SPOTKANIE 7: Redukcja wymiarów: PCA, Probabilistic PCA

Wielkość: px
Rozpocząć pokaz od strony:

Download "SPOTKANIE 7: Redukcja wymiarów: PCA, Probabilistic PCA"

Transkrypt

1 Wrocław University of Technology SPOTKANIE 7: Redukcja wymiarów: PCA, Probabilistic PCA Maciej Zięba Studenckie Koło Naukowe Estymator

2 Redukcja wymiarów Zmienne wejściowe x R D. Nie dysponujemy etykietami, tj. nie posiadamy zmiennej wyjściowej. Problem: znalezienie niskowymiarowej podprzestrzeni (rozmaitości) z R M, na której leżą dane D = {x 1,..., x N }. Obserwacje mogą zostać zakodowane przy pomocy układu współrzędnych związanego z niskowymiarową podprzestrzenią (rozmaitością). 2/30

3 Przejścia między R D i R M Kluczową kwestią w zadaniu redukcji wymiarów jest: wyznaczenie przejścia z przestrzeni wysokowymiarowej do niskowymiarowej, g : R D R M ; wyznaczenie przejścia z przestrzeni niskowymiarowej do wysokowymiarowej, f : R M R D. Część metod redukcji wymiarów wyznacza oba przekształcenia, jedno lub żadne. 3/30

4 Liniowe podprzestrzenie Dalej skupiać się będziemy na liniowych podprzestrzeniach. Zakładamy, że dane rozkładają się na niskowymiarowej, liniowej podprzestrzeni. Przekształcenia g i f są przekształceniami liniowymi, tj. g(x) = Ax + b oraz f(z) = Cz + d UWAGA: problem redukcji wymiarów nie jest problemem regresji liniowej! 4/30

5 Principal Component Analysis (PCA) Analiza składowych głównych (ang. Principal Component Analysis, PCA) służy do redukcji wymiarów poprzez liniową transformację zbioru zmiennych zależnych w mniej liczny zbiór zmiennych niezależnych, zwanych składowymi głównymi. Istnieją dwa równoważne sformułowania problemu: maksymalizacja wariancji: pozostawiamy M < D najbardziej informacyjnych zmiennych, co w przypadku zmiennych gaussowskich jest równoznaczne ze zmiennymi o największej wariancji; x 2 x n x n u 1 minimalizacja błędu: pozostawiamy M < D zmiennych, dla których suma kwadratów odległości punktów po zrzutowaniu do punktów oryginalnych będzie najmniejsza. x 1 5/30

6 Maksymalizacja wariancji (ang. maximum variance formulation) Interesuje nas zrzutowanie danych na podprzestrzeń liniową o wymiarze M < D tak, aby maksymalizować wariancję zrzutowanych danych. Załóżmy na chwilę, że M = 1. Definiujemy kierunek podprzestrzeni za pomocą wektora jednostkowego u 1 R D, czyli u T 1 u 1 = 1. Każdy x jest zrzutowany w punkt u T 1 x. Średnia zrzutowanych danych wynosi u T 1 x, gdzie średnia z próby: x = 1 N N x n. n=1 6/30

7 Maksymalizacja wariancji (2) Wariancja zrzutowanych danych wynosi 1 N N { u T 1 x n u T 1 x} 2 = u T 1 Su 1 n=1 gdzie empiryczna macierz kowariancji: S = 1 N N (x n x)(x n x) T. n=1 Interesuje nas rozwiązanie następującego problemu optymalizacji: max u 1 u T 1 Su 1 p.o. u T 1 u 1 = 1 7/30

8 Maksymalizacja wariancji (3) Funkcja Lagrange a : u T 1 Su 1 + λ 1 (1 u T 1 u 1 ). Rozwiązując względem u 1 (licząc pochodną i przyrównując do 0): Su 1 = λ 1 u 1 czyli u 1 jest wektorem własnym S. Mnożąc lewostronnie przez u T 1 mamy u T 1 Su 1 = λ 1 u T 1 u 1 }{{} =1 Zauważmy, że wariancja zrzutowanych danych będzie maksymalna, jeśli u 1 będzie wektorem własnym o największej wartości własnej λ 1. 8/30

9 Maksymalizacja wariancji (4) Wartości własne λ m odpowiadają za wariancję danych zrzutowanych na prostą o kierunku wyznaczonym przez wektor własny u m. Wyznaczenie M-wymiarowej podrzestrzeni sprowadza się więc do znalezienia M wektorów własnych u 1,..., u M empirycznej macierzy kowariancji S, odpowiadających M największym wartościom własnym λ 1,..., λ M. Złożoność obliczeniowa metody sprowadza się do wyznaczenia wektorów i wartości własnych: algorytm do wyznaczenia wszystkich: O(D 3 ). algorytm do wyznaczenia tylko M pierwszych: O(MD 2 ). 9/30

10 Minimalizacja błędu (ang. minimum-error formulation) Teraz interesuje nas minimalizowanie błędu zrzutowania. Wprowadźmy zbiór bazowych wektorów ortonormalnych rozpinających D-wymiarową przestrzeń {u d }, czyli u T i u j = δ ij. Każdy punkt może być reprezentowany jako kombinacja liniowa wektorów bazowych: x 2 x n u 1 D x n = α nd u d, d=1 x n gdzie współczynniki α nd są różne dla różnych punktów. x 1 Transformacja polega na rotacji współrzędnych do nowych określonych przez {u d }, zaś oryginalne składowe {x n1,..., x nd } są zastąpione przez {α n1,..., α nd }. 10/30

11 Minimalizacja błędu (2) Licząc iloczyn skalarny i korzystając z założenia o ortonormalności otrzymujemy: α nd = x T n u d. Zatem możemy zapisać: u 1 x n = D ( ) x T n u d ud. d=1 Interesuje nas znalezienie przybliżonej reprezentacji punktu za pomocą M < D zmiennych, dlatego zapiszmy: x 2 x n x n M D x n = z nm u m + b m u m, m=1 m=m+1 x 1 gdzie z nm zależy od punktu, zaś b m są stałe dla wszystkich punktów. 11/30

12 Minimalizacja błędu (3) Chcemy minimalizować błąd projekcji, tj. J = 1 N N x n x n 2. n=1 Licząc pochodną względem z nm i przyrównując do 0: x 2 u 1 z nm = x T n u m x n dla m = 1... M i podobnie względem b m : x n b m = x T u m dla m = M D. x 1 Wstawiając otrzymujemy: x n x n = D m=m+1 {(x n x) T u m } u m. 12/30

13 Minimalizacja błędu (4) Ostateczna postać funkcji celu: J = 1 N D = N D n=1 m=m+1 m=m+1 u T msu m (x T n u m x T u m ) 2 Interesuje nas rozwiązanie następującego problemu optymalizacji: min {u m} p.o. D u T msu m m=m+1 u T i u j = δ ij Przykładowo dla D = 2 i M = 1 musimy znaleźć takie u 2, które minimalizuje J przy ograniczeniu u T 2 u 2 = 1. Funkcja Lagrange a: u T 2 Su 2 + λ 2 (1 u T 2 u 2 ). 13/30

14 Minimalizacja błędu (5) Licząc pochodną po u 2 i przyrównując do 0: Su 2 = λ 2 u 2, czyli λ 2 jest wartością własną, a u 2 wektorem własnym. Wstawiając do funkcji celu otrzymujemy J = λ 2, czyli minimum osiągamy dla wektora własnego odpowiadającego mniejszej wartości własnej. W ogólnym przypadku interesuje nas znalezienie D M wektorów własnych o najmniejszych wartościach własnych. Wynik ten jest identyczny jak w sformułowaniu maksymalizacji wariancji, tj. podprzestrzeń jest rozpięta przez M wektorów własnych o największych wartościach własnych. 14/30

15 Rozkłady normalne - problemy z estymacją Załóżmy, że obserwujemy dane x R D, gdzie wymiar D jest bardzo duży i chcemy modelować je rozkładem normalnym: p(x) = N (x µ, Σ). Liczba parametrów takiego modelu wynosi D + D(D + 1)/2, co jest rzędu O(D 2 ). W przypadku, gdy D jest duże pojawia się problem z odwróceniem macierzy kowariancji Σ 1, gdy nie dysponujemy odpowiednią liczbą obserwacji. Pojawia się także problem z overfittigiem. Pojawia się pomysł, aby w parametryzacji rozkładu normalnego uwzględnić fakt, że dane rozłożone są na niskowymiarowej przestrzeni liniowej. 15/30

16 Ciągłe zmienne ukryte Załóżmy, że każdej obserwacji x R D odpowiada niskowymiarowa reprezentacja z R M, której nie obserwujemy. Są to ciągłe zmienne ukryte (ang. continuous latent variables). Zmienne ukryte modelujemy następującym rozkładem normalnym: p(z) = N (z 0, I), o zerowej średniej i jednostkowej macierzy kowariancji. Załóżmy, że istnieje między nimi liniowa zależność: gdzie szum ε N (ε 0, σ 2 I). x = Wz + µ + ε, Wtedy rozkład warunkowy jest liniowym modelem gaussowskim: p(x z) = N (x Wz + µ, σ 2 I). 16/30

17 Model Probabilistic PCA Korzystając z reguły brzegowej dla liniowego modelu gaussowskiego wyznaczamy rozkład p(x): p(x) = p(x z)p(z)dz = N (x µ, C), gdzie macierz kowariancji C = WW T + σ 2 I. Model ten nazywamy probabilistycznym PCA (PPCA). Macierz kowariancji posiada teraz M D + 1 parametrów, co jest istotnie mniejsze od D(D + 1)/2. Intuicyjnie macierz kowariancji uwzględnia tylko M najważniejszych korelacji w danych, a pozostałe modeluje wspólnym parametrem σ 2. 17/30

18 Uwagi do nowej parametryzacji 1. Zauważmy, że dla dowolnej macierzy ortogonalnej (reprezentującej obrót w przestrzeni), tj. RR T = I, mamy: W W T = WRR T W T, co prowadzi do tego samego rozkładu normalnego. Jest to ponownie problem nieidentyfikowalności (ang. non-identifiability), gdzie rozkład można znaleźć jedynie z dokładnością do macierzy obrotu. 2. Do odwrócenia macierzy C możemy skorzystać z zależności: C 1 = σ 2 I σ 2 WM 1 W T, gdzie macierz M = W T W + σ 2 I i jest wymiaru M M. Odwrócenie macierzy M ma złożoność O(M 3 ). Jest to istotnie mniejsze od złożoności odwracania macierzy C bez zastosowania powyższej zależności, która wynosi O(D 3 ). 18/30

19 Uczenie PPCA: Funkcja wiarygodności Załóżmy, że dysponujemy ciągiem obserwacji X = {x 1,..., x N }. Funkcja wiarygodności ma wtedy postać: p(x W, µ, σ 2 ) = N N (x n µ, WW T + σ 2 I). n=1 Biorąc jej zlogarytmowaną postać otrzymujemy: ln p(x W, µ, σ 2 ) = N 2 {D ln(2π) + ln C + Tr(C 1 S)}, gdzie S jest empiryczną macierzą kowariancji i wyrażona jest zależnością: S = 1 N (x n µ)(x n µ) T. N n=1 Ponadto C = WW T + σ 2 I oraz Tr( ) oznacza ślad macierzy (ang. trace). 19/30

20 Uczenie PPCA: Rozwiązanie analityczne Różniczkując zlogarytmowaną funkcję wiarygodności i stosując pewne przekształcenia algebraiczne można pokazać, że problem uczenia PPCA ma następujące analityczne rozwiązania: N µml = 1 N x n n=1 WML = U M (L M σ 2 I) 1/2 R, gdzie U M jest macierzą D M zawierającą M wektorów własnych odpowiadających największym wartościom własnym macierzy S. Ponadto L M oznacza diagonalną macierz M M zawierającą M największych wartości własnych λ m macierzy S. Dodatkowo R oznacza dowolną macierz obrotu problem nieidentyfikowalności. σ 2 ML = 1 D M D m=m+1 λ m, gdzie parametr σ 2 kumuluje w sobie niepewności z pozostałych stopni swobody nieuwzględnionych w macierzy W. 20/30

21 Uczenie PPCA: Algorytm Expectation-Maximization Załóżmy, że każdej zaobserwowanej zmiennej z ciągu X odpowiada zmienna ukryta z ciągu Z = {z 1,..., z N }. Zakładając, że zmienne ukryte są obserwowalne możemy sformułować zlogarytmowaną funkcję wiarygodności dla rozkładu łącznego p(x, z): ln p(x, Z µ, W, σ 2 ) = N {ln p(x n z n ) + ln p(z n )}. n=1 Algorytm EM szuka estymatora największej wiarygodności dla parametrów wykonując naprzemiennie dwa kroki. Krok E: Pozbywamy się zmiennych ukrytych poprzez wyznaczenie wartości oczekiwanej E Z [ln p(x, Z µ, W, σ 2 )] względem rozkładu a posteriori p(z x). Krok M: Wyznaczamy estymatory maksymalizujące E Z [ln p(x, Z µ, W, σ 2 )]. 21/30

22 Algorytm EM: Krok Expectation Korzystając ze wzoru Bayesa dla liniowego modelu gaussowskiego wyznaczamy rozkład a posteriori p(z x): p(z x) = N (z M 1 W T (x µ), σ 2 M 1 ), gdzie macierz M = W T W + σ 2 I. Wtedy otrzymujemy następującą wartość oczekiwaną: E Z [ln p(x, Z µ, W, σ 2 )] = N { D 2 ln(2πσ2 ) + M 2 ln(2π) n= Tr(E[z nz T n ]) + 1 2σ 2 x n µ 2 1 σ 2 E[z n] T W T (x n µ) + 1 } 2σ 2 Tr(E[z nz T n ]W T W), gdzie odpowiednio E[z n ] = M 1 W T (x n µ) oraz E[z n z T n ] = σ 2 M 1 + E[z n ]E[z n ] T. 22/30

23 Algorytm EM: Krok Maximization Różniczkując funkcję E Z [ln p(x, Z µ, W, σ 2 )] odpowiednio po parametrach otrzymujemy analityczne aktualizacje: Esytmator macierzy parametrów [ N ] [ N W new = (x n µ)e[z n] T E[z nz T n] n=1 n=1 ] 1 Estymator wariancji σ 2 new = 1 ND N { x n µ 2 2E[z n] T Wnew(x T n µ) n=1 + Tr(E[z nz T n]w T neww new)} Estymator średniej µ nie wymaga procedury EM. 23/30

24 Uczenie PPCA: Podsumowanie 1. Rozwiązanie analityczne Rozkład macierzy kowariancji na wektory własne (ang. eigenvalue decomposition) ma złożoność O(D 3 ). Wyznaczenie jedynie M pierwszych wektorów własnych ma złożoność O(MD 2 ). Ponadto samo wyliczenie macierzy kowariancji S ma złożoność O(ND 2 ). Z powyższych względów rozwiązanie analityczne może być stosowane jedynie w problemach, gdzie wymiar danych D nie jest bardzo duży ( 10 3 ). 2. Algorytm Expectation-Maximization Algorytm EM nie wymaga konstruowania macierzy kowariancji S. Pojedynczy krok algorytmu EM ma złożoność O(NDM), co jest znaczącą korzyścią dla danych wysokowymiarowych (np. zdjęcia), szczególnie jeśli M << D. 24/30

25 Rozszerzenia i inne modele Analiza czynnikowa (ang. Factor Analysis, FA) Jądrowe PCA (ang. Kernel PCA) Autoasocjacyjne sieci neuronowe (ang. Autoassociative Neural Networks) Nieliniowe metody redukcji wymiarów (ang. Nonlinear Dimensionality Reduction) 25/30

26 Analiza czynnikowa Zakładamy, podobnie jak w PCA, że obiekty x rozłożone są na niskowymiarowej przestrzeni z, gdzie ε N ( 0, Ψ), czyli x = Wz + µ + ε p(x z) = N (x Wz + µ, Ψ). Podobnie jak w PCA, dla zadanego z zmienne x stają się niezależne. W przeciwieństwie do PCA zakładamy jednak, że macierz kowariancji Ψ jest diagonalna, ale o różnych wartościach wariancji. W analizie czynnikowej wagi W nazywane są obciążeniem czynników (ang. factor loadings). Rozkład brzegowy: p(x) = N (x µ, WW T + Ψ) Ze względu na macierz Ψ, nie istnieje analityczne rozwiązanie największej wiarygodności dla W. 26/30

27 Jądrowe PCA W klasycznym PCA empiryczna macierz kowariancji wynosi (zakładając x = 0): S = 1 N N x n x T n. n=1 Wprowadzając nieliniową transformacją φ(x) na M-wymiarową przestrzeń cech, możemy zapisać empiryczną macierz kowariancji na przestrzeni cech (zakładając n φ(x n) = 0): C = 1 N N φ(x n )φ(x n ) T. n=1 Możemy zastosować kernel trick, wprowadzając funkcję jądra k(x n, x m ) = φ(x n ) T φ(x m ). Dalej rozwiązujemy analogicznie jak w PCA (problem wyznaczenia wartości własnych). x2 φ1 x1 v1 φ2 27/30

28 Autoasocjacyjne sieci neuronowe x D z M x D Zakładamy taką samą liczbę wejść i wyjść. inputs outputs Warstwa ukryta reprezentuje przestrzeń niskowymiarową, kodowaną za pomocą zmiennych binarnych. x 1 F1 z 1 F2 x 1 Wagi reprezentują wektory rozpinające niskowymiarową przestrzeń. xd inputs xd outputs x1 non-linear x1 x 3 z 2 F 1 F 2 x 3 S x 1 z 1 x 1 28/30

29 Nieliniowe metody redukcji wymiarów Mieszaniny rozkładów, np. mieszanina probabilistycznych PCA, mieszanina FA. Self organizing map, SOM (Kohonen, 1982) Generative topographic mappin, GTM (Bishop et al., 1996) Locally linear embedding (Roweis & Saul, 2000) Isometric feature map, isomap (Tenenbaum et al., 2000) Laplacian eigenmaps (Belkin & Niyogi, 2001) Gaussian Process Latent Variable Model, GPLVM (Lawrence, 2004) Maximum Variance Unfolding (Weinberger & Saul, 2006) Maximum Entropy Unfolding (Lawrence 2011) 29/30

30 Dziękuję za uwagę! 30/30

SPOTKANIE 9: Metody redukcji wymiarów

SPOTKANIE 9: Metody redukcji wymiarów Wrocław University of Technology SPOTKANIE 9: Metody redukcji wymiarów Piotr Klukowski* Studenckie Koło Naukowe Estymator piotr.klukowski@pwr.wroc.pl 08.12.2015 *Część slajdów pochodzi z prezentacji dr

Bardziej szczegółowo

SPOTKANIE 6: Klasteryzacja: K-Means, Expectation Maximization

SPOTKANIE 6: Klasteryzacja: K-Means, Expectation Maximization Wrocław University of Technology SPOTKANIE 6: Klasteryzacja: K-Means, Expectation Maximization Jakub M. Tomczak Studenckie Koło Naukowe Estymator jakub.tomczak@pwr.wroc.pl 4.1.213 Klasteryzacja Zmienne

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XV: Zagadnienia redukcji wymiaru danych 2 lutego 2015 r. Standaryzacja danych Standaryzacja danych Własności macierzy korelacji Definicja Niech X będzie zmienną losową o skończonym drugim momencie.

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład XII: Zagadnienia redukcji wymiaru danych 12 maja 2014 Definicja Niech X będzie zmienną losową o skończonym drugim momencie. Standaryzacją zmiennej X nazywamy zmienną losową Z = X EX Var (X ). Definicja

Bardziej szczegółowo

WYKŁAD 2. Problem regresji - modele liniowe

WYKŁAD 2. Problem regresji - modele liniowe Wrocław University of Technology WYKŁAD 2 Problem regresji - modele liniowe Maciej Zięba Politechnika Wrocławska Regresja Regresja (ang. Regression): Dysponujemy obserwacjami z odpowiadającymi im wartościami

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium JAVA Zadanie nr 2 Rozpoznawanie liter autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z problemem klasyfikacji

Bardziej szczegółowo

Rozpoznawanie obrazów

Rozpoznawanie obrazów Rozpoznawanie obrazów Ćwiczenia lista zadań nr 5 autorzy: A. Gonczarek, J.M. Tomczak Przykładowe problemy Klasyfikacja binarna Dla obrazu x zaproponowano dwie cechy φ(x) = (φ 1 (x) φ 2 (x)) T. Na obrazie

Bardziej szczegółowo

Podstawowe modele probabilistyczne

Podstawowe modele probabilistyczne Wrocław University of Technology Podstawowe modele probabilistyczne Maciej Zięba maciej.zieba@pwr.edu.pl Rozpoznawanie Obrazów, Lato 2018/2019 Pojęcie prawdopodobieństwa Prawdopodobieństwo reprezentuje

Bardziej szczegółowo

SPOTKANIE 3: Regresja: Regresja liniowa

SPOTKANIE 3: Regresja: Regresja liniowa Wrocław University of Technology SPOTKANIE 3: Regresja: Regresja liniowa Adam Gonczarek Studenckie Koło Naukowe Estymator adam.gonczarek@pwr.wroc.pl 22.11.2013 Rozkład normalny Rozkład normalny (ang. normal

Bardziej szczegółowo

Rozpoznawanie obrazów

Rozpoznawanie obrazów Rozpoznawanie obrazów Ćwiczenia lista zadań nr 7 autorzy: A. Gonczarek, J.M. Tomczak Przykładowe problemy Klasyfikacja binarna Dla obrazu x zaproponowano dwie cechy φ(x) = (φ 1 (x) φ 2 (x)) T. Na obrazie

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 2 autorzy: A. Gonczarek, J.M. Tomczak Metody estymacji Zad. 1 Pojawianie się spamu opisane jest zmienną losową x o rozkładzie dwupunktowym

Bardziej szczegółowo

Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów

Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,

Bardziej szczegółowo

Rozpoznawanie obrazów

Rozpoznawanie obrazów Rozpoznawanie obrazów Laboratorium Python Zadanie nr 1 Regresja liniowa autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, M. Zięba, J. Kaczmar Cel zadania Celem zadania jest implementacja liniowego zadania

Bardziej szczegółowo

10. Redukcja wymiaru - metoda PCA

10. Redukcja wymiaru - metoda PCA Algorytmy rozpoznawania obrazów 10. Redukcja wymiaru - metoda PCA dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. PCA Analiza składowych głównych: w skrócie nazywana PCA (od ang. Principle Component

Bardziej szczegółowo

Metoda największej wiarygodności

Metoda największej wiarygodności Rozdział Metoda największej wiarygodności Ogólnie w procesie estymacji na podstawie prób x i (każde x i może być wektorem) wyznaczamy parametr λ (w ogólnym przypadku również wektor) opisujący domniemany

Bardziej szczegółowo

WYKŁAD 4. Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie. autor: Maciej Zięba. Politechnika Wrocławska

WYKŁAD 4. Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie. autor: Maciej Zięba. Politechnika Wrocławska Wrocław University of Technology WYKŁAD 4 Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie autor: Maciej Zięba Politechnika Wrocławska Klasyfikacja Klasyfikacja (ang. Classification):

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska. SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska INFORMACJE WSTĘPNE Hipotezy do uczenia się lub tworzenia

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 3 Metody estymacji. Estymator największej wiarygodności Zad. 1 Pojawianie się spamu opisane jest zmienną losową y o rozkładzie zero-jedynkowym

Bardziej szczegółowo

Stosowana Analiza Regresji

Stosowana Analiza Regresji Stosowana Analiza Regresji Wykład VIII 30 Listopada 2011 1 / 18 gdzie: X : n p Q : n n R : n p Zał.: n p. X = QR, - macierz eksperymentu, - ortogonalna, - ma zera poniżej głównej diagonali. [ R1 X = Q

Bardziej szczegółowo

Elementy statystyki wielowymiarowej

Elementy statystyki wielowymiarowej Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Elementy statystyki wielowymiarowej 1.1 Kowariancja i współczynnik korelacji 1.2 Macierz kowariancji 1.3 Dwumianowy rozkład normalny 1.4 Analiza składowych

Bardziej szczegółowo

Wstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak

Wstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak Wstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak 1 Wprowadzenie. Zmienne losowe Podczas kursu interesować nas będzie wnioskowanie o rozpatrywanym zjawisku. Poprzez wnioskowanie rozumiemy

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 2 autorzy: A. Gonczarek, J.M. Tomczak Metody estymacji ML Zad. 1 Pojawianie się spamu opisane jest zmienną losową x o rozkładzie dwupunktowym

Bardziej szczegółowo

Jądrowe klasyfikatory liniowe

Jądrowe klasyfikatory liniowe Jądrowe klasyfikatory liniowe Waldemar Wołyński Wydział Matematyki i Informatyki UAM Poznań Wisła, 9 grudnia 2009 Waldemar Wołyński () Jądrowe klasyfikatory liniowe Wisła, 9 grudnia 2009 1 / 19 Zagadnienie

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 1 Regresja liniowa autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z liniowym zadaniem najmniejszych

Bardziej szczegółowo

Wprowadzenie do teorii ekonometrii. Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe

Wprowadzenie do teorii ekonometrii. Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe Wprowadzenie do teorii ekonometrii Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe Zajęcia Wykład Laboratorium komputerowe 2 Zaliczenie EGZAMIN (50%) Na egzaminie obowiązują wszystkie informacje

Bardziej szczegółowo

Oznacza to, że chcemy znaleźć minimum, a właściwie wartość najmniejszą funkcji

Oznacza to, że chcemy znaleźć minimum, a właściwie wartość najmniejszą funkcji Wykład 11. Metoda najmniejszych kwadratów Szukamy zależności Dane są wyniki pomiarów dwóch wielkości x i y: (x 1, y 1 ), (x 2, y 2 ),..., (x n, y n ). Przypuśćmy, że nanieśliśmy je na wykres w układzie

Bardziej szczegółowo

Wprowadzenie do uczenia maszynowego. Jakub Tomczak

Wprowadzenie do uczenia maszynowego. Jakub Tomczak Wprowadzenie do uczenia maszynowego Jakub Tomczak 2014 ii Rozdział 1 Pojęcia podstawowe 1.1 Wprowadzenie. Zmienne losowe ˆ Podczas kursu interesować nas będzie wnioskowanie o rozpatrywanym zjawisku. Poprzez

Bardziej szczegółowo

Metoda największej wiarygodności

Metoda największej wiarygodności Metoda największej wiarygodności Próbki w obecności tła Funkcja wiarygodności Iloraz wiarygodności Pomiary o różnej dokładności Obciążenie Informacja z próby i nierówność informacyjna Wariancja minimalna

Bardziej szczegółowo

Wprowadzenie. { 1, jeżeli ˆr(x) > 0, pozatym. Regresja liniowa Regresja logistyczne Jądrowe estymatory gęstości. Metody regresyjne

Wprowadzenie. { 1, jeżeli ˆr(x) > 0, pozatym. Regresja liniowa Regresja logistyczne Jądrowe estymatory gęstości. Metody regresyjne Wprowadzenie Prostym podejściem do klasyfikacji jest estymacja funkcji regresji r(x) =E(Y X =x)zpominięciemestymacjigęstościf k. Zacznijmyodprzypadkudwóchgrup,tj.gdy Y = {1,0}. Wówczasr(x) =P(Y =1 X =x)ipouzyskaniuestymatora

Bardziej szczegółowo

5. Analiza dyskryminacyjna: FLD, LDA, QDA

5. Analiza dyskryminacyjna: FLD, LDA, QDA Algorytmy rozpoznawania obrazów 5. Analiza dyskryminacyjna: FLD, LDA, QDA dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Liniowe funkcje dyskryminacyjne Liniowe funkcje dyskryminacyjne mają ogólną

Bardziej szczegółowo

Analiza składowych głównych. Wprowadzenie

Analiza składowych głównych. Wprowadzenie Wprowadzenie jest techniką redukcji wymiaru. Składowe główne zostały po raz pierwszy zaproponowane przez Pearsona(1901), a następnie rozwinięte przez Hotellinga (1933). jest zaliczana do systemów uczących

Bardziej szczegółowo

WYKŁAD 3. Klasyfikacja: modele probabilistyczne

WYKŁAD 3. Klasyfikacja: modele probabilistyczne Wrocław University of Technology WYKŁAD 3 Klasyfikacja: modele probabilistyczne Maciej Zięba Politechnika Wrocławska Klasyfikacja Klasyfikacja (ang. Classification): Dysponujemy obserwacjami z etykietami

Bardziej szczegółowo

Przestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH

Przestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH Katedra Matematyki i Ekonomii Matematycznej SGH 23 października 2018 Definicja iloczynu skalarnego Definicja Iloczynem skalarnym w przestrzeni liniowej R n nazywamy odwzorowanie ( ) : R n R n R spełniające

Bardziej szczegółowo

Fuzja sygnałów i filtry bayesowskie

Fuzja sygnałów i filtry bayesowskie Fuzja sygnałów i filtry bayesowskie Roboty Manipulacyjne i Mobilne dr inż. Janusz Jakubiak Katedra Cybernetyki i Robotyki Wydział Elektroniki, Politechnika Wrocławska Wrocław, 10.03.2015 Dlaczego potrzebna

Bardziej szczegółowo

Rozpoznawanie wzorców. Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki

Rozpoznawanie wzorców. Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki Rozpoznawanie wzorców Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki mbereta@pk.edu.pl beretam@torus.uck.pk.edu.pl www.michalbereta.pl Twierzdzenie: Prawdopodobieostwo, że n obserwacji wybranych

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 3 autorzy: A. Gonczarek, J.M. Tomczak Zbiory i funkcje wypukłe Zad. 1 Pokazać, że następujące zbiory są wypukłe: a) płaszczyzna S = {x

Bardziej szczegółowo

KADD Minimalizacja funkcji

KADD Minimalizacja funkcji Minimalizacja funkcji Poszukiwanie minimum funkcji Foma kwadratowa Metody przybliżania minimum minimalizacja Minimalizacja w n wymiarach Metody poszukiwania minimum Otaczanie minimum Podział obszaru zawierającego

Bardziej szczegółowo

Analiza głównych składowych- redukcja wymiaru, wykł. 12

Analiza głównych składowych- redukcja wymiaru, wykł. 12 Analiza głównych składowych- redukcja wymiaru, wykł. 12 Joanna Jędrzejowicz Instytut Informatyki Konieczność redukcji wymiaru w eksploracji danych bazy danych spotykane w zadaniach eksploracji danych mają

Bardziej szczegółowo

Zawansowane modele wyborów dyskretnych

Zawansowane modele wyborów dyskretnych Zawansowane modele wyborów dyskretnych Jerzy Mycielski Uniwersytet Warszawski grudzien 2013 Jerzy Mycielski (Uniwersytet Warszawski) Zawansowane modele wyborów dyskretnych grudzien 2013 1 / 16 Model efektów

Bardziej szczegółowo

Metody eksploracji danych 2. Metody regresji. Piotr Szwed Katedra Informatyki Stosowanej AGH 2017

Metody eksploracji danych 2. Metody regresji. Piotr Szwed Katedra Informatyki Stosowanej AGH 2017 Metody eksploracji danych 2. Metody regresji Piotr Szwed Katedra Informatyki Stosowanej AGH 2017 Zagadnienie regresji Dane: Zbiór uczący: D = {(x i, y i )} i=1,m Obserwacje: (x i, y i ), wektor cech x

Bardziej szczegółowo

Analiza składowych głównych

Analiza składowych głównych Analiza składowych głównych Wprowadzenie (1) W przypadku regresji naszym celem jest predykcja wartości zmiennej wyjściowej za pomocą zmiennych wejściowych, wykrycie związku między wielkościami wejściowymi

Bardziej szczegółowo

ANALIZA CZYNNIKOWA Przykład 1

ANALIZA CZYNNIKOWA Przykład 1 ANALIZA CZYNNIKOWA... stanowi zespół metod i procedur statystycznych pozwalających na badanie wzajemnych relacji między dużą liczbą zmiennych i wykrywanie ukrytych uwarunkowań, ktore wyjaśniają ich występowanie.

Bardziej szczegółowo

Metoda największej wiarogodności

Metoda największej wiarogodności Wprowadzenie Założenia Logarytm funkcji wiarogodności Metoda Największej Wiarogodności (MNW) jest bardziej uniwersalną niż MNK metodą szacowania wartości nieznanych parametrów Wprowadzenie Założenia Logarytm

Bardziej szczegółowo

SPOTKANIE 4: Klasyfikacja: Regresja logistyczna

SPOTKANIE 4: Klasyfikacja: Regresja logistyczna Wrocław University of Technology SPOTKANIE 4: Klasyfikacja: Regresja logistyczna Szymon Zaręba Studenckie Koło Naukowe Estymator 179226@student.pwr.wroc.pl 23.11.2012 Rozkład dwupunktowy i dwumianowy Rozkład

Bardziej szczegółowo

Statystyka opisowa. Wykład V. Regresja liniowa wieloraka

Statystyka opisowa. Wykład V. Regresja liniowa wieloraka Statystyka opisowa. Wykład V. e-mail:e.kozlovski@pollub.pl Spis treści 1 Prosta regresji cechy Y względem cech X 1,..., X k. 2 3 Wyznaczamy zależność cechy Y od cech X 1, X 2,..., X k postaci Y = α 0 +

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo

Aproksymacja funkcji a regresja symboliczna

Aproksymacja funkcji a regresja symboliczna Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą

Bardziej szczegółowo

Wykład 10 Skalowanie wielowymiarowe

Wykład 10 Skalowanie wielowymiarowe Wykład 10 Skalowanie wielowymiarowe Wrocław, 30.05.2018r Skalowanie wielowymiarowe (Multidimensional Scaling (MDS)) Główne cele MDS: przedstawienie struktury badanych obiektów przez określenie treści wymiarów

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Wykład 7

Stanisław Cichocki Natalia Nehrebecka. Wykład 7 Stanisław Cichocki Natalia Nehrebecka Wykład 7 1 1. Metoda Największej Wiarygodności MNW 2. Założenia MNW 3. Własności estymatorów MNW 4. Testowanie hipotez w MNW 2 1. Metoda Największej Wiarygodności

Bardziej szczegółowo

WEKTORY I WARTOŚCI WŁASNE MACIERZY. = λ c (*) problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej

WEKTORY I WARTOŚCI WŁASNE MACIERZY. = λ c (*) problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej WEKTORY I WARTOŚCI WŁASNE MACIERZY Ac λ c (*) ( A λi) c nietrywialne rozwiązanie gdy det A λi problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej A - macierzowa

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 2 Detekcja twarzy autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się algorytmem gradientu prostego

Bardziej szczegółowo

Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa

Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Spis treści Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp Bardzo często interesujący

Bardziej szczegółowo

REGRESJA LINIOWA Z UOGÓLNIONĄ MACIERZĄ KOWARIANCJI SKŁADNIKA LOSOWEGO. Aleksander Nosarzewski Ekonometria bayesowska, prowadzący: dr Andrzej Torój

REGRESJA LINIOWA Z UOGÓLNIONĄ MACIERZĄ KOWARIANCJI SKŁADNIKA LOSOWEGO. Aleksander Nosarzewski Ekonometria bayesowska, prowadzący: dr Andrzej Torój 1 REGRESJA LINIOWA Z UOGÓLNIONĄ MACIERZĄ KOWARIANCJI SKŁADNIKA LOSOWEGO Aleksander Nosarzewski Ekonometria bayesowska, prowadzący: dr Andrzej Torój 2 DOTYCHCZASOWE MODELE Regresja liniowa o postaci: y

Bardziej szczegółowo

Optymalizacja systemów

Optymalizacja systemów Optymalizacja systemów Laboratorium - problem detekcji twarzy autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, P. Klukowski Cel zadania Celem zadania jest zapoznanie się z gradientowymi algorytmami optymalizacji

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K

Bardziej szczegółowo

w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.

w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych. Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(), zwaną funkcją aproksymującą

Bardziej szczegółowo

KADD Minimalizacja funkcji

KADD Minimalizacja funkcji Minimalizacja funkcji n-wymiarowych Forma kwadratowa w n wymiarach Procedury minimalizacji Minimalizacja wzdłuż prostej w n-wymiarowej przestrzeni Metody minimalizacji wzdłuż osi współrzędnych wzdłuż kierunków

Bardziej szczegółowo

Rozkłady wielu zmiennych

Rozkłady wielu zmiennych Rozkłady wielu zmiennych Uogólnienie pojęć na rozkład wielu zmiennych Dystrybuanta, gęstość prawdopodobieństwa, rozkład brzegowy, wartości średnie i odchylenia standardowe, momenty Notacja macierzowa Macierz

Bardziej szczegółowo

Optymalizacja ciągła

Optymalizacja ciągła Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej

Bardziej szczegółowo

Modele zapisane w przestrzeni stanów

Modele zapisane w przestrzeni stanów Modele zapisane w przestrzeni stanów Modele Przestrzeni Stanów (State Space Models) sa to modele, w których część parametrów jest nieobserwowalna i losowa. Zachowanie wielowymiarowej zmiennej y t zależy

Bardziej szczegółowo

SVM: Maszyny Wektorów Podpieraja cych

SVM: Maszyny Wektorów Podpieraja cych SVM 1 / 24 SVM: Maszyny Wektorów Podpieraja cych Nguyen Hung Son Outline SVM 2 / 24 1 Wprowadzenie 2 Brak liniowej separowalności danych Nieznaczna nieseparowalność Zmiana przetrzeń atrybutów 3 Implementacja

Bardziej szczegółowo

Wstęp. Regresja logistyczna. Spis treści. Hipoteza. powrót

Wstęp. Regresja logistyczna. Spis treści. Hipoteza. powrót powrót Spis treści 1 Wstęp 2 Regresja logistyczna 2.1 Hipoteza 2.2 Estymacja parametrów 2.2.1 Funkcja wiarygodności 3 Uogólnione modele liniowe 3.1 Rodzina wykładnicza 3.1.1 Rozkład Bernouliego 3.1.2 Rozkład

Bardziej szczegółowo

SPOTKANIE 2: Wprowadzenie cz. I

SPOTKANIE 2: Wprowadzenie cz. I Wrocław University of Technology SPOTKANIE 2: Wprowadzenie cz. I Piotr Klukowski Studenckie Koło Naukowe Estymator piotr.klukowski@pwr.edu.pl 17.10.2016 UCZENIE MASZYNOWE 2/27 UCZENIE MASZYNOWE = Konstruowanie

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 10. Homomorfizmy Definicja 1. Niech V, W będą dwiema przestrzeniami liniowymi nad ustalonym ciałem, odwzorowanie ϕ : V W nazywamy homomorfizmem

Bardziej szczegółowo

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem

Bardziej szczegółowo

7. Maszyny wektorów podpierajacych SVMs

7. Maszyny wektorów podpierajacych SVMs Algorytmy rozpoznawania obrazów 7. Maszyny wektorów podpierajacych SVMs dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Maszyny wektorów podpierajacych - SVMs Maszyny wektorów podpierających (ang.

Bardziej szczegółowo

1 Formy hermitowskie. GAL (Informatyka) Wykład - formy hermitowskie. Paweł Bechler

1 Formy hermitowskie. GAL (Informatyka) Wykład - formy hermitowskie. Paweł Bechler GAL (Informatyka) Wykład - formy hermitowskie Wersja z dnia 23 stycznia 2014 Paweł Bechler 1 Formy hermitowskie Niech X oznacza przestrzeń liniową nad ciałem K. Definicja 1. Funkcję φ : X X K nazywamy

Bardziej szczegółowo

INTERPOLACJA I APROKSYMACJA FUNKCJI

INTERPOLACJA I APROKSYMACJA FUNKCJI Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Wprowadzenie Na czym polega interpolacja? Interpolacja polega

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XIII: Prognoza. 26 stycznia 2015 Wykład XIII: Prognoza. Prognoza (predykcja) Przypuśćmy, że mamy dany ciąg liczb x 1, x 2,..., x n, stanowiących wyniki pomiaru pewnej zmiennej w czasie wielkości

Bardziej szczegółowo

WYKŁAD 8 ANALIZA REGRESJI

WYKŁAD 8 ANALIZA REGRESJI WYKŁAD 8 ANALIZA REGRESJI Regresja 1. Metoda najmniejszych kwadratów-regresja prostoliniowa 2. Regresja krzywoliniowa 3. Estymacja liniowej funkcji regresji 4. Testy istotności współczynnika regresji liniowej

Bardziej szczegółowo

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...

Bardziej szczegółowo

Elementy Modelowania Matematycznego Wykład 7 Programowanie nieliniowe i całkowitoliczbowe

Elementy Modelowania Matematycznego Wykład 7 Programowanie nieliniowe i całkowitoliczbowe Spis treści Elementy Modelowania Matematycznego Wykład 7 i całkowitoliczbowe Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp 2 3 Spis treści Spis treści 1 Wstęp

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka

Stanisław Cichocki. Natalia Nehrebecka Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych Komputerowa analiza danych doświadczalnych Wykład 9 27.04.2018 dr inż. Łukasz Graczykowski lukasz.graczykowski@pw.edu.pl Semestr letni 2017/2018 Metoda największej wiarygodności ierównosć informacyjna

Bardziej szczegółowo

O ŚREDNIEJ STATYSTYCZNEJ

O ŚREDNIEJ STATYSTYCZNEJ Od średniej w modelu gaussowskim do kwantyli w podstawowym modelu nieparametrycznym IMPAN 1.X.2009 Rozszerzona wersja wykładu: O ŚREDNIEJ STATYSTYCZNEJ Ryszard Zieliński XII Międzynarodowe Warsztaty dla

Bardziej szczegółowo

Informacja o przestrzeniach Hilberta

Informacja o przestrzeniach Hilberta Temat 10 Informacja o przestrzeniach Hilberta 10.1 Przestrzenie unitarne, iloczyn skalarny Niech dana będzie przestrzeń liniowa X. Załóżmy, że każdej parze elementów x, y X została przyporządkowana liczba

Bardziej szczegółowo

Szacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE. Joanna Sawicka

Szacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE. Joanna Sawicka Szacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE Joanna Sawicka Plan prezentacji Model Poissona-Gamma ze składnikiem regresyjnym Konstrukcja optymalnego systemu Bonus- Malus Estymacja

Bardziej szczegółowo

1. Zbadać liniową niezależność funkcji x, 1, x, x 2 w przestrzeni liniowej funkcji ciągłych na przedziale [ 1, ).

1. Zbadać liniową niezależność funkcji x, 1, x, x 2 w przestrzeni liniowej funkcji ciągłych na przedziale [ 1, ). B 2 Suma Zbadać, czy liniowo niezależne wektory u, v, w stanowią bazę przestrzeni liniowej lin { u + 2 v + w, u v + 2 w, 3 u + 5 w } 2 Współrzędne wektora (, 4, 5, 4 ) w pewnej bazie podprzestrzeni U R

Bardziej szczegółowo

Regresja nieparametryczna series estimator

Regresja nieparametryczna series estimator Regresja nieparametryczna series estimator 1 Literatura Bruce Hansen (2018) Econometrics, rozdział 18 2 Regresja nieparametryczna Dwie główne metody estymacji Estymatory jądrowe Series estimators (estymatory

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.

Bardziej szczegółowo

1.1 Klasyczny Model Regresji Liniowej

1.1 Klasyczny Model Regresji Liniowej 1.1 Klasyczny Model Regresji Liniowej Klasyczny model Regresji Liniowej jest bardzo użytecznym narzędziem służącym do analizy danych empirycznych. Analiza regresji zajmuje się opisem zależności między

Bardziej szczegółowo

CELE ANALIZY CZYNNIKOWEJ

CELE ANALIZY CZYNNIKOWEJ ANALIZA CZYNNIKOWA... stanowi zespół metod i procedur statystycznych pozwalających na badanie wzajemnych relacji między dużą liczbą zmiennych i wykrywanie ukrytych uwarunkowań, ktore wyjaśniają ich występowanie.

Bardziej szczegółowo

2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I

2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I Liniowa niezależno ność wektorów Przykład: Sprawdzić czy następujące wektory z przestrzeni 3 tworzą bazę: e e e3 3 Sprawdzamy czy te wektory są liniowo niezależne: 3 c + c + c3 0 c 0 c iei 0 c + c + 3c3

Bardziej szczegółowo

Modele DSGE. Jerzy Mycielski. Maj Jerzy Mycielski () Modele DSGE Maj / 11

Modele DSGE. Jerzy Mycielski. Maj Jerzy Mycielski () Modele DSGE Maj / 11 Modele DSGE Jerzy Mycielski Maj 2008 Jerzy Mycielski () Modele DSGE Maj 2008 1 / 11 Modele DSGE DSGE - Dynamiczne, stochastyczne modele równowagi ogólnej (Dynamic Stochastic General Equilibrium Model)

Bardziej szczegółowo

Metoda najmniejszych kwadratów

Metoda najmniejszych kwadratów Metoda najmniejszych kwadratów Przykład wstępny. W ekonomicznej teorii produkcji rozważa się funkcję produkcji Cobba Douglasa: z = AL α K β gdzie z oznacza wielkość produkcji, L jest nakładem pracy, K

Bardziej szczegółowo

Ekonometria. Wprowadzenie do modelowania ekonometrycznego Estymator KMNK. Jakub Mućk. Katedra Ekonomii Ilościowej

Ekonometria. Wprowadzenie do modelowania ekonometrycznego Estymator KMNK. Jakub Mućk. Katedra Ekonomii Ilościowej Ekonometria Wprowadzenie do modelowania ekonometrycznego Estymator Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 1 Estymator 1 / 16 Agenda 1 Literatura Zaliczenie przedmiotu 2 Model

Bardziej szczegółowo

Kolejny krok iteracji polega na tym, że przechodzimy do następnego wierzchołka, znajdującego się na jednej krawędzi z odnalezionym już punktem, w

Kolejny krok iteracji polega na tym, że przechodzimy do następnego wierzchołka, znajdującego się na jednej krawędzi z odnalezionym już punktem, w Metoda Simpleks Jak wiadomo, problem PL z dowolną liczbą zmiennych można rozwiązać wyznaczając wszystkie wierzchołkowe punkty wielościanu wypukłego, a następnie porównując wartości funkcji celu w tych

Bardziej szczegółowo

Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań

Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań Przekształcenia liniowe, diagonalizacja macierzy 1. Podano współrzędne wektora v w bazie B. Znaleźć współrzędne tego wektora w bazie B, gdy: a) v = (1,

Bardziej szczegółowo

WYKŁAD 6. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki

WYKŁAD 6. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki WYKŁAD 6 Witold Bednorz, Paweł Wolff 1 Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Własności Wariancji Przypomnijmy, że VarX = E(X EX) 2 = EX 2 (EX) 2. Własności

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych Komputerowa analiza danych doświadczalnych Wykład 9 7.04.09 dr inż. Łukasz Graczykowski lukasz.graczykowski@pw.edu.pl Semestr letni 08/09 Metoda największej wiarygodności ierównosć informacyjna Metoda

Bardziej szczegółowo

Sztuczna Inteligencja Tematy projektów Sieci Neuronowe

Sztuczna Inteligencja Tematy projektów Sieci Neuronowe PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia

Bardziej szczegółowo

Rozwiązania zadań z listy T.Koźniewskiego

Rozwiązania zadań z listy T.Koźniewskiego Rozwiązania zadań z listy T.Koźniewskiego 1. Podstawiamy do równań. Tylko czwarty wektor spełnia wszystkie trzy równania.. U 1 : ( + 0x 9x 4, 7x + 8x 4, x, x 4 ), U : ( x 4, 4 x 4, + x 4, x 4 ), U : (x

Bardziej szczegółowo

Programowanie celowe #1

Programowanie celowe #1 Programowanie celowe #1 Problem programowania celowego (PC) jest przykładem problemu programowania matematycznego nieliniowego, który można skutecznie zlinearyzować, tzn. zapisać (i rozwiązać) jako problem

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u

Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u W ) Rzeczywiście U W jest podprzetrzenią przestrzeni

Bardziej szczegółowo

Zadania egzaminacyjne

Zadania egzaminacyjne Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo