć
MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ
MECHANIKA 2. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Prowadzący: dr Krzysztof Polko PLAN WYKŁADÓW 1. Podstawy kinematyki 2. Ruch postępowy i obrotowy bryły 3. Ruch płaski bryły 4. Ruch złożony i ruch względny 5. Ruch kulisty i ruch ogólny bryły
Kinematyka: opis ruchu
Kinematyka: opis ruchu Wstęp do Fizyki I (B+C) Wykład III: Pojęcia podstawowe punkt materialny, układ odniesienia, układ współrzędnych tor, prędkość, przyspieszenie Ruch jednostajny Pojęcia podstawowe
Wykład 10. Ruch w układach nieinercjalnych
Wykład 10 Ruch w układach nieinercjalnych Prawa Newtona są słuszne jedynie w układach inercjalnych. Ściśle mówiąc układami inercjalnymi nazywamy takie układy odniesienia, które albo spoczywają, albo poruszają
TRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA SKIEROWANEGO
TRYGONOMETRIA Trygonometria to dział matematyki, którego przedmiotem badań są związki między bokami i kątami trójkątów oraz tzw. funkcje trygonometryczne. Trygonometria powstała i rozwinęła się głównie
Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3.
Dynamika ruchu obrotowego Zauważyłem, że zadania dotyczące ruchu obrotowego bardzo często sprawiają maturzystom wiele kłopotów. A przecież wystarczy zrozumieć i stosować zasady dynamiki Newtona. Przeanalizujmy
M2. WYZNACZANIE MOMENTU BEZWŁADNOŚCI WAHADŁA OBERBECKA
M WYZNACZANE MOMENTU BEZWŁADNOŚC WAHADŁA OBERBECKA opracowała Bożena Janowska-Dmoch Do opisu ruchu obrotowego ciał stosujemy prawa dynamiki ruchu obrotowego, w których występują wielkości takie jak: prędkość
Grawitacja i astronomia, zakres podstawowy test wiedzy i kompetencji ZADANIA ZAMKNIĘTE
Grawitacja i astronomia, zakres podstawowy test wiedzy i kompetencji. Imię i nazwisko, klasa.. data Czas rozwiązywania testu: 40 minut. ZADANIA ZAMKNIĘTE W zadaniach od 1-4 wybierz i zapisz czytelnie jedną
Fizyka i Chemia Ziemi
Fizyka i Chemia Ziemi Temat 5: Zjawiska w układzie Ziemia - Księżyc T.J. Jopek jopek@amu.edu.pl IOA UAM 2012-01-26 T.J.Jopek, Fizyka i chemia Ziemi 1 Ruch orbitalny Księżyca Obserwowane tarcze Księżyca
Lista 3 Funkcje. Środkowa częśd podanej funkcji, to funkcja stała. Jej wykresem będzie poziomy odcinek na wysokości 4.
Lista 3 Funkcje. Zad 1. Narysuj wykres funkcji. Przykład 1:. Zacznijmy od sporządzenia tabelki dla każdej części podanej funkcji, uwzględniając podany zakres argumentów (dziedzinę): Weźmy na początek funkcję,
Wykład 5 - całki ruchu zagadnienia n ciał i perturbacje ruchu keplerowskiego
Wykład 5 - całki ruchu zagadnienia n ciał i perturbacje ruchu keplerowskiego 20.03.2013 Układ n ciał przyciągających się siłami grawitacji Mamy n ciał przyciągających się siłami grawitacji. Masy ciał oznaczamy
MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ
Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników
Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników 1. Podstawowe pojęcia związane z niewyważeniem Stan niewyważenia stan wirnika określony takim rozkładem masy, który w czasie wirowania wywołuje
Gdzie - lepkośd powietrza, - promieo obiektu (tutaj promieo balonika), - prędkośd obiektu (tutaj prędkośd balonika)
Doświadcznenie D3. Część teoretyczna Zadanie to można rozwiązad nagrywając (niemal idealny) ruch spadający balonika po linii prostej obok taśmy mierniczej i odczytując z niej przemieszczenie w ruchu balonika,
Ruch jednostajnie zmienny prostoliniowy
Ruch jednostajnie zmienny prostoliniowy Przyspieszenie w ruchu jednostajnie zmiennym prostoliniowym Jest to taki ruch, w którym wektor przyspieszenia jest stały, co do wartości (niezerowej), kierunku i
Wyznaczanie cieplnego współczynnika oporności właściwej metali
Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. grupa II Termin: 5 V 2009 Nr. ćwiczenia: 303 Temat ćwiczenia: Wyznaczanie cieplnego współczynnika oporności właściwej metali
Wektor położenia. Zajęcia uzupełniające. Mgr Kamila Rudź, Podstawy Fizyki. http://kepler.am.gdynia.pl/~karudz
Kartezjański układ współrzędnych: Wersory osi: e x x i e y y j e z z k r - wektor o współrzędnych [ x 0, y 0, z 0 ] Wektor położenia: r t =[ x t, y t,z t ] każda współrzędna zmienia się w czasie. r t =
Ruch pod wpływem sił zachowawczych
Ruch pod wpływem sił zachowawczych Fizyka I (B+C) Wykład XV: Energia potencjalna Siły centralne Ruch w polu grawitacyjnym Pole odpychajace Energia potencjalna Równania ruchu Znajomość energii potencjalnej
Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XXI:
Bryła sztywna Wstęp do Fizyki I (B+C) Wykład XXI: Porównanie ruchu obrotowego z ruchem postępowym Ogólne wyrażenie na moment pędu Tensor momentu bezwładności Osie główne Równania Eulera Bak swobodny Porównanie
Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna
Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna G m m r F = r r F = F Schemat oddziaływania: m pole sił m Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna Masa M jest
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 13 RUCH OBROTOWY BRYŁY SZTYWNEJ. CZĘŚĆ 3
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 13 RUCH OBROTOWY BRYŁY SZTYWNEJ. CZĘŚĆ 3 Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania PYTANIA ZAMKNIĘTE Zadanie
Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności
Zasady dynamiki Newtona Pęd i popęd Siły bezwładności Copyright by pleciuga@o2.pl Inercjalne układy odniesienia Układy inercjalne to takie układy odniesienia, względem których wszystkie ciała nie oddziałujące
Etap 1. Rysunek: Układy odniesienia
Wprowadzenie. Jaś i Małgosia kręcą się na karuzeli symetrycznej dwuramiennej. Siedzą na karuzeli zwróceni do siebie twarzami, symetrycznie względem osi obrotu karuzeli. Jaś ma dropsa, którego chce dać
Badanie zależności położenia cząstki od czasu w ruchu wzdłuż osi Ox
A: 1 OK Muszę to powtórzyć... Potrzebuję pomocy Badanie zależności położenia cząstki od czasu w ruchu wzdłuż osi Ox 1. Uruchom program Modellus. 2. Wpisz x do okna modelu. 3. Naciśnij przycisk Interpretuj
MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO Prowadzący: dr Krzysztof Polko WSTĘP z r C C(x C,y C,z C ) r C -r B B(x B,y B,z B ) r C -r A r B r B -r A A(x A,y A,z A ) Ciało sztywne
Bryła sztywna. zbiór punktów materialnych utrzymujących stałą odległość między sobą. Deformująca się piłka nie jest bryłą sztywną!
Bryła sztywna Ciało złożone z cząstek (punktów materialnych), które nie mogą się względem siebie przemieszczać. Siły utrzymujące punkty w stałych odległościach są siłami wewnętrznymi bryły sztywnej. zbiór
Kinematyka: opis ruchu
Kinematyka: opis ruchu Pojęcia podstawowe Punkt materialny Ciało, którego rozmiary można w danym zagadnieniu zaniedbać. Zazwyczaj przyjmujemy, że punkt materialny powinien być dostatecznie mały. Nie jest
Po zapoznaniu się z funkcją liniową możemy przyjśd do badania funkcji kwadratowej.
Po zapoznaniu się z funkcją liniową możemy przyjśd do badania funkcji kwadratowej. Definicja 1 Jednomianem stopnia drugiego nazywamy funkcję postaci: i a 0. Dziedziną tej funkcji jest zbiór liczb rzeczywistych
MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY
MODUŁ MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI Z ELEMENTAMI TECHNOLOGII
II. Równania autonomiczne. 1. Podstawowe pojęcia.
II. Równania autonomiczne. 1. Podstawowe pojęcia. Definicja 1.1. Niech Q R n, n 1, będzie danym zbiorem i niech f : Q R n będzie daną funkcją określoną na Q. Równanie różniczkowe postaci (1.1) x = f(x),
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/
Dynamika: układy nieinercjalne
Dynamika: układy nieinercjalne Spis treści 1 Układ inercjalny 2 Układy nieinercjalne 2.1 Opis ruchu 2.2 Prawa ruchu 2.3 Ruch poziomy 2.4 Równia 2.5 Spadek swobodny 3 Układy obracające się 3.1 Układ inercjalny
Bąk wirujący wokół pionowej osi jest w równowadze. Momenty działających sił są równe zero (zarówno względem środka masy S jak i punktu podparcia O).
Bryła sztywna (2) Bąk Równowaga Rozważmy bąk podparty wirujący do okoła pionowej osi. Z zasady zachowania mementu pędu wynika, że jeśli zapewnimy znikanie momentów sił to kierunek momentu pędu pozostanie
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
Notacja Denavita-Hartenberga
Notacja DenavitaHartenberga Materiały do ćwiczeń z Podstaw Robotyki Artur Gmerek Umiejętność rozwiązywania prostego zagadnienia kinematycznego jest najbardziej bazową umiejętność zakresu Robotyki. Wyznaczyć
Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..)
Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) 24.02.2014 Prawa Keplera Na podstawie obserwacji zgromadzonych przez Tycho Brahe (głównie obserwacji Marsa)
Zasada zachowania pędu
Zasada zachowania pędu Zasada zachowania pędu Układ izolowany Układem izolowanym nazwiemy układ, w którym każde ciało może w dowolny sposób oddziaływać z innymi elementami układu, ale brak jest oddziaływań
14-TYP-2015 POWTÓRKA PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII ROZSZERZONY
Włodzimierz Wolczyński 14-TYP-2015 POWTÓRKA PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII ROZSZERZONY Obejmuje działy u mnie wyszczególnione w konspektach jako 10 RUCH JEDNOSTAJNY PO OKRĘGU 11 POWTÓRKA
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
Konrad Słodowicz sk30792 AR22 Zadanie domowe satelita
Konrad Słodowicz sk3079 AR Zadanie domowe satelita Współrzędne kartezjańskie Do opisu ruchu satelity potrzebujemy 4 zmiennych stanu współrzędnych położenia i prędkości x =r x =r x 3 = r 3, x 4 = r 4 gdzie
Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych.
Wykład udostępniam na licencji Creative Commons: Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych. Piotr A. Dybczyński Związek czasu słonecznego z gwiazdowym. Zadanie:
Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc.
Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc. ZESTAW ZADAŃ NA ZAJĘCIA ROZGRZEWKA 1. Przypuśćmy, że wszyscy ludzie na świecie zgromadzili się w jednym miejscu na Ziemi i na daną komendę jednocześnie
Elementy rachunku różniczkowego i całkowego
Elementy rachunku różniczkowego i całkowego W paragrafie tym podane zostaną elementarne wiadomości na temat rachunku różniczkowego i całkowego oraz przykłady jego zastosowania w fizyce. Małymi literami
MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu
MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu Prowadzący: dr Krzysztof Polko Dynamiczne równania ruchu Druga zasada dynamiki zapisana w postaci: Jest dynamicznym wektorowym równaniem ruchu. Dynamiczne
Graficzne opracowanie wyników pomiarów 1
GRAFICZNE OPRACOWANIE WYNIKÓW POMIARÓW Celem pomiarów jest bardzo często potwierdzenie związku lub znalezienie zależności między wielkościami fizycznymi. Pomiar polega na wyznaczaniu wartości y wielkości
Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka
Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka SPIS TREŚCI Przedmowa... 7 1. PODSTAWY MECHANIKI... 11 1.1. Pojęcia podstawowe... 11 1.2. Zasada d Alemberta... 18 1.3. Zasada prac
URZĄDZENIE DO DEMONSTRACJI POWSTAWANIA KRZYWYCH LISSAJOUS
URZĄDZENIE DO DEMONSTRACJI POWSTAWANIA KRZYWYCH LISSAJOUS Urządzenie służące do pokazu krzywych Lissajous powstających w wyniku składania mechanicznych drgań harmonicznych zostało przedstawione na rys.
III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.
III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. Analiza stabilności rozwiązań stanowi ważną część jakościowej teorii równań różniczkowych. Jej istotą jest poszukiwanie odpowiedzi
WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA ĆWICZENIE
ĆWICZENIE 1 WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA Cel ćwiczenia: Doświadczalne potwierdzenie twierdzenia Steinera, wyznaczenie
Jak zmieni się wartość siły oddziaływania między dwoma ciałami o masie m każde, jeżeli odległość między ich środkami zmniejszy się dwa razy.
I ABC FIZYKA 2018/2019 Tematyka kartkówek oraz zestaw zadań na sprawdzian - Dział I Grawitacja 1.1 1. Podaj główne założenia teorii geocentrycznej Ptolemeusza. 2. Podaj treść II prawa Keplera. 3. Odpowiedz
3. FUNKCJA LINIOWA. gdzie ; ół,.
1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta
Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym
Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez
R o z d z i a ł 4 MECHANIKA CIAŁA SZTYWNEGO
R o z d z i a ł 4 MECHANIKA CIAŁA SZTYWNEGO 4.1. Bryła sztywna W dotychczasowych rozważaniach traktowaliśmy wszystkie otaczające nas ciała jako punkty materialne lub zbiory punktów materialnych. Jest to
PODSTAWY FIZYKI - WYKŁAD 3 ENERGIA I PRACA SIŁA WYPORU. Piotr Nieżurawski. Wydział Fizyki. Uniwersytet Warszawski
PODSTAWY FIZYKI - WYKŁAD 3 ENERGIA I PRACA SIŁA WYPORU Piotr Nieżurawski pniez@fuw.edu.pl Wydział Fizyki Uniwersytet Warszawski http://www.fuw.edu.pl/~pniez/bioinformatyka/ 1 Co to jest praca? Dla punktu
Drgania relaksacyjne w obwodzie RC
Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. grupa II Termin: 21 IV 2009 Nr. ćwiczenia: 311 Temat ćwiczenia: Drgania relaksacyjne w obwodzie RC Nr. studenta: 5 Nr.
Fizyka I. Kolokwium
Fizyka I. Kolokwium 13.01.2014 Wersja A UWAGA: rozwiązania zadań powinny być czytelne, uporządkowane i opatrzone takimi komentarzami, by tok rozumowania był jasny dla sprawdzającego. Wynik należy przedstawić
Egzamin maturalny z fizyki i astronomii 5 Poziom podstawowy
Egzamin maturalny z fizyki i astronomii 5 Poziom podstawowy 14. Kule (3 pkt) Dwie małe jednorodne kule A i B o jednakowych masach umieszczono w odległości 10 cm od siebie. Kule te oddziaływały wówczas
Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych.
Wykład udostępniam na licencji Creative Commons: Wyznaczanie długości i szerokości geograficznej z obserwacji astronomicznych. Piotr A. Dybczyński Związek czasu słonecznego z gwiazdowym. Zadanie:
Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule
Fizyka Kurs przygotowawczy na studia inżynierskie mgr Kamila Haule Grawitacja Grawitacja we Wszechświecie Planety przyciągają Księżyce Ziemia przyciąga Ciebie Słońce przyciąga Ziemię i inne planety Gwiazdy
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego
Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura
FUNKCJA LINIOWA - WYKRES
FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (Postać kierunkowa) Funkcja liniowa jest podstawowym typem funkcji. Jest to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości
MiBM sem. III Zakres materiału wykładu z fizyki
MiBM sem. III Zakres materiału wykładu z fizyki 1. Dynamika układów punktów materialnych 2. Elementy mechaniki relatywistycznej 3. Podstawowe prawa elektrodynamiki i magnetyzmu 4. Zasady optyki geometrycznej