WST P DO KRYPTOGRAFII

Wielkość: px
Rozpocząć pokaz od strony:

Download "WST P DO KRYPTOGRAFII"

Transkrypt

1 WST P DO KRYPTOGRAFII Grzegorz Szkibiel ul. Wielkopolska 15, pokój 206a konsultacje: wtorek szkibiel@wmf.univ.szczecin.pl www: wmf.univ.szczecin.pl/ szkibiel 1

2 Rozdziaª 1 Kryptograa a steganograa Kryptograa jako dyscyplina matematyczna zajmuj ca si metodami przesy- ªania wiadomo±ci w zakamuowanej formie tak, aby tylko adresat mógª odczyta wiadomo±, rozwin ªa si w drugiej poªowie dwudziestego wieku chocia» byªa ona stosowana znacznie wcze±niej. Do czasów drugiej wojny ±wiatowej szyfrów oczywi±cie u»ywano, jednak aparat matematyczny nie byª stosowany do ich tworzenia. Prawdziwa bomba wybuchªa, kiedy u»ywane od lat dwudziestych maszyny mechaniczne zostaªy zast pione przez komputery o du»ej mocy obliczeniowej. Wówczas okazaªo si,»e praktycznie ka»dy szyfr wynaleziony do tego czasu mo»e by zªamany w do± krótkim czasie. Zaistniaªa potrzeba szyfru, który nie tylko chroniªby tajemnice wojskowe, ale przede wszystkim informacje bankowe ukryte w ªatwo dost pnej sieci komputerowej. Z drugiej strony, na pocz tku lat siedemdziesi tych ujawniono w ko«cu, kto zªamaª tajemnic niemieckiej ENIGMY. To zmusiªo wielu matematyków i informatyków do gª bszego zainteresowania si,,now dziedzin nauki, która stanowi najszersz drog od matematyki do informatyki. Kryptograa jednak»e jest nauk si gajac jeszcze czasów staro»ytnych. W trakcie wykªadu przedstawimy gªównie histori tej nauki i tylko nieznacznie zaczepimy o najnowsze osi gni cia. 2

3 1.1 Steganograa Oprócz kryptograi, kamuowaniem wiadomo±ci zajmuje si te» steganograa. Ró»nica pomi dzy tymi dwiema dyscyplinami polega na tym,»e steganograa zajmuje si dosªownie,,chowaniem tekstu jawnego, a kryptograa zast powaniem go tekstem zaszyfrowanym. Kryptograa wraz ze steganogra tworz dziedzin nauki zwan kryptologi. Poni»ej opiszemy najpopularniejsze metody steganografów. Jedn z metod jest u»ywanie w tek±cie dwóch charakterów pisania poszczególnych liter. Litery napisane inaczej utworz ukryty tekst. Innym sposobem jest robienie maªej przerwy tu» przed liter, któr chcieliby±my»eby adresat przeczytaª. Zamiast pisa dªugi i nic nie znacz cy tekst mo»na wykorzysta tekst ju» napisany (np. gazet lub ksi»k ) i zaznaczy potrzebne litery tak, aby nikt niepowoªany nie domy±liª si, ze co± jest zaznaczone. Inn metod jest wskazanie ci gu liczb pokazuj cych pozycj danej litery b d¹ w alfabecie, b d¹ te» w jakiej± ksi»ce. Na przykªad posªuguj c si ksi»k Neal'a Koblitza,,Wykªad z teorii liczb i kryptograi mo»emy zaszyfrowa sªowo,,mama ci giem liczb Ci g ten rozszyfrowujemy licz c litery od okre±lonego miejsca w ksi»ce. W naszym przypadku jest to pocz tek tekstu,,wst pu. By wskaza po» dany ci g liczb mo»emy posªu»y si cho by pudeªkiem domina przesªanym w paczce. Aby ukry wiadomo± mo»na te» si posªu»y rebusem, lub te» labiryntem z literami w korytarzach. Prawidªowe przej±cie takiego labiryntu ujawni nam ukryty tekst. Podobnie, wiadomo± mo»emy schowa w obrazek z dziwnymi detalami, który staje si czytelny, gdy w odpowiedniej od niego odlegªo±ci mrugniemy oczami i zobaczymy trójwymiarowy rysunek. Obraz, jako taki, te» mo»e posªu»y steganografowi do ukrycia wiadomo±ci. Na przykªad pewne detale (¹d¹bªa traw lub tym podobne) mog ukªada si w kod Morse'a. Ciekaw grup metod steganogracznych jest zamiana ukrywanej wiadomo±ci w ªatwo, ale na pewno ¹le zrozumian wiadomo± brzmi c caªkiem nieszkodliwie. Mo»na rozró»ni tu dwie kategorie: maskowanie i zasªanianie. Maskowanie wymaga najpierw zgody obu stron co do przekazywanego kodu. Cz sto stosuj to bryd»y±ci, którzy trzymaj c odpowiednio papierosa lub robi c szereg niewinnych czynno±ci, w istocie przekazuj sobie informacje. Mistrzami w przekazywaniu zamaskowanych informacji s te» wi ¹niowie, którzy tworz swój swoisty»argon. niektóre sªowa w tym»argonie to dziura, paka wi zienie; ±nieg, cukier kokaina; obczyszczenie kradzie» itp. 3

4 W czasie drugiej wojny ±wiatowej, Amerykanie zatrudnili radiooperatorów, którzy rozmawiali w swoim ojczystym j zyku Nawaho. Japo«czycy nie mogli przechwyci i zidentykowa»adnej z wysyªanych wiadomo±ci. Bardzo dobry (jak na tamte czasy) niemiecki szyfr ENIGMA zostaª, jak wiadomo, zªamany. Mówi c o maskowaniu, trudno jest tu nie wspomnie o audycjach radia BBC w 1944 roku, gdzie w±ród tzw, prywatnych wiadomo±ci zapodziaªo si hasªo,,dªugie struny jesiennych skrzypiec, a jaki± czas pó¹niej,,rani me serce monotonnym brzmieniem. Oznaczaªo to dokªadn dat i miejsce inwazji na Francj. Niemiecka Abwehra Admiraªa Canarisa rozszyfrowaªa dokªadnie t wiadomo±, która dotarªa do wszystkich niemieckich jednostek z wyj tkiem stacjonuj cej w Normandii VII armii. Do dzi± nie wyja±niono w peªni, dlaczego armia ta nie zostaªa ostrze»ona. Wspomnie mo»emy tak»e o audycjach Polskiego Radia, nadaj cych sªynne,,uwaga, uwaga, nadchodzi, KO-MA 27. Tak»e Japo«czycy,»eby przekaza swoim statkom wiadomo± o wojnie z USA u»yli sªów,,higaszi no kaze ame (wschodni wiatr, deszcz). Sªowa te zostaªy wplecione w prognoz pogody i powtórzone dwukrotnie. Z maskowaniem sªów za pomoc zjawisk meteorologicznych trzeba jednak mocno uwa»a, o czym przekonaªa si Miss Holly Golightly w lmie,, niadanie u Tianiego. Przekazana przez ni,,wiadomo± o pogodzie, która brzmiaªa,,±nieg w Nowym Orleanie byªa mocno podejrzana i stró»owie prawa skojarzyli to sobie z handlem kokain. Zasada zasªaniania tekstu najcz ±ciej jest typu,,czytaj nt liter po okre±lonym znaku. Mo»e to by spacja, pocz tek nowej linii tekstu lub samogªoska. Zasªanianie stosowali powszechnie»oªnierze, którzy chcieli przekaza miejsce swego pobytu rodzinie, ale nie mogli tego zrobi w ocjalny sposób. Dla jednego z nich nie sko«czyªo si to dobrze, poniewa» rodzice w li±cie powrotnym spytali go:,,gdzie jest to Nutsi? Nie mo»emy znale¹ tego w»adnym atlasie!. Równie» Kornel Makuszy«ski w ksi»ce,,szatan z siódmej klasy u»yª ten rodzaj zasªaniania. Bohater ksi»ki tak sprytnie napisaª list,»e jego przyjaciele bez wi kszego trudu rozszyfrowali wiadomo±, któr chciaª przekaza. Inny sposób zasªaniania wymaga szablonu, którym zasªania si napisany tekst. W okienkach szablonu odczytujemy nasz ukryt wiadomo±. Metoda ta wymaga jednak doskonaªego wyczucia miejsca umiej tno±ci dopasowania tekstu tak, aby odpowiedni wyraz znalazª si w wyznaczonym szablonem miejscu. 4

5 1.2 Szyfry przestawieniowe Szyfry przestawieniowe (lub anagramowe) s tak»e rodzajami steganogramów. Dokªadnie,»eby zaszyfrowa pewien teks przestawiamy jego litery wedªug okre±lonego algorytmu. Przytoczymy tu dwa przykªady szyfrów przestawieniowych. Szyfr pªotowy. Ukªadamy litery tekstu,,wzdªó» pªotu, tj. wzdªó» ªamanej zªo»onej ze sko±nych odcinków. Wysoko± pªotu jest okre±lona liczb liter przypadaj c na jeden odcinek ªamanej. Nast pnie tekst zaszyfrowany odczytujemy wierszami. Na przykªad, chc c zaszyfrowa tekst INSYGNIA MIERCI pªotem o wysoko±ci 3, zapisujemy I G R N Y N A M E C S I I I i przepisujemy ig±rnynamecsiii. Generalnie, przy szyfrowaniu obowi zuje zasada,»e w tek±cie zaszyfrowanym nie ma znaków interpunkcyjnych ani spacji. Mo»e to prowadzi do nieporozumie«, ale zasada ta utrudnia te» ewentualne ªamanie szyfru. Przy pªocie wysoko±ci 5, zaszyfrowany tekst kªsókipr ew»i, to KSI E PÓŠKRWI. Szyfr kwadratowy. Tekst, który chcemy zaszyfrowa wpisujemy w kwadrat (lub kilka takich samych kwadratów) wierszami, a jako szyfr odczytujemy kolumnami, i to wedªug pewnej permutacji. Na przykªad, u»yjemy kwadratu 4 4 z permutacj (12)(34) i zaszyfrujemy tekst KOMNATA TAJEMNIC. Poniewa» tekst ten ma mniej ni» 16 liter, na jego ko«cu dopisujemy dowolne litery (tzw. nulle) i wpisujemy tekst w kwadrat K O M N A T A T A J E M N I C X Odczytuj c kolumy wg kolejno±ci , otrzymujemy otjikaanntmxmaec. Istotn wskazówk identykuj c szyfr kwadratowy jest fakt,»e liczba liter w tek±cie zaszyfrowanym jest wielokrotno±ci kwadratu liczby naturalnej n. Sama liczba n oznacza dªugo± boku kwadratu. Np. tekst aeim«lkifzinocyofz ma 18 liter, co mo»e oznacza,»e zostaª u»yty szyfr kwadratowy z kwadratem o boku 3, a do zaszyfrowania u»yto dwóch kwadratów. 5

WST P DO KRYPTOGRAFII. Grzegorz Szkibiel. Jesie«2012/13

WST P DO KRYPTOGRAFII. Grzegorz Szkibiel. Jesie«2012/13 WST P DO KRYPTOGRAFII Grzegorz Szkibiel Jesie«2012/13 Spis tre±ci 1 Kryptograa a steganograa 5 1.1 Steganograa........................... 6 1.2 Szyfry przestawieniowe...................... 8 1.3 Systemy

Bardziej szczegółowo

Lekcja 9 - LICZBY LOSOWE, ZMIENNE

Lekcja 9 - LICZBY LOSOWE, ZMIENNE Lekcja 9 - LICZBY LOSOWE, ZMIENNE I STAŠE 1 Liczby losowe Czasami spotkamy si z tak sytuacj,»e b dziemy potrzebowa by program za nas wylosowaª jak ± liczb. U»yjemy do tego polecenia: - liczba losowa Sprawd¹my

Bardziej szczegółowo

WST P DO KRYPTOGRAFII. Grzegorz Szkibiel. Jesie«2012/13

WST P DO KRYPTOGRAFII. Grzegorz Szkibiel. Jesie«2012/13 WST P DO KRYPTOGRAFII Grzegorz Szkibiel Jesie«2012/13 Spis tre±ci 1 Kryptograa a steganograa 5 1.1 Steganograa........................... 6 1.2 Szyfry przestawieniowe...................... 8 1.3 Systemy

Bardziej szczegółowo

O pewnym zadaniu olimpijskim

O pewnym zadaniu olimpijskim O pewnym zadaniu olimpijskim Michaª Seweryn, V LO w Krakowie opiekun pracy: dr Jacek Dymel Problem pocz tkowy Na drugim etapie LXII Olimpiady Matematycznej pojawiª si nast puj cy problem: Dla ka»dej liczby

Bardziej szczegółowo

1 Kodowanie i dekodowanie

1 Kodowanie i dekodowanie 1 Kodowanie i dekodowanie Teoria informacji zajmuje si sposobami gromadzenia, przechowywania oraz przesyªania informacji. W tym celu, a tak»e dla ochrony danych informacje kodujemy. Rozmowa telefoniczna,

Bardziej szczegółowo

EDUKARIS - O±rodek Ksztaªcenia

EDUKARIS - O±rodek Ksztaªcenia - O±rodek Ksztaªcenia Zabrania si kopiowania i rozpowszechniania niniejszego regulaminu przez inne podmioty oraz wykorzystywania go w dziaªalno±ci innych podmiotów. Autor regulaminu zastrzega do niego

Bardziej szczegółowo

WST P DO KRYPTOGRAFII. Grzegorz Szkibiel. Jesie«2012/13

WST P DO KRYPTOGRAFII. Grzegorz Szkibiel. Jesie«2012/13 WST P DO KRYPTOGRAFII Grzegorz Szkibiel Jesie«2012/13 Spis tre±ci 1 Kryptograa a steganograa 5 1.1 Steganograa........................... 6 1.2 Szyfry przestawieniowe...................... 8 1.3 Systemy

Bardziej szczegółowo

Lekcja 12 - POMOCNICY

Lekcja 12 - POMOCNICY Lekcja 12 - POMOCNICY 1 Pomocnicy Pomocnicy, jak sama nazwa wskazuje, pomagaj Baltiemu w programach wykonuj c cz ± czynno±ci. S oni szczególnie pomocni, gdy chcemy ci g polece«wykona kilka razy w programie.

Bardziej szczegółowo

Metodydowodzenia twierdzeń

Metodydowodzenia twierdzeń 1 Metodydowodzenia twierdzeń Przez zdanie rozumiemy dowolne stwierdzenie, które jest albo prawdziwe, albo faªszywe (nie mo»e by ono jednocze±nie prawdziwe i faªszywe). Tradycyjnie b dziemy u»ywali maªych

Bardziej szczegółowo

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14 WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkibiel Wiosna 2013/14 Spis tre±ci 1 Kodowanie i dekodowanie 4 1.1 Kodowanie a szyfrowanie..................... 4 1.2 Podstawowe poj cia........................

Bardziej szczegółowo

WST P DO KRYPTOGRAFII. Grzegorz Szkibiel. Jesie«2012/13

WST P DO KRYPTOGRAFII. Grzegorz Szkibiel. Jesie«2012/13 WST P DO KRYPTOGRAFII Grzegorz Szkibiel Jesie«2012/13 Spis tre±ci 1 Kryptograa a steganograa 5 1.1 Steganograa........................... 6 1.2 Szyfry przestawieniowe...................... 8 1.3 Systemy

Bardziej szczegółowo

WST P DO KRYPTOGRAFII. Grzegorz Szkibiel. Jesie«2012/13

WST P DO KRYPTOGRAFII. Grzegorz Szkibiel. Jesie«2012/13 WST P DO KRYPTOGRAFII Grzegorz Szkibiel Jesie«2012/13 Spis tre±ci 1 Kryptograa a steganograa 5 1.1 Steganograa........................... 6 1.2 Szyfry przestawieniowe...................... 8 1.3 Systemy

Bardziej szczegółowo

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14 WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkibiel Wiosna 203/4 Spis tre±ci Kodowanie i dekodowanie 4. Kodowanie a szyfrowanie..................... 4.2 Podstawowe poj cia........................

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Ukªady równa«liniowych

Ukªady równa«liniowych dr Krzysztof yjewski Mechatronika; S-I 0 in» 7 listopada 206 Ukªady równa«liniowych Informacje pomocnicze Denicja Ogólna posta ukªadu m równa«liniowych z n niewiadomymi x, x, x n, gdzie m, n N jest nast

Bardziej szczegółowo

Lekcja 9 Liczby losowe, zmienne, staªe

Lekcja 9 Liczby losowe, zmienne, staªe Lekcja 9 Liczby losowe, zmienne, staªe Akademia im. Jana Dªugosza w Cz stochowie Liczby losowe Czasami potrzebujemy by program za nas wylosowaª liczb. U»yjemy do tego polecenia liczba losowa: Liczby losowe

Bardziej szczegółowo

Lab. 02: Algorytm Schrage

Lab. 02: Algorytm Schrage Lab. 02: Algorytm Schrage Andrzej Gnatowski 5 kwietnia 2015 1 Opis zadania Celem zadania laboratoryjnego jest zapoznanie si z jednym z przybli»onych algorytmów sªu» cych do szukania rozwi za«znanego z

Bardziej szczegółowo

Baza danych - Access. 2 Budowa bazy danych

Baza danych - Access. 2 Budowa bazy danych Baza danych - Access 1 Baza danych Jest to zbiór danych zapisanych zgodnie z okre±lonymi reguªami. W w»szym znaczeniu obejmuje dane cyfrowe gromadzone zgodnie z zasadami przyj tymi dla danego programu

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Bash i algorytmy. Elwira Wachowicz. 20 lutego

Bash i algorytmy. Elwira Wachowicz. 20 lutego Bash i algorytmy Elwira Wachowicz elwira@ifd.uni.wroc.pl 20 lutego 2012 Elwira Wachowicz (elwira@ifd.uni.wroc.pl) Bash i algorytmy 20 lutego 2012 1 / 16 Inne przydatne polecenia Polecenie Dziaªanie Przykªad

Bardziej szczegółowo

Hotel Hilberta. Zdumiewaj cy ±wiat niesko«czono±ci. Marcin Kysiak. Festiwal Nauki, 20.09.2011. Instytut Matematyki Uniwersytetu Warszawskiego

Hotel Hilberta. Zdumiewaj cy ±wiat niesko«czono±ci. Marcin Kysiak. Festiwal Nauki, 20.09.2011. Instytut Matematyki Uniwersytetu Warszawskiego Zdumiewaj cy ±wiat niesko«czono±ci Instytut Matematyki Uniwersytetu Warszawskiego Festiwal Nauki, 20.09.2011 Nasze do±wiadczenia hotelowe Fakt oczywisty Hotel nie przyjmie nowych go±ci, je»eli wszystkie

Bardziej szczegółowo

X WARMI SKO-MAZURSKIE ZAWODY MATEMATYCZNE 18 maja 2012 (szkoªy ponadgimnazjalne)

X WARMI SKO-MAZURSKIE ZAWODY MATEMATYCZNE 18 maja 2012 (szkoªy ponadgimnazjalne) X WARMI SKO-MAZURSKIE ZAWODY MATEMATYCZNE 18 maja 2012 (szkoªy ponadgimnazjalne) Zadanie 1 Obecnie u»ywane tablice rejestracyjne wydawane s od 1 maja 2000r. Numery rejestracyjne aut s tworzone ze zbioru

Bardziej szczegółowo

Przykªady problemów optymalizacji kombinatorycznej

Przykªady problemów optymalizacji kombinatorycznej Przykªady problemów optymalizacji kombinatorycznej Problem Komiwoja»era (PK) Dane: n liczba miast, n Z +, c ji, i, j {1,..., n}, i j odlegªo± mi dzy miastem i a miastem j, c ji = c ij, c ji R +. Zadanie:

Bardziej szczegółowo

Listy Inne przykªady Rozwi zywanie problemów. Listy w Mathematice. Marcin Karcz. Wydziaª Matematyki, Fizyki i Informatyki.

Listy Inne przykªady Rozwi zywanie problemów. Listy w Mathematice. Marcin Karcz. Wydziaª Matematyki, Fizyki i Informatyki. Wydziaª Matematyki, Fizyki i Informatyki 10 marca 2008 Spis tre±ci Listy 1 Listy 2 3 Co to jest lista? Listy List w Mathematice jest wyra»enie oddzielone przecinkami i zamkni te w { klamrach }. Elementy

Bardziej szczegółowo

Podstawy modelowania w j zyku UML

Podstawy modelowania w j zyku UML Podstawy modelowania w j zyku UML dr hab. Bo»ena Wo¹na-Szcze±niak Akademia im. Jan Dªugosza bwozna@gmail.com Wykªad 2 Zwi zki mi dzy klasami Asocjacja (ang. Associations) Uogólnienie, dziedziczenie (ang.

Bardziej szczegółowo

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja

Bardziej szczegółowo

Zadania z kolokwiów ze Wst pu do Informatyki. Semestr II.

Zadania z kolokwiów ze Wst pu do Informatyki. Semestr II. Zadania z kolokwiów ze Wst pu do Informatyki. Semestr II. Poni»sze zadania s wyborem zada«z kolokwiów ze Wst pu do Informatyki jakie przeprowadziªem w ci gu ostatnich lat. Marek Zawadowski Zadanie 1 Napisz

Bardziej szczegółowo

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15 ANALIZA NUMERYCZNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Metoda Eulera 3 1.1 zagadnienia brzegowe....................... 3 1.2 Zastosowanie ró»niczki...................... 4 1.3 Output do pliku

Bardziej szczegółowo

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14 WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkibiel Wiosna 2013/14 Spis tre±ci 1 Kodowanie i dekodowanie 4 1.1 Kodowanie a szyfrowanie..................... 4 1.2 Podstawowe poj cia........................

Bardziej szczegółowo

W zadaniach na procenty wyró»niamy trzy typy czynno±ci: obliczanie, jakim procentem jednej liczby jest druga liczba,

W zadaniach na procenty wyró»niamy trzy typy czynno±ci: obliczanie, jakim procentem jednej liczby jest druga liczba, 2 Procenty W tej lekcji przypomnimy sobie poj cie procentu i zwi zane z nim podstawowe typy zada«. Prosimy o zapoznanie si z regulaminem na ostatniej stronie. 2.1 Poj cie procentu Procent jest to jedna

Bardziej szczegółowo

Edyta Juszczyk. Akademia im. Jana Dªugosza w Cz stochowie. Lekcja 1Wst p

Edyta Juszczyk. Akademia im. Jana Dªugosza w Cz stochowie. Lekcja 1Wst p Lekcja 1 Wst p Akademia im. Jana Dªugosza w Cz stochowie Baltie Baltie Baltie jest narz dziem, które sªu»y do nauki programowania dla dzieci od najmªodszych lat. Zostaª stworzony przez Bohumira Soukupa

Bardziej szczegółowo

Listy i operacje pytania

Listy i operacje pytania Listy i operacje pytania Iwona Polak iwona.polak@us.edu.pl Uniwersytet l ski Instytut Informatyki pa¹dziernika 07 Który atrybut NIE wyst puje jako atrybut elementów listy? klucz elementu (key) wska¹nik

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Zastosowania matematyki

Zastosowania matematyki Zastosowania matematyki Monika Bartkiewicz 1 / 126 ...czy«cie dobrze i po»yczajcie niczego si nie spodziewaj c(šk. 6,34-35) Zagadnienie pobierania procentu jest tak stare jak gospodarka pieni»na. Procent

Bardziej szczegółowo

Szeregowanie zada« Wykªad nr 5. dr Hanna Furma«czyk. 4 kwietnia 2013

Szeregowanie zada« Wykªad nr 5. dr Hanna Furma«czyk. 4 kwietnia 2013 Wykªad nr 5 4 kwietnia 2013 Procesory dedykowane Przypomnienie: zadania s podzielone na operacje (zadanie Z j skªada si z operacji O ij do wykonania na maszynach M i, o dªugo±ciach czasowych p ij ); zadanie

Bardziej szczegółowo

Biedronka. Wej±cie. Wyj±cie. Przykªady. VI OIG Zawody dru»ynowe, Finaª. 19 V 2012 Dost pna pami : 64 MB.

Biedronka. Wej±cie. Wyj±cie. Przykªady. VI OIG Zawody dru»ynowe, Finaª. 19 V 2012 Dost pna pami : 64 MB. Biedronka Pªot ma D cm dªugo±ci i zbudowany jest z desek zako«czonych trójk tami równoramiennymi, poª czonych ze sob w jedn caªo±. Dªugo± ramienia ka»dego z trójk tów stanowi P % dªugo±ci podstawy. Po

Bardziej szczegółowo

Vincent Van GOGH: M»czyzna pij cy li»ank kawy. Radosªaw Klimek. J zyk programowania Java

Vincent Van GOGH: M»czyzna pij cy li»ank kawy. Radosªaw Klimek. J zyk programowania Java J zyk programowania JAVA c 2011 Vincent Van GOGH: M»czyzna pij cy li»ank kawy Zadanie 6. Napisz program, który tworzy tablic 30 liczb wstawia do tej tablicy liczby od 0 do 29 sumuje te elementy tablicy,

Bardziej szczegółowo

Wst p do informatyki. Systemy liczbowe. Piotr Fulma«ski. 21 pa¹dziernika 2010. Wydziaª Matematyki i Informatyki, Uniwersytet Šódzki, Polska

Wst p do informatyki. Systemy liczbowe. Piotr Fulma«ski. 21 pa¹dziernika 2010. Wydziaª Matematyki i Informatyki, Uniwersytet Šódzki, Polska Wst p do informatyki Systemy liczbowe Piotr Fulma«ski Wydziaª Matematyki i Informatyki, Uniwersytet Šódzki, Polska 21 pa¹dziernika 2010 Spis tre±ci 1 Liczby i ich systemy 2 Rodzaje systemów liczbowych

Bardziej szczegółowo

Wstawianie gotowych rysunków w texu - informacje podstawowe.

Wstawianie gotowych rysunków w texu - informacje podstawowe. Wstawianie gotowych rysunków w texu - informacje podstawowe. By móc wstawi rysunek musimy w preambule pliku dopisa odpowiedni pakiet komend : \usepackage. W przypadku graki doª czamy pakiet:graphicx, (nieco

Bardziej szczegółowo

1 Metody iteracyjne rozwi zywania równania f(x)=0

1 Metody iteracyjne rozwi zywania równania f(x)=0 1 Metody iteracyjne rozwi zywania równania f()=0 1.1 Metoda bisekcji Zaªó»my,»e funkcja f jest ci gªa w [a 0, b 0 ]. Pierwiastek jest w przedziale [a 0, b 0 ] gdy f(a 0 )f(b 0 ) < 0. (1) Ustalmy f(a 0

Bardziej szczegółowo

1. Wprowadzenie do C/C++

1. Wprowadzenie do C/C++ Podstawy Programowania :: Roman Grundkiewicz :: 014 Zaj cia 1 1 rodowisko Dev-C++ 1. Wprowadzenie do C/C++ Uruchomienie ±rodowiska: Start Programs Developments Dev-C++. Nowy projekt: File New Project lub

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny

Wojewódzki Konkurs Matematyczny Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP SZKOLNY 16 listopada 2012 Czas 90 minut Instrukcja dla Ucznia 1. Otrzymujesz do rozwi zania 10 zada«zamkni tych oraz 5 zada«otwartych. 2. Obok

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

VI OIG, Etap II konkurs dru»ynowy. 10 III 2012 Dost pna pami : 32 MB.

VI OIG, Etap II konkurs dru»ynowy. 10 III 2012 Dost pna pami : 32 MB. Pocisk Pocisk o masie 5g wystrzelono z powierzchni ziemi pionowo w gór z szybko±ci pocz tkow v 0. Jak szybko± b dzie miaª pocisk w chwili, gdy dogoni go odgªos wystrzaªu i na jakiej wysoko±ci to nast pi?

Bardziej szczegółowo

Metody dowodzenia twierdze«

Metody dowodzenia twierdze« Metody dowodzenia twierdze«1 Metoda indukcji matematycznej Je±li T (n) jest form zdaniow okre±lon w zbiorze liczb naturalnych, to prawdziwe jest zdanie (T (0) n N (T (n) T (n + 1))) n N T (n). 2 W przypadku

Bardziej szczegółowo

XVII Warmi«sko-Mazurskie Zawody Matematyczne

XVII Warmi«sko-Mazurskie Zawody Matematyczne 1 XVII Warmi«sko-Mazurskie Zawody Matematyczne Kategoria: klasa VIII szkoªy podstawowej i III gimnazjum Olsztyn, 16 maja 2019r. Zad. 1. Udowodnij,»e dla dowolnych liczb rzeczywistych x, y, z speªniaj cych

Bardziej szczegółowo

Szyfrowanie wiadomości

Szyfrowanie wiadomości Szyfrowanie wiadomości I etap edukacyjny / II etap edukacyjny Już w starożytności ludzie używali szyfrów do przesyłania tajnych wiadomości. Początkowo były one proste, jednak z biegiem czasu wprowadzano

Bardziej szczegółowo

Opisywanie wygl du dokumentu. Andrzej Filipiak. 3 grudnia 2007

Opisywanie wygl du dokumentu. Andrzej Filipiak. 3 grudnia 2007 Opisywanie wygl du dokumentu 3 grudnia 2007 opcje klasy dokumentu Ukªad dokumentu zmieniamy za pomoc argumentu opcjonalnego polecenia documentclass wyliczaj cego opcje. Dopisanie takiej opcji powoduje

Bardziej szczegółowo

Programowanie i struktury danych 1 / 44

Programowanie i struktury danych 1 / 44 Programowanie i struktury danych 1 / 44 Lista dwukierunkowa Lista dwukierunkowa to liniowa struktura danych skªadaj ca si z ci gu elementów, z których ka»dy pami ta swojego nast pnika i poprzednika. Operacje

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Logika dla matematyków i informatyków Wykªad 1

Logika dla matematyków i informatyków Wykªad 1 Logika dla matematyków i informatyków Wykªad 1 Stanisªaw Goldstein Wydziaª Matematyki i Informatyki UŠ 16 lutego 2016 Wszech±wiat matematyczny skªada si wyª cznie ze zbiorów. Liczby naturalne s zdeniowane

Bardziej szczegółowo

Wst p teoretyczny do wiczenia nr 3 - Elementy kombinatoryki

Wst p teoretyczny do wiczenia nr 3 - Elementy kombinatoryki Wst p teoretyczny do wiczenia nr 3 - Elementy kombinatoryki 1 Zadania na wiczenia nr 3 - Elementy kombinatoryki Zad. 1. Ile istnieje ró»nych liczb czterocyfrowych zakªadaj c,»e cyfry nie powtarzaj si a

Bardziej szczegółowo

Maszyny Turinga i problemy nierozstrzygalne. Maszyny Turinga i problemy nierozstrzygalne

Maszyny Turinga i problemy nierozstrzygalne. Maszyny Turinga i problemy nierozstrzygalne Maszyny Turinga Maszyna Turinga jest automatem ta±mowym, skª da si z ta±my (tablicy symboli) potencjalnie niesko«czonej w prawo, zakªadamy,»e w prawie wszystkich (tzn. wszystkich poza sko«czon liczb )

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Krzysztof Wiktorowicz

Krzysztof Wiktorowicz WYDZIAŠ ELEKTROTECHNIKI I INFORMATYKI POLITECHNIKI RZESZOWSKIEJ Katedra Informatyki i Automatyki Krzysztof Wiktorowicz Zasady pisania prac dyplomowych (w systemie L A T E X i nie tylko) Rzeszów 2016 Wst

Bardziej szczegółowo

Użytkowanie elektronicznego dziennika UONET PLUS.

Użytkowanie elektronicznego dziennika UONET PLUS. Użytkowanie elektronicznego dziennika UONET PLUS. Po wejściu na stronę https://uonetplus.vulcan.net.pl/bialystok i zalogowaniu się na swoje konto (przy użyciu adresu e-mail podanego wcześniej wychowawcy

Bardziej szczegółowo

Metody numeryczne i statystyka dla in»ynierów

Metody numeryczne i statystyka dla in»ynierów Kierunek: Automatyka i Robotyka, II rok Wprowadzenie PWSZ Gªogów, 2009 Plan wykªadów Wprowadzenie, podanie zagadnie«, poj cie metody numerycznej i algorytmu numerycznego, obszar zainteresowa«i stosowalno±ci

Bardziej szczegółowo

Informatyka, matematyka i sztuczki magiczne

Informatyka, matematyka i sztuczki magiczne Informatyka, matematyka i sztuczki magiczne Daniel Nowak Piotr Fulma«ski instagram.com/vorkof piotr@fulmanski.pl 18 kwietnia 2018 Table of contents 1 O czym b dziemy mówi 2 Dawno, dawno temu... 3 System

Bardziej szczegółowo

Lekcja 8 - ANIMACJA. 1 Polecenia. 2 Typy animacji. 3 Pierwsza animacja - Mrugaj ca twarz

Lekcja 8 - ANIMACJA. 1 Polecenia. 2 Typy animacji. 3 Pierwsza animacja - Mrugaj ca twarz Lekcja 8 - ANIMACJA 1 Polecenia Za pomoc Baltiego mo»emy tworzy animacj, tzn. sprawia by obraz na ekranie wygl daª jakby si poruszaª. Do animowania przedmiotów i tworzenia animacji posªu» nam polecenia

Bardziej szczegółowo

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1 J zyki formalne i operacje na j zykach J zyki formalne s abstrakcyjnie zbiorami sªów nad alfabetem sko«czonym Σ. J zyk formalny L to opis pewnego problemu decyzyjnego: sªowa to kody instancji (wej±cia)

Bardziej szczegółowo

Optymalizacja R dlaczego warto przesi ± si na Linuxa?

Optymalizacja R dlaczego warto przesi ± si na Linuxa? Optymalizacja R dlaczego warto przesi ± si na Linuxa? 19 listopada 2014 Wi cej informacji, wraz z dodatkowymi materiaªami mo»na znale¹ w repozytorium na GitHubie pod adresem https://github.com/zzawadz/

Bardziej szczegółowo

Rozdział 6. Pakowanie plecaka. 6.1 Postawienie problemu

Rozdział 6. Pakowanie plecaka. 6.1 Postawienie problemu Rozdział 6 Pakowanie plecaka 6.1 Postawienie problemu Jak zauważyliśmy, szyfry oparte na rachunku macierzowym nie są przerażająco trudne do złamania. Zdecydowanie trudniejszy jest kryptosystem oparty na

Bardziej szczegółowo

Tajna wiadomość. Scenariusz lekcji

Tajna wiadomość. Scenariusz lekcji 1 scenariusz 1 CELE OGÓLNE poznanie metod szyfrowania wiadomości zrozumienie algorytmu szyfru Cezara Tajna wiadomość Scenariusz lekcji CELE SZCZEGÓŁOWE Uczeń: Zapamiętanie wiadomości (A): wymienia podstawowe

Bardziej szczegółowo

Programowanie wspóªbie»ne

Programowanie wspóªbie»ne 1 Zadanie 1: Bar Programowanie wspóªbie»ne wiczenia 6 monitory cz. 2 Napisz monitor Bar synchronizuj cy prac barmana obsªuguj cego klientów przy kolistym barze z N stoªkami. Ka»dy klient realizuje nast

Bardziej szczegółowo

Mosty królewieckie, chi«ski listonosz i... kojarzenie maª»e«stw

Mosty królewieckie, chi«ski listonosz i... kojarzenie maª»e«stw Mosty królewieckie, chi«ski listonosz i... kojarzenie maª»e«stw 3 kwietnia 2014 roku 1 / 106 Mosty królewieckie W Królewcu, na rzece Pregole znajduj si dwie wyspy poª czone ze sob, a tak»e z brzegami za

Bardziej szczegółowo

Arkusz maturalny. Šukasz Dawidowski. 25 kwietnia 2016r. Powtórki maturalne

Arkusz maturalny. Šukasz Dawidowski. 25 kwietnia 2016r. Powtórki maturalne Arkusz maturalny Šukasz Dawidowski Powtórki maturalne 25 kwietnia 2016r. Odwrotno±ci liczby rzeczywistej 1. 9 8 2. 0, (1) 3. 8 9 4. 0, (8) 3 4 4 4 1 jest liczba Odwrotno±ci liczby rzeczywistej 3 4 4 4

Bardziej szczegółowo

Rozdział 4. Macierze szyfrujące. 4.1 Algebra liniowa modulo 26

Rozdział 4. Macierze szyfrujące. 4.1 Algebra liniowa modulo 26 Rozdział 4 Macierze szyfrujące Opiszemy system kryptograficzny oparty o rachunek macierzowy. W dalszym ciągu przypuszczamy, że dany jest 26 literowy alfabet, w którym utożsamiamy litery i liczby tak, jak

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKA NIEMIECKIEGO

PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKA NIEMIECKIEGO PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKA NIEMIECKIEGO Zasady ogólne Ocenianie wewnątrzszkolne na przedmiocie język niemiecki ma na celu: 1) informowanie ucznia o poziomie jego osiągnięć edukacyjnych i jego

Bardziej szczegółowo

Rozwi zania klasycznych problemów w Rendezvous

Rozwi zania klasycznych problemów w Rendezvous Cz ± I Rozwi zania klasycznych problemów w Rendezvous 1 Producenci i konsumenci Na pocz tek rozwa»my wersj z jednym producentem i jednym konsumentem, dziaªaj cymi w niesko«czonych p tlach. Mechanizm komunikacji

Bardziej szczegółowo

Rzut oka na zagadnienia zwi zane z projektowaniem list rozkazów

Rzut oka na zagadnienia zwi zane z projektowaniem list rozkazów Rzut oka na zagadnienia zwi zane z projektowaniem list rozkazów 1 Wst p Przypomnijmy,»e komputer skªada si z procesora, pami ci, systemu wej±cia-wyj±cia oraz po- ª cze«mi dzy nimi. W procesorze mo»emy

Bardziej szczegółowo

Matematyka wykªad 1. Macierze (1) Andrzej Torój. 17 wrze±nia 2011. Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej

Matematyka wykªad 1. Macierze (1) Andrzej Torój. 17 wrze±nia 2011. Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej Matematyka wykªad 1 Macierze (1) Andrzej Torój Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej 17 wrze±nia 2011 Plan wykªadu 1 2 3 4 5 Plan prezentacji 1 2 3 4 5 Kontakt moja strona internetowa:

Bardziej szczegółowo

1. Podstawy budowania wyra e regularnych (Regex)

1. Podstawy budowania wyra e regularnych (Regex) Dla wi kszo ci prostych gramatyk mo na w atwy sposób napisa wyra enie regularne które b dzie s u y o do sprawdzania poprawno ci zda z t gramatyk. Celem niniejszego laboratorium b dzie zapoznanie si z wyra

Bardziej szczegółowo

Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X.

Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X. Relacje 1 Relacj n-argumentow nazywamy podzbiór ϱ X 1 X 2... X n. Je±li ϱ X Y jest relacj dwuargumentow (binarn ), to zamiast (x, y) ϱ piszemy xϱy. Relacj binarn okre±lon w zbiorze X nazywamy podzbiór

Bardziej szczegółowo

Elementy geometrii analitycznej w przestrzeni

Elementy geometrii analitycznej w przestrzeni Wykªad 3 Elementy geometrii analitycznej w przestrzeni W wykªadzie tym wi kszy nacisk zostaª poªo»ony raczej na intuicyjne rozumienie deniowanych poj, ni» ±cisªe ich zdeniowanie. Dlatego niniejszy wykªad

Bardziej szczegółowo

Instrukcja obsługi Norton Commander (NC) wersja 4.0. Autor: mgr inż. Tomasz Staniszewski

Instrukcja obsługi Norton Commander (NC) wersja 4.0. Autor: mgr inż. Tomasz Staniszewski Instrukcja obsługi Norton Commander (NC) wersja 4.0 Autor: mgr inż. Tomasz Staniszewski ITM Zakład Technologii Maszyn, 15.10.2001 2 1.Uruchomienie programu Aby uruchomić program Norton Commander standardowo

Bardziej szczegółowo

Programowanie wspóªbie»ne

Programowanie wspóªbie»ne 1 Programowanie wspóªbie»ne wiczenia 5 monitory cz. 1 Zadanie 1: Stolik dwuosobowy raz jeszcze W systemie dziaªa N par procesów. Procesy z pary s nierozró»nialne. Ka»dy proces cyklicznie wykonuje wªasnesprawy,

Bardziej szczegółowo

Elementy geometrii w przestrzeni R 3

Elementy geometrii w przestrzeni R 3 Elementy geometrii w przestrzeni R 3 Z.Šagodowski Politechnika Lubelska 29 maja 2016 Podstawowe denicje Wektorem nazywamy uporz dkowan par punktów (A,B) z których pierwszy nazywa si pocz tkiem a drugi

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2010 POZIOM ROZSZERZONY CZĘŚĆ I WYBRANE: Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2010 POZIOM ROZSZERZONY CZĘŚĆ I WYBRANE: Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Edycja geometrii w Solid Edge ST

Edycja geometrii w Solid Edge ST Edycja geometrii w Solid Edge ST Artykuł pt.: " Czym jest Technologia Synchroniczna a czym nie jest?" zwracał kilkukrotnie uwagę na fakt, że nie należy mylić pojęć modelowania bezpośredniego i edycji bezpośredniej.

Bardziej szczegółowo

x y x y x y x + y x y

x y x y x y x + y x y Algebra logiki 1 W zbiorze {0, 1} okre±lamy dziaªania dwuargumentowe,, +, oraz dziaªanie jednoargumentowe ( ). Dziaªanie x + y nazywamy dodawaniem modulo 2, a dziaªanie x y nazywamy kresk Sheera. x x 0

Bardziej szczegółowo

MNIEJ I BARDZIEJ ZNANE PROBLEMY TEORII LICZB

MNIEJ I BARDZIEJ ZNANE PROBLEMY TEORII LICZB MNIEJ I BARDZIEJ ZNANE PROBLEMY TEORII LICZB PAWEŠ GŠADKI Teoria liczb, mogªoby si wydawa, jest gaª zi matematyki zajmuj c si histori i lozo poj cia liczby, jego rozwojem i uogólnieniami. W rzeczywisto±ci

Bardziej szczegółowo

Instrukcja poruszania się po stronie www.plusbus.pl krok po kroku. tak zwane ABC Plusika

Instrukcja poruszania się po stronie www.plusbus.pl krok po kroku. tak zwane ABC Plusika Instrukcja poruszania się po stronie www.plusbus.pl krok po kroku tak zwane ABC Plusika Spis treści 1. Rejestracja użytkownika 2. Kupno biletu 3. Wymiana biletu 4. Zwrot biletu 5. Doładowanie konta 6.

Bardziej szczegółowo

Wykªad 10. Spis tre±ci. 1 Niesko«czona studnia potencjaªu. Fizyka 2 (Informatyka - EEIiA 2006/07) c Mariusz Krasi«ski 2007

Wykªad 10. Spis tre±ci. 1 Niesko«czona studnia potencjaªu. Fizyka 2 (Informatyka - EEIiA 2006/07) c Mariusz Krasi«ski 2007 Wykªad 10 Fizyka 2 (Informatyka - EEIiA 2006/07) 08 05 2007 c Mariusz Krasi«ski 2007 Spis tre±ci 1 Niesko«czona studnia potencjaªu 1 2 Laser 3 2.1 Emisja spontaniczna...........................................

Bardziej szczegółowo

P tle. Rozdziaª Wst p. 4.2 P tle P tla for(...);

P tle. Rozdziaª Wst p. 4.2 P tle P tla for(...); Rozdziaª 4 P tle 4.1 Wst p Niniejszy rozdziaª zawiera opis p tli w j zyku C, wraz z przykªadowymi programami oraz ich obja±nieniem. 4.2 P tle P tla to element j zyka programowania, pozwalaj cy na wielokrotne,

Bardziej szczegółowo

Uczenie Wielowarstwowych Sieci Neuronów o

Uczenie Wielowarstwowych Sieci Neuronów o Plan uczenie neuronu o ci gªej funkcji aktywacji uczenie jednowarstwowej sieci neuronów o ci gªej funkcji aktywacji uczenie sieci wielowarstwowej - metoda propagacji wstecznej neuronu o ci gªej funkcji

Bardziej szczegółowo

1. Wprowadzenie do C/C++

1. Wprowadzenie do C/C++ Podstawy Programowania - Roman Grundkiewicz - 013Z Zaj cia 1 1 rodowisko Dev-C++ 1. Wprowadzenie do C/C++ Uruchomienie ±rodowiska: Start Programs Developments Dev-C++. Nowy projekt: File New Project lub

Bardziej szczegółowo

Mikro II: Krzywe kosztów, Poda» rmy i Poda» gaª zi.

Mikro II: Krzywe kosztów, Poda» rmy i Poda» gaª zi. Mikro II: Krzywe kosztów, Poda» rmy i Poda» gaª zi. Krzysztof Makarski 22 Krzywe kosztów Wst p Celem jest wyprowadzenie funkcji poda»y i jej wªasno±ci. Funkcj poda»y wyprowadzamy z decyzji maksymalizuj

Bardziej szczegółowo

Lekcja 3 Banki i nowe przedmioty

Lekcja 3 Banki i nowe przedmioty Lekcja 3 Banki i nowe przedmioty Akademia im. Jana Dªugosza w Cz stochowie Banki przedmiotów Co ju» wiemy? co to s banki przedmiotów w Baltie potramy korzysta z banków przedmiotów mo»emy tworzy nowe przedmioty

Bardziej szczegółowo

Teoria grafów i jej zastosowania. 1 / 126

Teoria grafów i jej zastosowania. 1 / 126 Teoria grafów i jej zastosowania. 1 / 126 Mosty królewieckie W Królewcu, na rzece Pregole znajduj si dwie wyspy poª czone ze sob, a tak»e z brzegami za pomoc siedmiu mostów, tak jak pokazuje rysunek 2

Bardziej szczegółowo

Liniowe zadania najmniejszych kwadratów

Liniowe zadania najmniejszych kwadratów Rozdziaª 9 Liniowe zadania najmniejszych kwadratów Liniowe zadania najmniejszych kwadratów polega na znalezieniu x R n, który minimalizuje Ax b 2 dla danej macierzy A R m,n i wektora b R m. Zauwa»my,»e

Bardziej szczegółowo

Rozwi zania zada«z pierwszych zaj.

Rozwi zania zada«z pierwszych zaj. Rozwi zania zada«z pierwszych zaj. Ze wzgl du na bª d w jednym ze wzorów, które podaªem na wiczeniach, poni»ej podaj poprawne wersje rozwi za«zada«przerobionych na wiczeniach i zrobionych jako zadanie

Bardziej szczegółowo

Lekcja 5 Programowanie - Nowicjusz

Lekcja 5 Programowanie - Nowicjusz Lekcja 5 Programowanie - Nowicjusz Akademia im. Jana Dªugosza w Cz stochowie Programowanie i program wedªug Baltiego Programowanie Programowanie jest najwy»szym trybem Baltiego. Z pomoc Baltiego mo»esz

Bardziej szczegółowo

Lekcja 3 - BANKI I NOWE PRZEDMIOTY

Lekcja 3 - BANKI I NOWE PRZEDMIOTY Lekcja 3 - BANKI I NOWE PRZEDMIOTY Wiemy ju» co to s banki przedmiotów i potramy z nich korzysta. Dowiedzieli±my si te»,»e mo»emy tworzy nowe przedmioty, a nawet caªe banki przedmiotów. Na tej lekcji zajmiemy

Bardziej szczegółowo

Wektory w przestrzeni

Wektory w przestrzeni Wektory w przestrzeni Informacje pomocnicze Denicja 1. Wektorem nazywamy uporz dkowan par punktów. Pierwszy z tych punktów nazywamy pocz tkiem wektora albo punktem zaczepienia wektora, a drugi - ko«cem

Bardziej szczegółowo

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 17 stron.. W zadaniach od 1. do 0. s podane 4 odpowiedzi:

Bardziej szczegółowo

ALGORYTMIKA Wprowadzenie do algorytmów

ALGORYTMIKA Wprowadzenie do algorytmów ALGORYTMIKA Wprowadzenie do algorytmów Popularne denicje algorytmu przepis opisuj cy krok po kroku rozwi zanie problemu lub osi gni cie jakiego± celu. (M. Sysªo, Algorytmy, ±ci±lejszej denicji w ksi»ce

Bardziej szczegółowo

SPIS TRE CI. Gospodarka inwestycyjna STRONA

SPIS TRE CI. Gospodarka inwestycyjna STRONA FABRYKA MASZYN SPO YWCZYCH SPOMASZ PLESZEW S.A. PROCES: UTRZYMANIE RUCHU Gospodarka inwestycyjna K-1.00.00 Wydanie 4 Strona 2 Stron 7 SPIS TRE CI 1. Cel procedury... 2. Powi zania.... Zakres stosowania...

Bardziej szczegółowo

Microsoft Management Console

Microsoft Management Console Microsoft Management Console Konsola zarządzania jest narzędziem pozwalającym w prosty sposób konfigurować i kontrolować pracę praktycznie wszystkich mechanizmów i usług dostępnych w sieci Microsoft. Co

Bardziej szczegółowo

CAŠKOWANIE METODAMI MONTE CARLO Janusz Adamowski

CAŠKOWANIE METODAMI MONTE CARLO Janusz Adamowski III. CAŠKOWAIE METODAMI MOTE CARLO Janusz Adamowski 1 1 azwa metody Podstawowym zastosowaniem w zyce metody Monte Carlo (MC) jest opis zªo-»onych ukªadów zycznych o du»ej liczbie stopni swobody. Opis zªo»onych

Bardziej szczegółowo