CELE ANALIZY CZYNNIKOWEJ

Wielkość: px
Rozpocząć pokaz od strony:

Download "CELE ANALIZY CZYNNIKOWEJ"

Transkrypt

1 ANALIZA CZYNNIKOWA... stanowi zespół metod i procedur statystycznych pozwalających na badanie wzajemnych relacji między dużą liczbą zmiennych i wykrywanie ukrytych uwarunkowań, ktore wyjaśniają ich występowanie. Pozwala na sprowadzenie dużej liczby badanych zmiennych do znacznie mniejszej liczby wzajemnie niezależnych (nieskorelowanych) czynników. Wyodrębnione czynniki mają inną interpretację merytoryczną jednocześnie zachowując znaczną część informacji zawartych w zmiennych pierwotnych.

2 ANALIZA CZYNNIKOWA Przykład 1. Ocena nowej czekolady za pomocą zestawu 20 pytań, w których badani oceniali wiele jej różnych cech (smak, zapach, konsystencja, kolor, kształt, opakowanie itp.) Wykorzystując analizę czynnikową można sprawdzić, czy możliwe jest wyodrębnienie kilku ogólnych, ukrytych czynników, warunkujących stosunek respondentów do nowego produktu (np. wymiary "łącznej oceny smaku i zapachu" czy wyglądu).

3 ANALIZA CZYNNIKOWA Przykład 2. kwestionariusz dotyczący satysfakcji klientów danej firmy zwykle zawiera wiele pytań dotyczących różnych aspektów działania firmy analizowanie każdego pytania osobno pozwala uzyskać wiele szczegółowych informacji Zastosowanie analizy czynnikowej pozwala zaś na uzyskanie ogólnego, syntetycznego obrazu powodów wpływających na satysfakcję klientów / identyfikujących generalne nastawienie klientów.

4 CELE ANALIZY CZYNNIKOWEJ Redukcja liczby zmiennych bez istotnej straty zawartych w nich informacji Transformacja układu zmiennych w jakościowo nowy układ czynników głównych Tworzenie skal i miar złożonych z kilku pytań Ustalanie wag określających znaczenie, jakie należy przypisać poszczególnym zmiennym i czynnikom w trakcie analiz Ortogonalizacja przestrzeni, w której rozpatrywane są obiekty, będące przedmiotem badań

5 CELE ANALIZY CZYNNIKOWEJ Wykrywanie ukrytych związków między zmiennymi formułowanie i weryfikacja hipotez dotyczących istnienia i charakteru prawidłowości kształtujących związki między zjawiskami Opis zjawisk w kontekście nowych kategorii zdefiniowanych przez czynniki Prezentacja graficzna zbioru obserwacji wielowymiarowych

6 CELE ANALIZY CZYNNIKOWEJ Kiedy stosować? cel eksploracyjny rozpoznanie struktury zbioru danych gdy nie dysponujemy potencjalnym modelem głębokiej struktury czynników wyjaśniających związki między danymi dla zastosowania wykrytych czynników w dalszych analizach wielowymiarowych dla jednoznacznego wyliczenia wartości skal reprezentujących wymiary mierzone przez zestaw zmiennych

7 OGÓLNY PODZIAŁ METOD ANALIZY CZYNNIKOWEJ A. Model "klasyczny" analizy czynnikowej (podział wariancji całkowitej zmiennych na dwie części: wariancję wspólną i wariancję specyficzną) klasyczna analiza czynnikowa analiza kanoniczna B. Model "komponentowy" analizy czynnikowej (nieuwzględnianie struktury wariancji) metoda głównych składowych analiza współzależności

8 PROCEDURA ANALIZY CZYNNIKOWEJ Kroki: 1. wyodrębnienie czynników 2. rotacja czynników w celu łatwiejszej interpretacji Analiza czynnikowa to metoda modelowania liniowego Wymaga danych mierzonych na skali interwałowej, ale mogą być też skale Likerta (min. 5-cio punktowe) Bazuje na korelacji i kowariancji między zmiennymi.

9 PROCEDURA ANALIZY CZYNNIKOWEJ Przedmiot analizy: macierz danych, zawierająca n realizacji m zmiennych: X = [ ] x ij, x ij 0, j i = = 1,2,..., m 1,2,..., n W wyniku standaryzacji wartości zmiennych uzyskujemy zmienne o wartości oczekiwanej równej zero i jednostkowym odchyleniu standardowym: Z =[ z ij ]

10 PROCEDURA ANALIZY CZYNNIKOWEJ Zakładamy, że pomiędzy zmiennymi X j zachodzą związki, których siłę i kierunek określają współczynniki korelacji liniowej Pearsona zawarte w macierzy korelacji: R n 1 1 = ij ip ij... n n [ r ] = Z' Z = z z ( p, j = 1 m) i= 1

11 PROCEDURA ANALIZY CZYNNIKOWEJ W analizie czynnikowej przyjmuje się, że źródłem wzajemnych zależności między zmiennymi są ukryte wspólne czynniki, które można uznać za nośniki tej samej informacji. Możliwe jest zatem ich wyodrębnienie i zastąpienie nowymi, syntetycznymi zmiennymi. Ale zakładamy też, że nie cała wariancja zmiennych jest powodowana tymi ukrytymi czynnikami każda zmienna pierwotna charakteryzuje się też pewnymi specyficznymi właściwościami.

12 PROCEDURA ANALIZY CZYNNIKOWEJ Podstawą identyfikacji składników wspólnych i specyficznych jest w analizie czynnikowej podział wariancji poszczególnych zmiennych na wariancję wspólną i specyficzną: h j 2 - zasób zmienności wspólnej - część wariancji objaśniona przez czynniki wspólne w j 2 - zasób zmienności swoistej - pozostałość po odjęciu zasobu zmienności wspólnej od wariancji całkowitej

13 PROCEDURA ANALIZY CZYNNIKOWEJ Dalsze założenia: - czynniki wspólne nie są skorelowane ze sobą - czynniki specyficzne również nie są ze sobą skorelowane - czynniki wspólne nie są skorelowane z czynnikami specyficznymi - czynniki wspólne są zestandaryzowane, E(Fj)=0 i Var(Fj)=1

14 PROCEDURA ANALIZY CZYNNIKOWEJ Model analizy czynnikowej można zapisać w postaciw postaci układu równań liniowych: gdzie: Z = AF + BU Z - macierz j standaryzowanych zmiennych pierwotnych A - macierz ładunków czynnikowych czynników wspólnych F - macierz czynników wspólnych B - macierz ładunków czynnikowych czynników specyficznych U - macierz czynników specyficznych

15 PROCEDURA ANALIZY CZYNNIKOWEJ Zatem każda z obserwowalnych zmiennych Z jest funkcją liniową zmiennych nieobserwowalnych (czynników wspólnych) oraz pojedynczej zmiennej specyficznej: k Z = j l =1 a jl F l b j U j gdzie: m - liczba zmiennych pierwotnych k - liczba czynników głównych (wspólnych) Z j - j-ta zmienna standaryzowana (pierwotna) F l - l-ty czynnik wspólny U j - j-ty czynnik swoisty a jl ładunek czynnikowy l-tego czynnika Fl w j-tej zmiennej obserwowalnej

16 PROCEDURA ANALIZY CZYNNIKOWEJ W celu wyznaczenia współczynników modelu ładunków czynnikowych w kolejnym kroku zastępuje się w macierzy R elementy głównej przekątnej zasobami zmienności wspólnej (usuwamy z równania składnik reprezentujący wariancję specyficzną) ~ R = r~ = r dla i j ij ij r~ = h 2 dla i = j ij j i otrzymujemy tzw. zredukowaną macierz korelacji R

17 PROCEDURA ANALIZY CZYNNIKOWEJ h j 2 ustala się na poziomie: średniej arytmetycznej najwyższego co do modułu współczynnika korelacji j-tej zmiennej z pozostałymi h 2 j = max [ r ij ], i <> j korelacji przeciętnej h j 2 = m 1 k 1 i= 1 r ij

18 PROCEDURA ANALIZY CZYNNIKOWEJ Zatem podstawowe zadanie analizy czynnikowej sprowadza się do rozwiązania równania: ~ R = T AA ze względu na macierz A, czyli wyznaczenia ładunków czynnikowych składników wspólnych.

19 PROCEDURA ANALIZY CZYNNIKOWEJ Uporządkowane malejąco wartości własne macierzy ~ R λ = l oraz odpowiadające im wektory własne V: V = v ] ( j = 1... m) posłużą do wyznaczenia ładunków czynnikowych l-tego czynnika w zmiennych pierwotnych: a l jl [ λ ] (l = [ jl = λ 1 m [ j = m) v v jl 2 jl ] 1/ 2

20 PROCEDURA ANALIZY CZYNNIKOWEJ Kolejne wartości i wektory własne posłużą do uzyskania ładunków czynnikowych kolejnych czynników. Ładunki te odzwierciedlają korelację pierwotną i l-tym wspólnym czynnikiem. pomiędzy j-tą zmienną Znalezienie tego rozwiązania kończy właściwą analizę czynnikową.

21 ROTACJA CZYNNIKÓW Uzyskana macierz ładunków czynnikowych A nie jest jednym możliwym rozwiązaniem analizy czynnikowej. Poprzez obrót układu wzajemnie ortogonalnych osi - czynników głównych - można wygenerować nieskończenie wiele różnych macierzy ładunków. Dokonanie takiej rotacji pozwala często na takie ustalenie osi, aby odpowiadająca mu macierz ładunków zapewniła możliwie najłatwiejszą interpretację czynników.

22 ROTACJA CZYNNIKÓW Rotacja polega na znalezieniu ortogonalnej macierzy S (macierzy transformacji) spełniającej warunek: A 1 T = S A 0 T gdzie: A 0,A 1 - to wyjściowa i końcowa macierz ładunków,

23 ROTACJA CZYNNIKÓW Elementy macierzy transformacji S określają kąty, o jakie należy obrócić układ osi - czynników wspólnych tak, aby: - zmaksymalizować liczbę ładunków zerowych w każdej kolumnie macierzy czynników - zmaksymalizować korelacje między jak najmniejszą liczbą zmiennych, a każdym wyodrębnionym czynnikiem głównym

24 ROTACJA CZYNNIKÓW Innymi słowy - rotacja polega na sprowadzeniu struktury ładunków czynnikowych do prostej struktury, w której punkty reprezentujące zmienne skupiają się wokół osi czynników. Istotne jest, że wskutek rotacji zasoby zmienności wspólnej hj2 określające udział wszystkich czynników wspólnych w wyjaśnianiu wariancji zmiennej Xj nie ulegają zmianie.

25 ROTACJA CZYNNIKÓW Najczęściej stosuje się procedury rotacji ortogonalnej, z których najbardziej znanymi są varimax i quartimax. VARIMAX upraszcza interpretację czynników (minimalizuje liczbę zmiennych potrzebnych do wyjaśnienia danego czynnika) QUARTIMAX upraszcza interpretację zmiennych (minimalizuje liczbę czynników potrzebnych do wyjaśnienia danej zmiennej).

26 WYZNACZENIE WARTOŚCI CZYNNIKÓW Na koniec najczęściej potrzebny jest sposób wyznaczenia wartości poszczególnych czynników dla kolejnych obserwacji. Obliczanie realizacji czynników wspólnych odbywa się w oparciu o formułę: F = A T Z

27 ILE CZYNNIKÓW? Problemem w stosowaniu analizy czynnikowej jest określenie liczby czynników głównych Najczęściej spotykane techniki określania liczby czynników wspólnych to: a/ metoda "wartości własnej (lambda) większej od jedności" b/ metoda procentu wariancji tłumaczonej przez czynniki główne c/ metoda testu osypiska

28 ILE CZYNNIKÓW? a/ metoda "wartości własnej (lambda) większej od jedności" najczęściej spotykana jej podstawą jest to, że każdy czynnik powinien wyjaśniać zmienność co najmniej jednej zmiennej pierwotnej. Metoda ta powinna być stosowana gdy ilość zmiennych jest większa od 20. Gdy liczba zmiennych jest mniejsza istnieje tendencja wyodrębniania zbyt małej ilości czynników.

29 ILE CZYNNIKÓW? b/ metoda procentu wariancji tłumaczonej przez czynniki główne do ogólnej liczby wybranych czynników zalicza się te czynniki, które w sumie wyjaśniają 75%, 80% lub 90% wariancji, a żaden następny nie tłumaczy więcej niż 5% wariancji.

30 ILE CZYNNIKÓW? c/ metoda testu osypiska polega na sporządzeniu wykresu, na którym na osi poziomej wyznaczana jest ilość czynników a na osi pionowej - uzyskane wartości własne. Podstawowym zadaniem jest znalezienie "punktów załamania", w których rozpoczynają się kolejne "rumowiska" (w tych punktach zmienia się kąt załamania krzywej). Punkty te określają liczbę czynników kwalifikujących się do dalszej analizy. Metoda ta jest nieco bardziej "liberalna" niż metoda >1, pozwala włączyć do dalszej analizy nieco większą liczbę czynników.

31 NAZWY CZYNNIKÓW Nadawanie nazw nowym zmiennym (czynnikom) na bazie ładunków czynnikowych: należy wyodrębnić zmienne o najwyższych ładunkach czynnikowych względem danych czynników i poprzez analizę nazw zmiennych znaleźć wspólne ich odniesienie do danego, głębszego wymiaru

32 METODA GŁÓWNYCH SKŁADOWYCH A n al i za g łó w n y ch sk ł ad o w y ch (ang. principal components analysis) j est m eto d ą tran sf o rm acj i zm i en n y ch p i erw o tn y ch w e w zaj em n i e o rto g o n al n e, n o w e zm i en n e, tzw. główne składowe.

33 METODA GŁÓWNYCH SKŁADOWYCH Redukcja wymiaru przestrzeni cech, uporządkowanie ich na podzbiory (główne składowe) jest przydatna głównie ze względu na możliwość zinterpretowania relacji między składowymi, graficznej prezentacji konfiguracji porównywanych zmiennych, a wreszcie uporządkowania tych zmiennych według przyjętych cech.

34 METODA GŁÓWNYCH SKŁADOWYCH W analizie głównych składowych rozwiązywany problem można przedstawić następująco:

35 METODA GŁÓWNYCH SKŁADOWYCH Wszystkie zmienne pierwotne są poddane standaryzacji, a to oznacza, że ich wariancje są równe jedności (koła reprezentujące zmienne pierwotne mają jednakową średnicę). Nowa zmienna powinna wyjaśniać maksymalną ilość wariancji zmiennych pierwotnych (jej wariancja jest przedstawiona na rysunku obszarem zacieniowanym). Wariancja tej nowej zmiennej wyjaśniającej pewną ilość zmienność zmiennych pierwotnych jest nazywana jej wartością własną (eigenvalue).

36 PROCEDURA METODY GŁÓWNYCH SKŁADOWYCH Przedmiot analizy jak poprzednio: macierz danych, zawierająca n realizacji m zmiennych: X = [ ] x ij, x ij j = 1,2,..., m 0, i = 1,2,..., n W wyniku standaryzacji wartości zmiennych uzyskujemy zmienne o wartości oczekiwanej równej zero i jednostkowym odchyleniu standardowym: Z =[ z ij ]

37 PROCEDURA METODY GŁÓWNYCH SKŁADOWYCH Zakładamy, że pomiędzy zmiennymi X j zachodzą związki, których siłę i kierunek określają współczynniki korelacji liniowej Pearsona zawarte w macierzy korelacji: R n 1 1 = ij ip ij... n n [ r ] = Z' Z = z z ( p, j = 1 m) i= 1 Przy czym punkt wyjścia stanowi nieprzekształcona macierz korelacji

38 PROCEDURA METODY GŁÓWNYCH SKŁADOWYCH Podstawowe równanie metody głównych składowych można zapisać w postaciw postaci układu równań liniowych: Z T = AG T G = A T Z gdzie: Z - macierz j standaryzowanych zmiennych pierwotnych A - macierz ładunków czynnikowych składowych głównych G - macierz składowych głównych

39 PROCEDURA METODY GŁÓWNYCH SKŁADOWYCH Zatem każdy z wyodrębnionych czynników głównych G l jest liniową kombinacją obserwowalnych zmiennych Z: k G = l i=1 m j=1 a i j Z j gdzie: m liczba zmiennych pierwotnych k liczba składowych głównych (wszystkich skłądowych jest tyle ile zmiennych pierwotnych) Z j j-ta zmienna standaryzowana (pierwotna) G l l-ta skłądowa główna a jl ładunki czynnikowe

40 PROCEDURA METODY GŁÓWNYCH SKŁADOWYCH Rozwiązanie polega, podobnie jak poprzednio, na wyznaczeniu ładunków ajl, tak aby składowa główna wyjaśniała maksymalną część wariancji zmiennych pierwotnych. Każda l-ta główna składowa jest liniowa kombinacją zmiennych pierwotnych i wyjaśnia i-tą część całkowitej zmienności.

41 METODA GŁÓWNYCH SKŁADOWYCH Pierwsza główna składowa G 1 jest taką kombinacją dla której wariancja próbkowa jest największa i wyraża się wzorem: S 2 G1 = m m i = 1 j = 1 a i1 a j1 S ij i jest największa wśród wszystkich kombinacji liniowych takich, że: a 1 T a1 =1 (warunek jednoznacznego wyznaczenia wektora współczynników).

42 METODA GŁÓWNYCH SKŁADOWYCH Druga główną składową można przedstawić w sposób analogiczny. Jest ona kombinacja liniową zmiennych pierwotnych maksymalizującą wariancję przy warunkach: a T 1 a1 =1 oraz a T 1 a2 = 0 Drugi z nich zapewnia ortogonalność powstałych składowych. Konsekwencją tego jest sumowanie się kolejnych wariancji głównych składowych do wariancji całkowitej.

43 METODA GŁÓWNYCH SKŁADOWYCH Znaczenie i użyteczność składowej głównej jest mierzona wielkością wyjaśnianej przez nią całkowitej zmienności. I tak, jeśli w układzie sześciu zmiennych pierwsza składowa wyjaśnia np. 85% zmienności, to znaczy to, że prawie cała zmienność tego układu da się przedstawić na prostej zamiast w sześciu wymiarach.

44 METODA GŁÓWNYCH SKŁADOWYCH W efekcie powstaje nam tyle głównych składowych, ile było początkowo zmiennych (podobnie jak czynników w klasycznej analizie czynnikowej): nadal mamy układ m-wymiarowy. Ale w praktyce ograniczamy się do kilku pierwszych głównych składowych, które wyjaśniają z góry ustaloną część wariancji całkowitej, np. 75%.

45 Własności głównych składowych - są liniową kombinacją obserwowalnych zmiennych - są ortogonalne względem siebie - kolejne składowe wyjaśniają malejącą ilość łącznej wariancji zmiennych - suma wariancji składowych jest równa sumie wariancji zmiennych pierwotnych

46 PCA / FA Obie służą sprowadzaniu informacji zawartych w wielu zmiennych do stosunkowo niewielkiej liczby wyjaśniających je wymiarów. Pomimo że w praktyce wyniki uzyskiwane przy pomocy obu z nich są zbliżone, to nie są to warianty tej samej metody, ale różne metody oparte na odmiennych założeniach.

47 PCA / FA Analiza czynnikowa Analiza głównych składowych Ch. Spearman (1904), L.L. Thurstone (1913) H. Hotteling (1933) Obejmuje pewną część wariancji zmiennych, zwaną wariancją wspólną Obejmuje wariancję całkowitą zmiennych orientacja kowariancyjna: punktem wyjścia orientacja wariancyjna: punktem wyjścia jest jest zredukowana macierz korelacji zwykła macierz korelacji Zmienna pierwotna jest funkcją czynników wspólnych i swoistych Główna składowa jest funkcją zmiennych pierwotnych Celem analizy jest identyfikacja ukrytych zmiennych Czynniki mogą być zarówno niezależne, jak i skorelowane Celem analizy jest uproszczenie struktury danych Główne składowe są zawsze niezależne

ANALIZA CZYNNIKOWA Przykład 1

ANALIZA CZYNNIKOWA Przykład 1 ANALIZA CZYNNIKOWA... stanowi zespół metod i procedur statystycznych pozwalających na badanie wzajemnych relacji między dużą liczbą zmiennych i wykrywanie ukrytych uwarunkowań, ktore wyjaśniają ich występowanie.

Bardziej szczegółowo

Analiza składowych głównych. Wprowadzenie

Analiza składowych głównych. Wprowadzenie Wprowadzenie jest techniką redukcji wymiaru. Składowe główne zostały po raz pierwszy zaproponowane przez Pearsona(1901), a następnie rozwinięte przez Hotellinga (1933). jest zaliczana do systemów uczących

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XV: Zagadnienia redukcji wymiaru danych 2 lutego 2015 r. Standaryzacja danych Standaryzacja danych Własności macierzy korelacji Definicja Niech X będzie zmienną losową o skończonym drugim momencie.

Bardziej szczegółowo

Zmienne zależne i niezależne

Zmienne zależne i niezależne Analiza kanoniczna Motywacja (1) 2 Często w badaniach spotykamy problemy badawcze, w których szukamy zakresu i kierunku zależności pomiędzy zbiorami zmiennych: { X i Jak oceniać takie 1, X 2,..., X p }

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład XII: Zagadnienia redukcji wymiaru danych 12 maja 2014 Definicja Niech X będzie zmienną losową o skończonym drugim momencie. Standaryzacją zmiennej X nazywamy zmienną losową Z = X EX Var (X ). Definicja

Bardziej szczegółowo

Analiza składowych głównych

Analiza składowych głównych Analiza składowych głównych Wprowadzenie (1) W przypadku regresji naszym celem jest predykcja wartości zmiennej wyjściowej za pomocą zmiennych wejściowych, wykrycie związku między wielkościami wejściowymi

Bardziej szczegółowo

Analiza głównych składowych- redukcja wymiaru, wykł. 12

Analiza głównych składowych- redukcja wymiaru, wykł. 12 Analiza głównych składowych- redukcja wymiaru, wykł. 12 Joanna Jędrzejowicz Instytut Informatyki Konieczność redukcji wymiaru w eksploracji danych bazy danych spotykane w zadaniach eksploracji danych mają

Bardziej szczegółowo

Wprowadzenie (1) Przedmiotem analizy czynnikowej jest badanie wewnętrznych zależności w zbiorze zmiennych. Jest to modelowanie niejawne. Oprócz zmienn

Wprowadzenie (1) Przedmiotem analizy czynnikowej jest badanie wewnętrznych zależności w zbiorze zmiennych. Jest to modelowanie niejawne. Oprócz zmienn Analiza czynnikowa Wprowadzenie (1) Przedmiotem analizy czynnikowej jest badanie wewnętrznych zależności w zbiorze zmiennych. Jest to modelowanie niejawne. Oprócz zmiennych, które są bezpośrednio obserwowalne

Bardziej szczegółowo

Kolejna z analiz wielozmiennowych Jej celem jest eksploracja danych, poszukiwanie pewnych struktur, które mogą utworzyć wskaźniki

Kolejna z analiz wielozmiennowych Jej celem jest eksploracja danych, poszukiwanie pewnych struktur, które mogą utworzyć wskaźniki Analiza czynnikowa Kolejna z analiz wielozmiennowych Jej celem jest eksploracja danych, poszukiwanie pewnych struktur, które mogą utworzyć wskaźniki Budowa wskaźnika Indeks był banalny I miał wady: o Czy

Bardziej szczegółowo

Analiza korespondencji

Analiza korespondencji Analiza korespondencji Kiedy stosujemy? 2 W wielu badaniach mamy do czynienia ze zmiennymi jakościowymi (nominalne i porządkowe) typu np.: płeć, wykształcenie, status palenia. Punktem wyjścia do analizy

Bardziej szczegółowo

METODY CHEMOMETRYCZNE W IDENTYFIKACJI ŹRÓDEŁ POCHODZENIA

METODY CHEMOMETRYCZNE W IDENTYFIKACJI ŹRÓDEŁ POCHODZENIA METODY CHEMOMETRYCZNE W IDENTYFIKACJI ŹRÓDEŁ POCHODZENIA AMFETAMINY Waldemar S. Krawczyk Centralne Laboratorium Kryminalistyczne Komendy Głównej Policji, Warszawa (praca obroniona na Wydziale Chemii Uniwersytetu

Bardziej szczegółowo

Idea. Analiza składowych głównych Analiza czynnikowa Skalowanie wielowymiarowe Analiza korespondencji Wykresy obrazkowe.

Idea. Analiza składowych głównych Analiza czynnikowa Skalowanie wielowymiarowe Analiza korespondencji Wykresy obrazkowe. Idea (ang. Principal Components Analysis PCA) jest popularnym używanym narzędziem analizy danych. Na metodę tę można spojrzeć jak na pewną technikę redukcji wymiarowości danych. Jest to metoda nieparametryczna,

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Elementy statystyki wielowymiarowej

Elementy statystyki wielowymiarowej Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Elementy statystyki wielowymiarowej 1.1 Kowariancja i współczynnik korelacji 1.2 Macierz kowariancji 1.3 Dwumianowy rozkład normalny 1.4 Analiza składowych

Bardziej szczegółowo

Stosowana Analiza Regresji

Stosowana Analiza Regresji Stosowana Analiza Regresji Wykład VIII 30 Listopada 2011 1 / 18 gdzie: X : n p Q : n n R : n p Zał.: n p. X = QR, - macierz eksperymentu, - ortogonalna, - ma zera poniżej głównej diagonali. [ R1 X = Q

Bardziej szczegółowo

Analiza składowych głównych idea

Analiza składowych głównych idea Analiza składowych głównych idea Analiza składowych głównych jest najczęściej używanym narzędziem eksploracyjnej analizy danych. Na metodę tę można spojrzeć jak na pewną technikę redukcji wymiarowości

Bardziej szczegółowo

Zadanie 1. Za pomocą analizy rzetelności skali i wspólczynnika Alfa- Cronbacha ustalić, czy pytania ankiety stanowią jednorodny zbiór.

Zadanie 1. Za pomocą analizy rzetelności skali i wspólczynnika Alfa- Cronbacha ustalić, czy pytania ankiety stanowią jednorodny zbiór. L a b o r a t o r i u m S P S S S t r o n a 1 W zbiorze Pytania zamieszczono odpowiedzi 25 opiekunów dzieci w wieku 8. lat na następujące pytania 1 : P1. Dziecko nie reaguje na bieżące uwagi opiekuna gdy

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

10. Redukcja wymiaru - metoda PCA

10. Redukcja wymiaru - metoda PCA Algorytmy rozpoznawania obrazów 10. Redukcja wymiaru - metoda PCA dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. PCA Analiza składowych głównych: w skrócie nazywana PCA (od ang. Principle Component

Bardziej szczegółowo

1. Eliminuje się ze zbioru potencjalnych zmiennych te zmienne dla których korelacja ze zmienną objaśnianą jest mniejsza od krytycznej:

1. Eliminuje się ze zbioru potencjalnych zmiennych te zmienne dla których korelacja ze zmienną objaśnianą jest mniejsza od krytycznej: Metoda analizy macierzy współczynników korelacji Idea metody sprowadza się do wyboru takich zmiennych objaśniających, które są silnie skorelowane ze zmienną objaśnianą i równocześnie słabo skorelowane

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska. SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska INFORMACJE WSTĘPNE Hipotezy do uczenia się lub tworzenia

Bardziej szczegółowo

3. FUNKCJA LINIOWA. gdzie ; ół,.

3. FUNKCJA LINIOWA. gdzie ; ół,. 1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

Analiza współzależności dwóch cech I

Analiza współzależności dwóch cech I Analiza współzależności dwóch cech I Współzależność dwóch cech W tym rozdziale pokażemy metody stosowane dla potrzeb wykrywania zależności lub współzależności między dwiema cechami. W celu wykrycia tych

Bardziej szczegółowo

Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb

Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb Współzależność Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb (x i, y i ). Geometrycznie taką parę

Bardziej szczegółowo

Inżynieria biomedyczna, I rok, semestr letni 2014/2015 Analiza danych pomiarowych. Laboratorium VIII: Analiza kanoniczna

Inżynieria biomedyczna, I rok, semestr letni 2014/2015 Analiza danych pomiarowych. Laboratorium VIII: Analiza kanoniczna 1 Laboratorium VIII: Analiza kanoniczna Spis treści Laboratorium VIII: Analiza kanoniczna... 1 Wiadomości ogólne... 2 1. Wstęp teoretyczny.... 2 Przykład... 2 Podstawowe pojęcia... 2 Założenia analizy

Bardziej szczegółowo

TRANSFORMACJE I JAKOŚĆ DANYCH

TRANSFORMACJE I JAKOŚĆ DANYCH METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING TRANSFORMACJE I JAKOŚĆ DANYCH Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie.

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie. SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

Analiza współzależności zjawisk. dr Marta Kuc-Czarnecka

Analiza współzależności zjawisk. dr Marta Kuc-Czarnecka Analiza współzależności zjawisk dr Marta Kuc-Czarnecka Wprowadzenie Prawidłowości statystyczne mają swoje przyczyny, w związku z tym dla poznania całokształtu badanego zjawiska potrzebna jest analiza z

Bardziej szczegółowo

ZASTOSOWANIE TECHNIK CHEMOMETRYCZNYCH W BADANIACH ŚRODOWISKA. dr inż. Aleksander Astel

ZASTOSOWANIE TECHNIK CHEMOMETRYCZNYCH W BADANIACH ŚRODOWISKA. dr inż. Aleksander Astel ZASTOSOWANIE TECHNIK CHEMOMETRYCZNYCH W BADANIACH ŚRODOWISKA dr inż. Aleksander Astel Gdańsk, 22.12.2004 CHEMOMETRIA dziedzina nauki i techniki zajmująca się wydobywaniem użytecznej informacji z wielowymiarowych

Bardziej szczegółowo

KADD Metoda najmniejszych kwadratów funkcje nieliniowe

KADD Metoda najmniejszych kwadratów funkcje nieliniowe Metoda najmn. kwadr. - funkcje nieliniowe Metoda najmniejszych kwadratów Funkcje nieliniowe Procedura z redukcją kroku iteracji Przykłady zastosowań Dopasowanie funkcji wykładniczej Dopasowanie funkcji

Bardziej szczegółowo

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1 Wektory Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1.1 Dodawanie wektorów graficzne i algebraiczne. Graficzne - metoda równoległoboku. Sprowadzamy wektory

Bardziej szczegółowo

Programowanie celowe #1

Programowanie celowe #1 Programowanie celowe #1 Problem programowania celowego (PC) jest przykładem problemu programowania matematycznego nieliniowego, który można skutecznie zlinearyzować, tzn. zapisać (i rozwiązać) jako problem

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

W kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów:

W kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów: Na dzisiejszym wykładzie omówimy najważniejsze charakterystyki liczbowe występujące w statystyce opisowej. Poszczególne wzory będziemy podawać w miarę potrzeby w trzech postaciach: dla szeregu szczegółowego,

Bardziej szczegółowo

(x j x)(y j ȳ) r xy =

(x j x)(y j ȳ) r xy = KORELACJA. WSPÓŁCZYNNIKI KORELACJI Gdy w badaniu mamy kilka cech, często interesujemy się stopniem powiązania tych cech między sobą. Pod słowem korelacja rozumiemy współzależność. Mówimy np. o korelacji

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Wykład 5. Metoda eliminacji Gaussa

Wykład 5. Metoda eliminacji Gaussa 1 Wykład 5 Metoda eliminacji Gaussa Rozwiązywanie układów równań liniowych Układ równań liniowych może mieć dokładnie jedno rozwiązanie, nieskończenie wiele rozwiązań lub nie mieć rozwiązania. Metody dokładne

Bardziej szczegółowo

Hierarchiczna analiza skupień

Hierarchiczna analiza skupień Hierarchiczna analiza skupień Cel analizy Analiza skupień ma na celu wykrycie w zbiorze obserwacji klastrów, czyli rozłącznych podzbiorów obserwacji, wewnątrz których obserwacje są sobie w jakimś określonym

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

Badania eksperymentalne

Badania eksperymentalne Badania eksperymentalne Analiza CONJOINT mgr Agnieszka Zięba Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa Najpopularniejsze sposoby oceny wyników eksperymentu w schematach

Bardziej szczegółowo

KORELACJE I REGRESJA LINIOWA

KORELACJE I REGRESJA LINIOWA KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem

Bardziej szczegółowo

Analiza czynnikowa Analiza głównych składowych

Analiza czynnikowa Analiza głównych składowych Analiza czynnikowa Analiza głównych składowych Wielowymiarowa Analiza Danych z wykorzystaniem pakietu SPSS Joanna Ciecieląg, Marek Pęczkowski WNE UW Wskazniki Metryczne Kategorialne Modelowanie strukturalne

Bardziej szczegółowo

Budowanie macierzy danych geograficznych Procedura normalizacji Budowanie wskaźnika syntetycznego

Budowanie macierzy danych geograficznych Procedura normalizacji Budowanie wskaźnika syntetycznego Metody Analiz Przestrzennych Budowanie macierzy danych geograficznych Procedura normalizacji Budowanie wskaźnika syntetycznego mgr Marcin Semczuk Zakład Przedsiębiorczości i Gospodarki Przestrzennej Instytut

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

Metody numeryczne Wykład 4

Metody numeryczne Wykład 4 Metody numeryczne Wykład 4 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Metody skończone rozwiązywania

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych

Rozwiązywanie układów równań liniowych Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA I WSPOMAGANIA DECYZJI Rozproszone programowanie produkcji z wykorzystaniem

Bardziej szczegółowo

Skalowanie wielowymiarowe idea

Skalowanie wielowymiarowe idea Skalowanie wielowymiarowe idea Jedną z wad metody PCA jest możliwość używania jedynie zmiennych ilościowych, kolejnym konieczność posiadania pełnych danych z doświadczenia(nie da się użyć PCA jeśli mamy

Bardziej szczegółowo

Współczynniki korelacji czastkowej i wielorakiej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017

Współczynniki korelacji czastkowej i wielorakiej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017 STATYSTYKA OPISOWA Dr Alina Gleska Instytut Matematyki WE PP 18 listopada 2017 1 Regresja krzywoliniowa 2 Model potęgowy Model potęgowy y = αx β e można sprowadzić poprzez zlogarytmowanie obu stron równania

Bardziej szczegółowo

Równania liniowe. Rozdział Przekształcenia liniowe. Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem

Równania liniowe. Rozdział Przekształcenia liniowe. Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem Rozdział 6 Równania liniowe 6 Przekształcenia liniowe Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem F Definicja 6 Funkcję f : X Y spełniającą warunki: a) dla dowolnych x,

Bardziej szczegółowo

Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X1, X2, X3,...) na zmienną zależną (Y).

Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X1, X2, X3,...) na zmienną zależną (Y). Statystyka i opracowanie danych Ćwiczenia 12 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA WIELORAKA Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych

Bardziej szczegółowo

Własności wyznacznika

Własności wyznacznika Własności wyznacznika Rozwinięcie Laplace a względem i-tego wiersza: n det(a) = ( 1) i+j a ij M ij (A), j=1 gdzie M ij (A) to minor (i, j)-ty macierzy A, czyli wyznacznik macierzy uzyskanej z macierzy

Bardziej szczegółowo

Funkcje liniowe i wieloliniowe w praktyce szkolnej. Opracowanie : mgr inż. Renata Rzepińska

Funkcje liniowe i wieloliniowe w praktyce szkolnej. Opracowanie : mgr inż. Renata Rzepińska Funkcje liniowe i wieloliniowe w praktyce szkolnej Opracowanie : mgr inż. Renata Rzepińska . Wprowadzenie pojęcia funkcji liniowej w nauczaniu matematyki w gimnazjum. W programie nauczania matematyki w

Bardziej szczegółowo

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)

Bardziej szczegółowo

REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ. Analiza regresji i korelacji

REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ. Analiza regresji i korelacji Statystyka i opracowanie danych Ćwiczenia 5 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ MODEL REGRESJI LINIOWEJ Analiza regresji

Bardziej szczegółowo

10. Podstawowe wskaźniki psychometryczne

10. Podstawowe wskaźniki psychometryczne 10. Podstawowe wskaźniki psychometryczne q analiza własności pozycji testowych q metody szacowania mocy dyskryminacyjnej q stronniczość pozycji testowych q własności pozycji testowych a kształt rozkładu

Bardziej szczegółowo

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach. WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

Bardziej szczegółowo

Przekształcanie równań stanu do postaci kanonicznej diagonalnej

Przekształcanie równań stanu do postaci kanonicznej diagonalnej Przekształcanie równań stanu do postaci kanonicznej diagonalnej Przygotowanie: Dariusz Pazderski Liniowe przekształcenie równania stanu Rozważmy liniowe równanie stanu i równanie wyjścia układu niesingularnego

Bardziej szczegółowo

Statystyka. Opisowa analiza zjawisk masowych

Statystyka. Opisowa analiza zjawisk masowych Statystyka Opisowa analiza zjawisk masowych Typy rozkładów empirycznych jednej zmiennej Rozkładem empirycznym zmiennej nazywamy przyporządkowanie kolejnym wartościom zmiennej (x i ) odpowiadających im

Bardziej szczegółowo

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz

Bardziej szczegółowo

Analiza wariancji. dr Janusz Górczyński

Analiza wariancji. dr Janusz Górczyński Analiza wariancji dr Janusz Górczyński Wprowadzenie Powiedzmy, że badamy pewną populację π, w której cecha Y ma rozkład N o średniej m i odchyleniu standardowym σ. Powiedzmy dalej, że istnieje pewien czynnik

Bardziej szczegółowo

Metodologia badań psychologicznych. Wykład 12. Korelacje

Metodologia badań psychologicznych. Wykład 12. Korelacje Metodologia badań psychologicznych Lucyna Golińska SPOŁECZNA AKADEMIA NAUK Wykład 12. Korelacje Korelacja Korelacja występuje wtedy gdy dwie różne miary dotyczące tych samych osób, zdarzeń lub obiektów

Bardziej szczegółowo

przy warunkach początkowych: 0 = 0, 0 = 0

przy warunkach początkowych: 0 = 0, 0 = 0 MODELE MATEMATYCZNE UKŁADÓW DYNAMICZNYCH Podstawową formą opisu procesów zachodzących w członach lub układach automatyki jest równanie ruchu - równanie dynamiki. Opisuje ono zależność wielkości fizycznych,

Bardziej szczegółowo

Statystyka. Wykład 8. Magdalena Alama-Bućko. 23 kwietnia Magdalena Alama-Bućko Statystyka 23 kwietnia / 38

Statystyka. Wykład 8. Magdalena Alama-Bućko. 23 kwietnia Magdalena Alama-Bućko Statystyka 23 kwietnia / 38 Statystyka Wykład 8 Magdalena Alama-Bućko 23 kwietnia 2017 Magdalena Alama-Bućko Statystyka 23 kwietnia 2017 1 / 38 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia

Bardziej szczegółowo

Wielowymiarowa Analiza Korespondencji. Wielowymiarowa Analiza Danych z wykorzystaniem pakietu SPSS. Joanna Ciecieląg, Marek Pęczkowski WNE UW

Wielowymiarowa Analiza Korespondencji. Wielowymiarowa Analiza Danych z wykorzystaniem pakietu SPSS. Joanna Ciecieląg, Marek Pęczkowski WNE UW Wielowymiarowa Analiza Korespondencji Wielowymiarowa Analiza Danych z wykorzystaniem pakietu SPSS Joanna Ciecieląg, Marek Pęczkowski WNE UW ANALIZA KORESPONDENCJI opisowa i eksploracyjna technika analizy

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Badania operacyjne Problem Model matematyczny Metoda rozwiązania Znaleźć optymalny program produkcji. Zmaksymalizować 1 +3 2 2 3 (1) Przy ograniczeniach 3 1 2 +2 3 7 (2) 2 1 +4 2 12 (3) 4 1 +3 2 +8 3 10

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4 Inne układy doświadczalne 1) Układ losowanych bloków Stosujemy, gdy podejrzewamy, że może występować systematyczna zmienność między powtórzeniami np. - zmienność

Bardziej szczegółowo

Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna

Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna Badanie współzależności zmiennych Uwzględniając ilość zmiennych otrzymamy 4 odmiany zależności: Zmienna zależna jednowymiarowa oraz jedna

Bardziej szczegółowo

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji Ćwiczenie: Wybrane zagadnienia z korelacji i regresji W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Stanisza r xy = 0 zmienne nie są skorelowane 0 < r xy 0,1

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

Wykład 10 Skalowanie wielowymiarowe

Wykład 10 Skalowanie wielowymiarowe Wykład 10 Skalowanie wielowymiarowe Wrocław, 30.05.2018r Skalowanie wielowymiarowe (Multidimensional Scaling (MDS)) Główne cele MDS: przedstawienie struktury badanych obiektów przez określenie treści wymiarów

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych ozważmy układ n równań liniowych o współczynnikach a ij z n niewiadomymi i : a + a +... + an n d a a an d a + a +... + a n n d a a a n d an + an +... + ann n d n an an a nn n d

Bardziej szczegółowo

Szukanie struktury skali mierzącej problematyczne zachowania finansowe.

Szukanie struktury skali mierzącej problematyczne zachowania finansowe. Szukanie struktury skali mierzącej problematyczne zachowania finansowe. Celem poniższej analizy było stworzenie skali mierzącej problematyczne zachowania finansowej. Takie zachowania zdefiniowano jako

Bardziej szczegółowo

Statystyka. Wykład 4. Magdalena Alama-Bućko. 13 marca Magdalena Alama-Bućko Statystyka 13 marca / 41

Statystyka. Wykład 4. Magdalena Alama-Bućko. 13 marca Magdalena Alama-Bućko Statystyka 13 marca / 41 Statystyka Wykład 4 Magdalena Alama-Bućko 13 marca 2017 Magdalena Alama-Bućko Statystyka 13 marca 2017 1 / 41 Na poprzednim wykładzie omówiliśmy następujace miary rozproszenia: Wariancja - to średnia arytmetyczna

Bardziej szczegółowo

Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna

Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna Regresja wieloraka Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna zmienna niezależna (można zobrazować

Bardziej szczegółowo

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,

Bardziej szczegółowo

Wybór optymalnej liczby składowych w analizie czynnikowej Test Równolegości Horn a i test MAP Velicera

Wybór optymalnej liczby składowych w analizie czynnikowej Test Równolegości Horn a i test MAP Velicera Wybór optymalnej liczby składowych w analizie czynnikowej Test Równolegości Horn a i test MAP Velicera Wielu badaczy podejmuje decyzje o optymalnej liczbie składowych do wyodrębnienia na podstawie arbitralnych

Bardziej szczegółowo

MODELE LINIOWE. Dr Wioleta Drobik

MODELE LINIOWE. Dr Wioleta Drobik MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą

Bardziej szczegółowo

Statystyczna analiza danych

Statystyczna analiza danych Statystyczna analiza danych Korelacja i regresja Ewa Szczurek szczurek@mimuw.edu.pl Instytut Informatyki Uniwersytet Warszawski 1/30 Ostrożnie z interpretacją p wartości p wartości zależą od dwóch rzeczy

Bardziej szczegółowo

Układy równań liniowych i metody ich rozwiązywania

Układy równań liniowych i metody ich rozwiązywania Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +

Bardziej szczegółowo

X WYKŁAD STATYSTYKA. 14/05/2014 B8 sala 0.10B Godz. 15:15

X WYKŁAD STATYSTYKA. 14/05/2014 B8 sala 0.10B Godz. 15:15 X WYKŁAD STATYSTYKA 14/05/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 10 ANALIZA KORELACJI Korelacja 1. Współczynnik korelacji 2. Kowariancja 3. Współczynnik korelacji liniowej definicja 4. Estymacja współczynnika

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa

Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Spis treści Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp Bardzo często interesujący

Bardziej szczegółowo

Statystyka. Wykład 7. Magdalena Alama-Bućko. 16 kwietnia Magdalena Alama-Bućko Statystyka 16 kwietnia / 35

Statystyka. Wykład 7. Magdalena Alama-Bućko. 16 kwietnia Magdalena Alama-Bućko Statystyka 16 kwietnia / 35 Statystyka Wykład 7 Magdalena Alama-Bućko 16 kwietnia 2017 Magdalena Alama-Bućko Statystyka 16 kwietnia 2017 1 / 35 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia

Bardziej szczegółowo

Regresja logistyczna (LOGISTIC)

Regresja logistyczna (LOGISTIC) Zmienna zależna: Wybór opcji zachodniej w polityce zagranicznej (kodowana jako tak, 0 nie) Zmienne niezależne: wiedza o Unii Europejskiej (WIEDZA), zamieszkiwanie w regionie zachodnim (ZACH) lub wschodnim

Bardziej szczegółowo

Analiza współzależności zjawisk

Analiza współzależności zjawisk Analiza współzależności zjawisk Informacje ogólne Jednostki tworzące zbiorowość statystyczną charakteryzowane są zazwyczaj za pomocą wielu cech zmiennych, które nierzadko pozostają ze sobą w pewnym związku.

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y

Bardziej szczegółowo

Wprowadzenie do analizy dyskryminacyjnej

Wprowadzenie do analizy dyskryminacyjnej Wprowadzenie do analizy dyskryminacyjnej Analiza dyskryminacyjna to zespół metod statystycznych używanych w celu znalezienia funkcji dyskryminacyjnej, która możliwie najlepiej charakteryzuje bądź rozdziela

Bardziej szczegółowo

Regresja wielokrotna. PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

Regresja wielokrotna. PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Regresja wielokrotna Model dla zależności liniowej: Y=a+b 1 X 1 +b 2 X 2 +...+b n X n Cząstkowe współczynniki regresji wielokrotnej: b 1,..., b n Zmienne niezależne (przyczynowe): X 1,..., X n Zmienna

Bardziej szczegółowo

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn Metody numeryczne Wykład 3 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Pojęcia podstawowe Algebra

Bardziej szczegółowo

Algebra liniowa. Macierze i układy równań liniowych

Algebra liniowa. Macierze i układy równań liniowych Algebra liniowa Macierze i układy równań liniowych Własności wyznaczników det I = 1, det(ab) = det A det B, det(a T ) = det A. Macierz nieosobliwa Niech A będzie macierzą kwadratową wymiaru n n. Mówimy,

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO

STATYSTYKA I DOŚWIADCZALNICTWO STATYSTYKA I DOŚWIADCZALNICTWO Wykład 9 Analiza skupień wielowymiarowa klasyfikacja obiektów Metoda, a właściwie to zbiór metod pozwalających na grupowanie obiektów pod względem wielu cech jednocześnie.

Bardziej szczegółowo

Idea. Analiza składowych głównych Analiza czynnikowa Skalowanie wielowymiarowe Analiza korespondencji Wykresy obrazkowe.

Idea. Analiza składowych głównych Analiza czynnikowa Skalowanie wielowymiarowe Analiza korespondencji Wykresy obrazkowe. Idea (ang. principal components analysis PCA), zwana również dekompozycją według wartości osobliwych (SVD) lub dekompozycją spektralną, jest popularną techniką redukcji wymiarowości danych(liczby cech).

Bardziej szczegółowo

Estymacja parametrów w modelu normalnym

Estymacja parametrów w modelu normalnym Estymacja parametrów w modelu normalnym dr Mariusz Grządziel 6 kwietnia 2009 Model normalny Przez model normalny będziemy rozumieć rodzine rozkładów normalnych N(µ, σ), µ R, σ > 0. Z Centralnego Twierdzenia

Bardziej szczegółowo