PRACOWNIA FIZYCZNA I

Wielkość: px
Rozpocząć pokaz od strony:

Download "PRACOWNIA FIZYCZNA I"

Transkrypt

1 Skrypt do laboratorium PRACOWNIA FIZYCZNA I wiczenie 4: Wyznaczanie wspóªczynnika zaªamania ciaª staªych. Opracowanie: mgr Tomasz Neumann Gda«sk, 2011 Projekt Przygotowanie i realizacja kierunku in»ynieria biomedyczna - studia mi dzywydziaªowe wspóªnansowany ze ±rodków Unii Europejskiej w ramach Europejskiego Funduszu Spoªecznego.

2 Politechnika Gda«ska, mi dzywydziaªowy kierunek In»ynieria Biomedyczna USTALENIA WST PNE Wymagania wst pne: Zapoznanie si z wiadomo±ciami teoretycznymi oraz przebiegiem wiczenia zawartymi w instrukcji do wiczenia. Cele wiczenia: 1. Usystematyzowanie wiedzy z elektrodynamiki i optyki falowej. 2. Zapoznanie studentów z metodami pomiaru wspóªczynnika zaªamania ciaª staªych. 3. Wykonanie pomiaru wspóªczynnika zaªamania ±wiatªa materiaªu za pomoc metody de Chaulnes i k ta Brewstera. 4. Analiza zebranych danych pomiarowych, niepewno±ci pomiarowych oraz wykonanie odpowiedniej statystyki danych pomiarowych. 5. Oszacowanie niepewno±ci wielko±ci wyznaczanych. 6. Sformuªowanie wniosków. Wykaz przyrz dów niezb dnych do wykonania wiczenia: (a) Ukªad pomiarowy 1: 1 - lampka laboratoryjna; (b) Ukªad pomiarowy 2: 1 - ruchome ¹ródªo ±wia2 - mikroskop; 3 - badane obiekty, 4 - ±ruba mi- tªa ; 2 - soczewka skupiaj ca 1; 3 - obrotowy stokrometryczna. lik z polaryzatorem, 4 - pionowa ni celownika, 5 - analizator. Rys. 1: Ukªady pomiarowe wykorzystywane w wiczeniu. Wykaz literatury podstawowej: 1. D. Halliday, R. Resnick, J. Walker - Podstawy zyki. 2. M. Skorko - Fizyka dla studentów wy»szych technicznych studiów zawodowych. 3. I. Tarjan - Fizyka dla przyrodników. 4. K. Kozªowski, A. Zieli«ski - I Laboratorium z zyki. 5. K. A. Tsokos - Physics for IB diploma. 2 Pracownia Fizyczna I - Wyznaczanie wspóªczynnika zaªamania ciaª staªych.

3 WPROWADZENIE DO WICZENIA Podstawy optyki geometrycznej W o±rodku jednorodnym i izotropowym ±wiatªo rozchodzi si po liniach prostych. W optyce geometrycznej operuje si poj ciem promienia ±wietlnego, czyli bardzo w skiej wi zki ±wiatªa wyznaczaj cej kierunek rozchodzenia si fali ±wietlnej. Zgodnie z zasad Fermata, promie«±wietlny biegn cy z jednego punktu do drugiego przebywa drog, do której przebycia potrzebny jest ekstremalny czas (najmniejszy lub najwi kszy). Z zasady tej mo»na wyprowadzi prawo odbicia i zaªamania ±wiatªa na granicy dwóch o±rodków. Na rysunku 2 zostaª przedstawiony promie«padaj cy z punktu A pod k tem α do normalnej oraz promie«odbity od granicy dwóch o±rodków w punkcie P pod k tem α do normalnej. Caªkowita dªugo± drogi promienia ±wietlnego pomiedzy punktem A i B wynosi Rys. 2: Odbicie promienia ±wietlnego od granicy dwóch o±rodków. s = a 2 + x 2 + b 2 + (d x) 2 (1) W równaniu 1 na drog promienia ±wietlnego x jest zmienn zale»n od poªo»enia punktu P. Aby obliczy ekstremum funkcji 1 musi by speªniony warunek ds dx Po obliczeniu pochodnej i przeksztaªceniu otrzymujemy zwi zek x a2 + x 2 = = 0. (2) d x b 2 + (d x) 2. (3) Z rysunku 2 mo»na zauwa»y nast puj ce zale»no±ci trygonometryczne sin α = x a2 + x 2 oraz sin α = d x b 2 + (d x) 2, (4) 3

4 a wi c sin α = sin α. (5) Z równania 5 wynika,»e zgodnie z zasad Fermata k t padania jest równy k towi odbicia α = α. (6) Analogicznie mo»na wyprowadzi prawo zaªamania, które zilustrowane zostaªo na rysunku 3. W tym przypadku, czas przej±cia promienia ±wietlnego od punktu A do punktu B przez Rys. 3: Zaªamanie promienia ±wietlnego na granicy dwóch o±rodków. punkt P wynosi t = s 1 + s 2, (7) v 1 v 2 w którym przez v 1 i v 2 rozumiemy pr dko± propagacji promienia ±wietlnego w danym o±rodku. Korzystaj c ze zwi zku pomi dzy pr dko±ci promienia ±wietlnego, a wspóªczynnikiem zaªamania wzgl dem pró»ni n = c v, (8) gdzie c jest pr dko±ci ±wiatªa, równanie 7 mo»na przeksztaªci do postaci t = n 1s 1 + n 2 s 2 c = s opt c. (9) Wielko± s opt = n 1 s 1 + n 2 s 2 jest drog optyczn promienia ±wietlnego i jest ró»na od drogi geometrycznej, która wynosi s geom = s 1 + s 2. Zgodnie z prawem Fermata droga optyczna promienia ±wietlnego powinna by ekstremalna, wi c» damy, aby speªniony byª warunek 4 ds opt dx. (10)

5 Po zró»niczkowaniu i przeksztaªceniach otrzymamy równanie n 1 x a2 + x = n d x 2 2 b 2 + (d x). (11) 2 Z rysunku 3 wida nast puj ce zwi zki trygonometryczne sin α = x a2 + x 2 oraz sin β = d x b 2 + (d x) 2, (12) co prowadzi do prawa zaªamania postaci sin α sin β = n 2 n 1 = n 21 (13) Wielko± n 21 nazywamy wzgl dnym wspóªczynnikiem zaªamania ±wiatªa o±rodka drugiego wzgl dem ±rodka pierwszego i wynosi n 21 = n 1 n 2. (14) Wspóªczynniki zaªamania s odwrotnie proporcjonalne do pr dko±ci rozchodzenia si ±wiatªa w o±rodkach. O±rodek, w którym ±wiatªo rozchodzi si z wi ksz pr dko±ci, nazywamy optycznie rzadszym, za± o±rodek, w którym pr dko± ±wiatªa jest mniejsza - optycznie g stszym. Nale»y pami ta,»e promie«padaj cy na granic dwóch o±rodków ulega zarówno odbiciu jak i zaªamaniu. Prawo odbicia i zaªamania mo»na równie» wyprowadzi korzystaj c z podstawowych praw falowych oraz zasady Huygensa. Zgodnie z tre±ci tej zasady, ka»dy punkt o±rodka do którego dociera czoªo fali, staje si ¹ródªem nowej fali elementarnej. Wyprowadzenie to jednak pozostawiam czytelnikowi do samodzielnego rozwi zania. Polaryzacja ±wiatªa wiatªo jest to fala elektromagnetyczna, która jest szczególnym rozwi zaniem równa«maxwella. S to naprzemienne zmiany wektora nat»enia pola elektrycznego E i pola magnetycznego H na pªaszczyznach wzajemnie prostopadªych. Kierunek propagacji ±wiatªa jest zawsze prostopadªy do pªaszczyzny zmian wektorów E i H zgodnie z kierunkiem przepªywu energii. Nie ma jednak wyró»nionej pªaszczyzny drga«, wi c kierunki drga«tych wektorów w przestrzeni s jednakowo prawdopodobne. Przez polaryzacj ±wiatªa rozumiemy uporz dkowanie drga«wektora E i H wzdªu» wyró»nionego kierunku. Kierunek drga«wektora pola elektrycznego i magnetycznego ±wiatªa spolaryzowanego nie zmienia si w przestrzeni lub zmienia si wedªug okre±lonego prawa. Pªaszczyzna utworzona z kierunku drga«wektora E i kierunku rozchodzenia si fali to pªaszczyzna drga«, natomiast pªaszczyzna utworzona z kierunku drga«wektora H i kierunku rozchodzenia si fali nosi nazw pªaszczyzny polaryzacji. wiatªo mo»na spolaryzowa poprzez polaroid, pryzmaty polaryzuj ce, rozproszenie oraz w 5

6 wyniku odbicia i zaªamania ±wiatªa od granicy dwóch o±rodków. Przy padaniu ±wiatªa na granic dwóch o±rodków nast puje polaryzacja zarówno promienia odbitego, jak i zaªamanego. Polaryzatorem jest powierzchnia odbijaj ca ±wiatªo - granica dwóch o±rodków. Dla dowolnego k ta padania polaryzacja ta jest cz ±ciowa. Stopie«polaryzacji zmienia si ze zmian k ta padania ±wiatªa i jest opisany zale»no±ci P = I max I min I max I min, (15) w którym I max i I min oznaczaj nat»enie wi zek skªadowych o drganiach wzajemnie prostopadªych, odpowiednio o najwi kszym i najmniejszym nat»eniu za analizatorem. Caªkowita liniowa polaryzacja ±wiatªa odbitego zachodzi dla takiego k ta padania α B, dla którego promie«odbity jest prostopadªy do promienia zaªamanego - promie«ten jest jedynie cz ±ciowo spolaryzowany. K t α B nosi nazw k ta caªkowitej polaryzacji albo k ta Brewstera. Drgania wektora E w ±wietle odbitym zachodz prostopadle do pªaszczyzny, w której le»y promie«padaj cy i odbity, a w ±wietle zaªamanym odbywaj si w pªaszczy¹nie równolegªej do pªaszczyzny, w której le» te promienie. Zgodnie z prawem zaªamania oraz warunkiem,»e otrzymujemy sin α 1 sin α 2 = n 21, (16) α B + β = 90, (17) tg α B = n 21. (18) Polaryzacj ±wiatªa wykrywamy i badamy za pomoc analizatorów - mo»e to by np. pryzmat Nikola (nikol). Je»eli pªaszczyzna polaryzacji nikola b dzie równolegªa do pªaszczyzny polaryzacji ±wiatªa odbitego od pªytki, ±wiatªo przechodz ce przez analizator b dzie posiadaªo 6

7 maksymalne nat»enie. Przy pªaszczyznach prostopadªych obserwujemy caªkowite wygaszanie ±wiatªa. W wypadkach po±rednich, gdy pªaszczyzny polaryzacji ±wiatªa przez pªytk i przez nikol tworz ze sob pewien k t γ, obowi zuje prawo Malusa I = I 0 cos 2 γ, (19) w którym I 0 - nat»enie ±wiatªa wychodz cego z analizatora dla k ta γ = 0, I - nat»enie ±wiatªa wychodz cego z analizatora, gdy jest on skr cony o k t γ wzgl dem polaryzatora. PRZEBIEG WICZENIA CZ I: Obserwuj c przedmioty w o±rodkach optycznie g stszych z o±rodka optycznie rzadszego mamy wra»enie,»e przedmioty te znajduj si bli»ej ni» w rzeczywisto±ci (np. ryba w wodzie). Wykorzystanie tej obserwacji pozwala w prosty sposób zmierzy wspóªczynniki zaªamania prze¹roczystych pªytek. Obserwuj c punkt P przez pªytk pªaskorównolegª, Rys. 4: Powstawanie obrazu pozornego. widzimy go w poªo»eniu P - otrzymamy pozorne podniesienie obrazu na wysoko± h. Rozpatruj c trójk ty ABP i ABP, w których AB = e, AP = d h, tg α = e sin α, d tg β = e sin β. d h 7

8 otrzymamy warto± wspóªczynnika zaªamania o±rodka w postaci n = d d h. (20) Z wzoru 20, wynika,»e wyznaczaj c do±wiadczalnie d oraz h wyznaczymy wspóªczynnik za- ªamania n danej pªytki. Pomiar grubo±ci pªytki d wykonujemy za pomoc ±ruby mikrometrycznej. Grubo± mierzymy 10 razy w ró»nych miejscach pªytki, aby w obliczeniach uwzgl dni ewentualne niejednorodno±ci grubo±ci pªytki. Na podstawie tych pomiarów, obliczamy ±redni warto± d r. Warto± pozornego podniesienia obrazu h mierzymy, posªuguj c si mikroskopem. ruba przesuwaj ca tubus mikroskopu jest ±rub mikrometryczn. Peªny obrót ±ruby powoduje przesuni cie o z = 0, 5 mm. Ten peªny obrót podzielony jest jeszcze na 50 cz ±ci tak,»e dokªadno± odczytu wynosi 0, 01mm. Na stoliku umieszczamy zarysowan pªytk i ustawiamy mikroskop tak, aby brzegi rysy byªy ostro widoczne. Nast pnie przykrywamy rys badan pªytk o nieznanym wspóªczynniku zaªamania i ponownie szukamy ostrego obrazu rysy, przesuwaj c tubus mikroskopu za pomoc ±ruby. Liczymy peªn ilo± obrotów ±ruby k, a ze skali odczytujemy setne cz ±ci milimetra r. Pozorne podniesienie obrazu w pªytce wyniesie h = kz + r [mm]. (21) Dla badanej pªytki pomiar h wykonujemy dziesi ciokrotnie po czym obliczamy ±redni warto± h r. Cz ± II: Wykorzystuj c prawo Brewstera tg α B = n 21, (22) do±wiadczalnie wyznaczamy k t α B, posªuguj c si przy tym ukªadem optycznym jak na rysunku 5 Na ªawie optycznej umieszczona jest, w ruchomej podstawce, badana pªytka P b d ca polaryzatorem ±wiatªa oraz nikol A, speªniaj cy w tym ukªadzie rol analizatora. Monochromatyczne ¹ródªo ±wiatªa Z znajduje si na ruchomym ramieniu obracaj cym si wokóª polaryzatora. W celu znalezienia k ta caªkowitej polaryzacji ustawiamy ¹ródªo tak, aby promie«padaª na pªytk w ±rodku skali k towej. Speªnione to b dzie wówczas, je»eli na tle plamki ±wietlnej b dziemy widzie pionow ni celownika C umieszczonego mi dzy P i A. Obracamy analizator wokóª kierunku biegu promienia odbitego. Zmiany nat»enia wi zki ±wiatªa ±wiadcz o pewnym uporz dkowaniu drga«wektora E. Je»eli przy obrocie nikola natramy na takie jego poªo»enie, przy którym nat»enie promienia odbitego b dzie równe zeru, wówczas znaleziony k t padania jest k tem caªkowitej polaryzacji α B. Odnajdujemy ten k t metod kolejnych prób dla ró»nych k tów padania ±wiatªa na pªytk P. Nale»y pami ta,»e przy zmianie poªo»enia ¹ródªa ±wiatªa nale»y odpowiednio zmienia poªo»enie 8

9 Rys. 5: Schemat ukªadu pomiarowego do wyznaczania wspóªczynnika zaªamania materiaªu, wykorzystuj c zjawisko polaryzacji ±wiatªa przez odbicie. pªytki P. K t Brewstera mierzymy pi ciokrotnie z jednej i drugiej strony ªawy optycznej. Odczytu warto±ci k ta caªkowitej polaryzacji α B dokonujemy na tarczy obracaj cej si razem z pªytk P. Warto± wspóªczynnika zaªamania obliczamy dla warto±ci ±redniej k ta Brewstera zgodnie z formuª Zadania n = tg α r. (23) 1. Wyznaczy wspóªczynnik zaªamania ±wiatªa metod mikroskopow de Chaulnesa, mierz c grubo± pªytki d oraz pomiar pozornego podniesienie obrazu h. 2. Wyznaczy wspóªczynnik zaªamania ±wiatªa, stosuj c prawo Brewstera przez pomiar k ta Brewstera dla badanej pªytki. OPRACOWANIE DANYCH POMIAROWYCH Niepewno± pomiarów wspóªczynnika zaªamania metod mikroskopow de Chaulnesa wyznaczamy jako niepewno± standardow wielko±ci zªo»onej w postaci [ h ] 2 [ ] d 2 S n = ( d h) (S d) ( d h) (S h) 2, 2 w której S d i S h s niepewno±ciami standardowymi wielko±ci wyznaczonych d i h, które mo»na wyliczyc z formuªy n ( d d i ) 2 n S d = i=1 n(n 1), ( h h i ) 2 S h = i=1 n(n 1). (24) 9

10 Niepewno± maksymalna wspóªczynnika zaªamania n, wyznaczona t metoda wynosi n = 3S n. (25) Niepewno± wspóªczynnika zaªamania ±wiatªa wyznaczonego metod, opart na prawie Brewstera, wyznaczamy metod ró»niczki zupeªnej. Wyliczaj c pochodn ze wzoru 23 po k cie α uzyskamy n w postaci n = 1 cos 2 α sr α sr. (26) We wzorze 26 α sr = 3S αsr, natomiast S αsr jest odchyleniem standardowym wyznaczonego ±redniego k ta Brewstara i wynosi n (α sr α i ) 2 S αsr = i=1 n(n 1). (27) Nale»y pami ta, aby przed podstawieniem zale»no±ci 27 do 26 zamieni miar k tow wyra»an w stopniach na radiany. SPRAWD CZY ROZUMIESZ. ZADANIA PROBLEMOWE 1. Korzystaj c z zasady Huygensa wyprowad¹ prawo odbicia i prawo zaªamania. 2. Pªaska bªonka mydlana widziana w ±wietle odbitym, gdy promienie ±wietlne wpadaj do oka pod k tem α = 30 (jest to k t mierzony od normalnej) ma zabarwienie zielone. Jak grubo± ma ta bªonka? Jaka jest barwa bªonki, gdy patrzymy na ni pod k tem α = 0. Wspóªczynnik zaªamania bªonki przyj n = 1, 33, dªugo± fali ±wiatªa zielonego λ ziel = 501, 6 nm. ODP. d min = 0, 1µm, barwa zielona-»óªta. 10

11 PRACOWNIA FIZYCZNA I - KARTA POMIARÓW WYZNACZANIE WSPÓŠCZYNNIKA ZAŠAMANIA WIATŠA CIAŠ STAŠYCH nazwisko i imi data wykonania 1) Metoda mikroskopowa - pªytka I i d[ ] h[ ] 2) Metoda mikroskopowa - pªytka II i d[ ] h[ ] 2) Metoda oparta na polaryzacji ±wiatªa odbitego i ϕ L [ ] ϕ R [ ]... podpis prowadz cego zaj cia 11

12 Wspóªczynniki zaªamania ±wiatªa n ró»nych materiaªów wyznaczonych dla»óªtej linii sodu λ = 589 nm. O RODEK n pró»nia 1,0 powietrze (0 C, 1 atm 1,00029 woda (20 C 1,33 aceton 1,36 alkohol etylowy 1,36 roztwór cukru (30%) 1,38 kwarc topiony 1,46 roztwór cukru (80%) 1,49 szkªo typowe (kron) 1,52 chlorek sodu 1,54 polistyren 1,55 dwusiarczek w gla 1,63 ci»kie szkªo (int) 1,65 szar 1,77 diament 2,24 12

Wyznaczanie współczynnika załamania światła

Wyznaczanie współczynnika załamania światła Ćwiczenie O2 Wyznaczanie współczynnika załamania światła O2.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie współczynnika załamania światła dla przeźroczystych, płaskorównoległych płytek wykonanych z

Bardziej szczegółowo

Wektory w przestrzeni

Wektory w przestrzeni Wektory w przestrzeni Informacje pomocnicze Denicja 1. Wektorem nazywamy uporz dkowan par punktów. Pierwszy z tych punktów nazywamy pocz tkiem wektora albo punktem zaczepienia wektora, a drugi - ko«cem

Bardziej szczegółowo

FMZ10 K - Liniowy efekt elektrooptyczny

FMZ10 K - Liniowy efekt elektrooptyczny FMZ10 K - Liniowy efekt elektrooptyczny Materiaªy przeznaczone dla studentów kierunku: Zaawansowane Materiaªy i Nanotechnologia w Instytucie Fizyki UJ rok akademicki 009/010 prowadz cy: dr hab. Krzysztof

Bardziej szczegółowo

Wyznaczanie zależności współczynnika załamania światła od długości fali światła

Wyznaczanie zależności współczynnika załamania światła od długości fali światła Ćwiczenie O3 Wyznaczanie zależności współczynnika załamania światła od długości fali światła O3.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie zależności współczynnika załamania światła od długości fali

Bardziej szczegółowo

1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci

1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci Zebraª do celów edukacyjnych od wykªadowców PK, z ró»nych podr czników Maciej Zakarczemny 1 Przypomnienie wiadomo±ci ze szkoªy ±redniej Rozwi zywanie prostych równa«i nierówno±ci dotycz cych funkcji elementarnych,

Bardziej szczegółowo

Zadania z z matematyki dla studentów gospodarki przestrzennej UŠ. Marek Majewski Aktualizacja: 31 pa¹dziernika 2006

Zadania z z matematyki dla studentów gospodarki przestrzennej UŠ. Marek Majewski Aktualizacja: 31 pa¹dziernika 2006 Zadania z z matematyki dla studentów gospodarki przestrzennej UŠ Marek Majewski Aktualizacja: 1 pa¹dziernika 006 Spis tre±ci 1 Macierze dziaªania na macierzach. Wyznaczniki 1 Macierz odwrotna. Rz d macierzy

Bardziej szczegółowo

Fizyka dla Informatyków Wykªad 11 Optyka

Fizyka dla Informatyków Wykªad 11 Optyka Fizyka dla Informatyków Wykªad 11 Optyka Katedra Informatyki Stosowane P J W S T K 2 0 0 9 Spis tre±ci Dzisiaj b dziemy opowiada? o zjawiskach optycznych, a w szczególno±ci o optyce geometrycznej! Spis

Bardziej szczegółowo

Elementy geometrii w przestrzeni R 3

Elementy geometrii w przestrzeni R 3 Elementy geometrii w przestrzeni R 3 Z.Šagodowski Politechnika Lubelska 29 maja 2016 Podstawowe denicje Wektorem nazywamy uporz dkowan par punktów (A,B) z których pierwszy nazywa si pocz tkiem a drugi

Bardziej szczegółowo

1 Trochoidalny selektor elektronów

1 Trochoidalny selektor elektronów 1 Trochoidalny selektor elektronów W trochoidalnym selektorze elektronów TEM (Trochoidal Electron Monochromator) stosuje si skrzy»owane i jednorodne pola: elektryczne i magnetyczne. Jako pierwsi taki ukªad

Bardziej szczegółowo

wiczenie nr 3 z przedmiotu Metody prognozowania kwiecie«2015 r. Metodyka bada«do±wiadczalnych dr hab. in». Sebastian Skoczypiec Cel wiczenia Zaªo»enia

wiczenie nr 3 z przedmiotu Metody prognozowania kwiecie«2015 r. Metodyka bada«do±wiadczalnych dr hab. in». Sebastian Skoczypiec Cel wiczenia Zaªo»enia wiczenie nr 3 z przedmiotu Metody prognozowania kwiecie«2015 r. wiczenia 1 2 do wiczenia 3 4 Badanie do±wiadczalne 5 pomiarów 6 7 Cel Celem wiczenia jest zapoznanie studentów z etapami przygotowania i

Bardziej szczegółowo

Elementy geometrii analitycznej w przestrzeni

Elementy geometrii analitycznej w przestrzeni Wykªad 3 Elementy geometrii analitycznej w przestrzeni W wykªadzie tym wi kszy nacisk zostaª poªo»ony raczej na intuicyjne rozumienie deniowanych poj, ni» ±cisªe ich zdeniowanie. Dlatego niniejszy wykªad

Bardziej szczegółowo

WBiA Architektura i Urbanistyka. 1. Wykonaj dziaªania na macierzach: Które z iloczynów: A 2 B, AB 2, BA 2, B 2 3, B = 1 2 0

WBiA Architektura i Urbanistyka. 1. Wykonaj dziaªania na macierzach: Które z iloczynów: A 2 B, AB 2, BA 2, B 2 3, B = 1 2 0 WBiA Architektura i Urbanistyka Matematyka wiczenia 1. Wykonaj dziaªania na macierzach: 1) 2A + C 2) A C T ) B A 4) B C T 5) A 2 B T 1 0 2 dla A = 1 2 1 1 0 B = ( 1 2 1 0 1 ) C = 1 2 1 0 2 1 0 1 2. Które

Bardziej szczegółowo

Arkusz 4. Elementy geometrii analitycznej w przestrzeni

Arkusz 4. Elementy geometrii analitycznej w przestrzeni Arkusz 4. Elementy geometrii analitycznej w przestrzeni Zadanie 4.1. Obliczy dªugo±ci podanych wektorów a) a = [, 4, 12] b) b = [, 5, 2 2 ] c) c = [ρ cos φ, ρ sin φ, h], ρ 0, φ, h R c) d = [ρ cos φ cos

Bardziej szczegółowo

LXV OLIMPIADA FIZYCZNA ZAWODY III STOPNIA

LXV OLIMPIADA FIZYCZNA ZAWODY III STOPNIA LXV OLIMPIADA FIZYCZNA ZAWODY III STOPNIA CZ DO WIADCZALNA Za zadanie do±wiadczalne mo»na otrzyma maksymalnie 40 punktów. Zadanie D. Rozgrzane wolframowe wªókno»arówki o temperaturze bezwzgl dnej T emituje

Bardziej szczegółowo

Optyka geometryczna. Soczewki. Marcin S. Ma kowicz. rok szk. 2009/2010. Zespóª Szkóª Ponadgimnazjalnych Nr 2 w Brzesku

Optyka geometryczna. Soczewki. Marcin S. Ma kowicz. rok szk. 2009/2010. Zespóª Szkóª Ponadgimnazjalnych Nr 2 w Brzesku skupiaj ce rozpraszaj ce Optyka geometryczna Zespóª Szkóª Ponadgimnazjalnych Nr 2 w Brzesku rok szk. 2009/2010 skupiaj ce rozpraszaj ce Spis tre±ci 1 Wprowadzenie 2 Ciekawostki 3 skupiaj ce Konstrukcja

Bardziej szczegółowo

Arkusz maturalny. Šukasz Dawidowski. 25 kwietnia 2016r. Powtórki maturalne

Arkusz maturalny. Šukasz Dawidowski. 25 kwietnia 2016r. Powtórki maturalne Arkusz maturalny Šukasz Dawidowski Powtórki maturalne 25 kwietnia 2016r. Odwrotno±ci liczby rzeczywistej 1. 9 8 2. 0, (1) 3. 8 9 4. 0, (8) 3 4 4 4 1 jest liczba Odwrotno±ci liczby rzeczywistej 3 4 4 4

Bardziej szczegółowo

PRACOWNIA FIZYCZNA I

PRACOWNIA FIZYCZNA I Skrypt do laboratorium PRACOWNIA FIZYCZNA I wiczenie 3: Wyznaczanie staªej dielektrycznej metod kondensatorow. Opracowanie: mgr Tomasz Neumann Gda«sk, 2011 Projekt Przygotowanie i realizacja kierunku in»ynieria

Bardziej szczegółowo

Optyka geometryczna. Zwierciadªa. Marcin S. Ma kowicz. rok szk. 2009/2010. Zespóª Szkóª Ponadgimnazjalnych Nr 2 w Brzesku

Optyka geometryczna. Zwierciadªa. Marcin S. Ma kowicz. rok szk. 2009/2010. Zespóª Szkóª Ponadgimnazjalnych Nr 2 w Brzesku Optyka geometryczna Zespóª Szkóª Ponadgimnazjalnych Nr 2 w Brzesku rok szk. 2009/2010 Spis tre±ci 1 2 Jak konstuowa obraz w zwierciadle pªaskim 3 Konstrukcja obrazu w zwierciadle kulistym wkl sªym Równanie

Bardziej szczegółowo

Rachunek ró»niczkowy funkcji jednej zmiennej

Rachunek ró»niczkowy funkcji jednej zmiennej Lista Nr 5 Rachunek ró»niczkowy funkcji jednej zmiennej 5.0. Obliczanie pochodnej funkcji Pochodne funkcji podstawowych. f() = α f () = α α. f() = log a f () = ln a '. f() = ln f () = 3. f() = a f () =

Bardziej szczegółowo

Równania Maxwella. prawo Faraday a. I i uogólnione prawo Ampera. prawo Gaussa. D ds = q. prawo Gaussa dla magnetyzmu. si la Lorentza E + F = q( Fizyka

Równania Maxwella. prawo Faraday a. I i uogólnione prawo Ampera. prawo Gaussa. D ds = q. prawo Gaussa dla magnetyzmu. si la Lorentza E + F = q( Fizyka Równania Maxwella L L S S Φ m E dl = t Φ e H dl = + t D ds = q B ds = 0 prawo Faraday a n I i uogólnione prawo Ampera i=1 prawo Gaussa prawo Gaussa dla magnetyzmu F = q( E + v B) si la Lorentza 1 Równania

Bardziej szczegółowo

(wynika z II ZD), (wynika z PPC), Zapisujemy to wszystko w jednym równaniu i przeksztaªcamy: = GM

(wynika z II ZD), (wynika z PPC), Zapisujemy to wszystko w jednym równaniu i przeksztaªcamy: = GM ODPOWIEDZI, EDUKARIS - kwiecie«2014, opracowaª Mariusz Mroczek 1 Zadanie 1.1 (2 pkt) Zmiana kierunku wektora pr dko±ci odbywa si, zgodnie z II ZD, w kierunku dziaªania siªy. Innymi sªowami: przyrosty pr

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU Cel ćwiczenia: 1. Zapoznanie z budową i zasadą działania mikroskopu optycznego. 2. Wyznaczenie współczynnika załamania

Bardziej szczegółowo

r = x x2 2 + x2 3.

r = x x2 2 + x2 3. Przestrze«aniczna Def. 1. Przestrzeni aniczn zwi zan z przestrzeni liniow V nazywamy dowolny niepusty zbiór P z dziaªaniem ω : P P V (które dowolnej parze elementów zbioru P przyporz dkowuje wektor z przestrzeni

Bardziej szczegółowo

Graka komputerowa Wykªad 3 Geometria pªaszczyzny

Graka komputerowa Wykªad 3 Geometria pªaszczyzny Graka komputerowa Wykªad 3 Geometria pªaszczyzny Instytut Informatyki i Automatyki Pa«stwowa Wy»sza Szkoªa Informatyki i Przedsi biorczo±ci w Šom»y 2 0 0 9 Spis tre±ci Spis tre±ci 1 Przeksztaªcenia pªaszczyzny

Bardziej szczegółowo

wiczenie 46 Spektrometr. Wyznaczanie dªugosci linii widmowych pierwiastków

wiczenie 46 Spektrometr. Wyznaczanie dªugosci linii widmowych pierwiastków wiczenie 46 Spektrometr. Wyznaczanie dªugosci linii widmowych pierwiastków Krzysztof R bilas WIATŠO W uj ciu zyki klasycznej ±wiatªo to fala elektromagnetyczna rozchodz ca si w pró»ni z pr dko±ci c = 3

Bardziej szczegółowo

Sposób wykonania ćwiczenia. Płytka płasko-równoległa. Rys. 1. Wyznaczanie współczynnika załamania materiału płytki : A,B,C,D punkty wbicia szpilek ; s

Sposób wykonania ćwiczenia. Płytka płasko-równoległa. Rys. 1. Wyznaczanie współczynnika załamania materiału płytki : A,B,C,D punkty wbicia szpilek ; s WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU Cel ćwiczenia: 1. Zapoznanie z budową i zasadą działania mikroskopu optycznego.. Wyznaczenie współczynnika załamania światła

Bardziej szczegółowo

Stereometria (geometria przestrzenna)

Stereometria (geometria przestrzenna) Stereometria (geometria przestrzenna) Wzajemne poªo»enie prostych w przestrzeni Stereometria jest dziaªem geometrii, którego przedmiotem bada«s bryªy przestrzenne oraz ich wªa±ciwo±ci. Na pocz tek omówimy

Bardziej szczegółowo

Fala elektromagnetyczna o określonej częstotliwości ma inną długość fali w ośrodku niż w próżni. Jako przykłady policzmy:

Fala elektromagnetyczna o określonej częstotliwości ma inną długość fali w ośrodku niż w próżni. Jako przykłady policzmy: Rozważania rozpoczniemy od ośrodków jednorodnych. W takich ośrodkach zależność między indukcją pola elektrycznego a natężeniem pola oraz między indukcją pola magnetycznego a natężeniem pola opisana jest

Bardziej szczegółowo

1 Granice funkcji wielu zmiennych.

1 Granice funkcji wielu zmiennych. AM WNE 008/009. Odpowiedzi do zada«przygotowawczych do czwartego kolokwium. Granice funkcji wielu zmiennych. Zadanie. Zadanie. Pochodne. (a) 0, Granica nie istnieje, (c) Granica nie istnieje, (d) Granica

Bardziej szczegółowo

Wektor. Uporz dkowany ukªad liczb (najcz ±ciej: dwóch - na pªaszczy¹nie, trzech - w przestrzeni 3D).

Wektor. Uporz dkowany ukªad liczb (najcz ±ciej: dwóch - na pªaszczy¹nie, trzech - w przestrzeni 3D). Wektor Uporz dkowany ukªad liczb (najcz ±ciej: dwóch - na pªaszczy¹nie, trzech - w przestrzeni 3D). Adam Szmagli«ski (IF PK) Wykªad z Fizyki dla I roku WIL Kraków, 10.10.2015 1 / 13 Wektor Uporz dkowany

Bardziej szczegółowo

I PRACOWNIA FIZYCZNA, UMK TORUŃ

I PRACOWNIA FIZYCZNA, UMK TORUŃ I PRACOWNIA FIZYCZNA, UMK TORUŃ Instrukcja do ćwiczenia nr 59 WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA W SZKLE METODĄ KĄTA NAJMNIEJSZEGO ODCHYLENIA Instrukcje wykonali: G. Maciejewski, I. Gorczyńska

Bardziej szczegółowo

Podstawy fizyki wykład 8

Podstawy fizyki wykład 8 Podstawy fizyki wykład 8 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Optyka geometryczna Polaryzacja Odbicie zwierciadła Załamanie soczewki Optyka falowa Interferencja Dyfrakcja światła D.

Bardziej szczegółowo

lub po przeksztaªceniu:

lub po przeksztaªceniu: wiczenie 46 Spektrometr. Wyznaczanie dªugo±ci linii widmowych pierwiastków Krzysztof R bilas WIATŠO W uj ciu zyki klasycznej ±wiatªo to fala elektromagnetyczna rozchodz ca si w pró»ni z pr dko±ci c = 3

Bardziej szczegółowo

Optyka. Wykład VII Krzysztof Golec-Biernat. Prawa odbicia i załamania. Uniwersytet Rzeszowski, 22 listopada 2017

Optyka. Wykład VII Krzysztof Golec-Biernat. Prawa odbicia i załamania. Uniwersytet Rzeszowski, 22 listopada 2017 Optyka Wykład VII Krzysztof Golec-Biernat Prawa odbicia i załamania Uniwersytet Rzeszowski, 22 listopada 2017 Wykład VII Krzysztof Golec-Biernat Optyka 1 / 20 Plan Zachowanie pola elektromagnetycznego

Bardziej szczegółowo

Ćwiczenie: "Ruch harmoniczny i fale"

Ćwiczenie: Ruch harmoniczny i fale Ćwiczenie: "Ruch harmoniczny i fale" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia:

Bardziej szczegółowo

Materiaªy do Repetytorium z matematyki

Materiaªy do Repetytorium z matematyki Materiaªy do Repetytorium z matematyki 0/0 Dziaªania na liczbach wymiernych i niewymiernych wiczenie Obliczy + 4 + 4 5. ( + ) ( 4 + 4 5). ( : ) ( : 4) 4 5 6. 7. { [ 7 4 ( 0 7) ] ( } : 5) : 0 75 ( 8) (

Bardziej szczegółowo

Ukªady równa«liniowych

Ukªady równa«liniowych dr Krzysztof yjewski Mechatronika; S-I 0 in» 7 listopada 206 Ukªady równa«liniowych Informacje pomocnicze Denicja Ogólna posta ukªadu m równa«liniowych z n niewiadomymi x, x, x n, gdzie m, n N jest nast

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x, y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0, y 0 ) Pochodn cz stkow pierwszego rz du funkcji dwóch zmiennych wzgl

Bardziej szczegółowo

Metody numeryczne. Wst p do metod numerycznych. Dawid Rasaªa. January 9, 2012. Dawid Rasaªa Metody numeryczne 1 / 9

Metody numeryczne. Wst p do metod numerycznych. Dawid Rasaªa. January 9, 2012. Dawid Rasaªa Metody numeryczne 1 / 9 Metody numeryczne Wst p do metod numerycznych Dawid Rasaªa January 9, 2012 Dawid Rasaªa Metody numeryczne 1 / 9 Metody numeryczne Czym s metody numeryczne? Istota metod numerycznych Metody numeryczne s

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych dr Krzysztof yjewski Informatyka I rok I 0 in» 12 stycznia 2016 Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0 y 0 )

Bardziej szczegółowo

LXIV OLIMPIADA FIZYCZNA ZAWODY III STOPNIA

LXIV OLIMPIADA FIZYCZNA ZAWODY III STOPNIA Za zadanie D mo»na otrzyma maksymalnie 40 punktów. Zadanie D. Maj c do dyspozycji: LXIV OLIMPIADA FIZYCZNA ZAWODY III STOPNIA CZ DO WIADCZALNA generator napi cia o przebiegu sinusoidalnym o ustalonej amplitudzie

Bardziej szczegółowo

ĆWICZENIE 41 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO. Wprowadzenie teoretyczne

ĆWICZENIE 41 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO. Wprowadzenie teoretyczne ĆWICZENIE 4 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO Wprowadzenie teoretyczne Rys. Promień przechodzący przez pryzmat ulega dwukrotnemu załamaniu na jego powierzchniach bocznych i odchyleniu o kąt δ. Jeżeli

Bardziej szczegółowo

Falowa natura światła

Falowa natura światła Falowa natura światła Christiaan Huygens Thomas Young James Clerk Maxwell Światło jest falą elektromagnetyczną Barwa światło zależy od jej długości (częstości). Optyka geometryczna Optyka geometryczna

Bardziej szczegółowo

2. L(a u) = al( u) dla dowolnych u U i a R. Uwaga 1. Warunki 1., 2. mo»na zast pi jednym warunkiem: L(a u + b v) = al( u) + bl( v)

2. L(a u) = al( u) dla dowolnych u U i a R. Uwaga 1. Warunki 1., 2. mo»na zast pi jednym warunkiem: L(a u + b v) = al( u) + bl( v) Przeksztaªcenia liniowe Def 1 Przeksztaªceniem liniowym (homomorzmem liniowym) rzeczywistych przestrzeni liniowych U i V nazywamy dowoln funkcj L : U V speªniaj c warunki: 1 L( u + v) = L( u) + L( v) dla

Bardziej szczegółowo

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Zastosowanie eliptycznych równa«ró»niczkowych

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Zastosowanie eliptycznych równa«ró»niczkowych Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdziaª 9 RÓWNANIA ELIPTYCZNE 9.1 Zastosowanie eliptycznych równa«ró»niczkowych cz stkowych 9.1.1 Problemy z warunkami brzegowymi W przestrzeni dwuwymiarowej

Bardziej szczegółowo

Zasilacz stabilizowany 12V

Zasilacz stabilizowany 12V Zasilacz stabilizowany 12V Marcin Polkowski marcin@polkowski.eu 3 grudnia 2007 Spis tre±ci 1 Wprowadzenie 2 2 Wykonane pomiary 2 2.1 Charakterystyka napi ciowa....................................... 2

Bardziej szczegółowo

OPTYKA FALOWA. W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę

OPTYKA FALOWA. W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę OPTYKA FALOWA W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę falową. W roku 8 Thomas Young wykonał doświadczenie, które pozwoliło wyznaczyć długość fali światła.

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna

Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna 1. Podaj denicj liczby zespolonej. 2. Jak obliczy sum /iloczyn dwóch liczb zespolonych w postaci algebraicznej? 3. Co to jest liczba urojona?

Bardziej szczegółowo

Optyka geometryczna i falowa

Optyka geometryczna i falowa Pojęcie podstawowe: promień świetlny. Optyka geometryczna i alowa Podstawowa obserwacja: jeżeli promień świetlny pada na granicę dwóch ośrodków to: ulega odbiciu na powierzchni granicznej za!amaniu przy

Bardziej szczegółowo

Krzywe i powierzchnie stopnia drugiego

Krzywe i powierzchnie stopnia drugiego Krzywe i powierzchnie stopnia drugiego Iwona Malinowska, Zbigniew Šagodowski 25 maja 2015 I. Malinowska, Z. Lagodowski Geometria 25 maja 2015 1 / 30 Rozwa»my dwie proste przecinaj ce si pod k tem α, 0

Bardziej szczegółowo

Pochodna funkcji jednej zmiennej

Pochodna funkcji jednej zmiennej Pochodna funkcji jednej zmiennej Denicja. (pochodnej funkcji w punkcie) Je±li funkcja f : D R, D R okre±lona jest w pewnym otoczeniu punktu D i istnieje sko«czona granica ilorazu ró»niczkowego: f f( +

Bardziej szczegółowo

Skręcenie płaszczyzny polaryzacji światła w cieczach (PF13)

Skręcenie płaszczyzny polaryzacji światła w cieczach (PF13) Skręcenie płaszczyzny polaryzacji światła w cieczach (PF13) Celem ćwiczenia jest: obserwacja zjawiska skręcenia płaszczyzny polaryzacji światła w roztworach cukru, obserwacja zależności kąta skręcenia

Bardziej szczegółowo

Wykªad 10. Spis tre±ci. 1 Niesko«czona studnia potencjaªu. Fizyka 2 (Informatyka - EEIiA 2006/07) c Mariusz Krasi«ski 2007

Wykªad 10. Spis tre±ci. 1 Niesko«czona studnia potencjaªu. Fizyka 2 (Informatyka - EEIiA 2006/07) c Mariusz Krasi«ski 2007 Wykªad 10 Fizyka 2 (Informatyka - EEIiA 2006/07) 08 05 2007 c Mariusz Krasi«ski 2007 Spis tre±ci 1 Niesko«czona studnia potencjaªu 1 2 Laser 3 2.1 Emisja spontaniczna...........................................

Bardziej szczegółowo

Badanie właściwości optycznych roztworów.

Badanie właściwości optycznych roztworów. ĆWICZENIE 4 (2018), STRONA 1/6 Badanie właściwości optycznych roztworów. Cel ćwiczenia - wyznaczenie skręcalności właściwej sacharozy w roztworach wodnych oraz badanie współczynnika załamania światła Teoria

Bardziej szczegółowo

Rachunek caªkowy funkcji wielu zmiennych

Rachunek caªkowy funkcji wielu zmiennych Rachunek caªkowy funkcji wielu zmiennych I. Malinowska, Z. Šagodowski Politechnika Lubelska 8 czerwca 2015 Caªka iterowana podwójna Denicja Je»eli funkcja f jest ci gªa na prostok cie P = {(x, y) : a x

Bardziej szczegółowo

Wyznaczanie współczynnika sprężystości sprężyn i ich układów

Wyznaczanie współczynnika sprężystości sprężyn i ich układów Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie

Bardziej szczegółowo

Matematyka 1. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski

Matematyka 1. Šukasz Dawidowski. Instytut Matematyki, Uniwersytet l ski Matematyka 1 Šukasz Dawidowski Instytut Matematyki, Uniwersytet l ski Pochodna funkcji Niech a, b R, a < b. Niech f : (a, b) R b dzie funkcj oraz x, x 0 (a, b) b d ró»nymi punktami przedziaªu (a, b). Wyra»enie

Bardziej szczegółowo

1 Bª dy i arytmetyka zmiennopozycyjna

1 Bª dy i arytmetyka zmiennopozycyjna 1 Bª dy i arytmetyka zmiennopozycyjna Liczby w pami ci komputera przedstawiamy w ukªadzie dwójkowym w postaci zmiennopozycyjnej Oznacza to,»e s one postaci ±m c, 01 m < 1, c min c c max, (1) gdzie m nazywamy

Bardziej szczegółowo

Fale elektromagnetyczne w dielektrykach

Fale elektromagnetyczne w dielektrykach Fale elektromagnetyczne w dielektrykach Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Krótka historia odkrycia

Bardziej szczegółowo

Optyka 12/15. Andrzej Kapanowski ufkapano/ Instytut Fizyki, Uniwersytet Jagiello«ski, Kraków. A.

Optyka 12/15. Andrzej Kapanowski   ufkapano/ Instytut Fizyki, Uniwersytet Jagiello«ski, Kraków. A. Optyka 12/15 Andrzej Kapanowski http://users.uj.edu.pl/ ufkapano/ Instytut Fizyki, Uniwersytet Jagiello«ski, Kraków 2018 Fale ±wietlne Promieniowanie elektromagnetyczne o dªugo±ciach fali zawieraj cych

Bardziej szczegółowo

Rozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a).

Rozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a). Rozwi zania zada«z egzaminu podstawowego z Analizy matematycznej 2.3A (24/5). Rozwi zanie równania ró»niczkowego metod operatorow (zastosowanie transformaty Laplace'a). Zadanie P/4. Metod operatorow rozwi

Bardziej szczegółowo

Elektrostatyka. Prawo Coulomba. F = k qq r r 2 r, wspóªczynnik k = 1 = N m2

Elektrostatyka. Prawo Coulomba. F = k qq r r 2 r, wspóªczynnik k = 1 = N m2 Elektrostatyka Prawo Coulomba F = k qq r r 2 r, wspóªczynnik k = 1 N m2 4πε = 9 109 C 2 gdzie: F - siªa z jak ªadunek Q dziaªa na q, r wektor poªo»enia od ªadunku Q do q, r = r, Przenikalno± elektryczna

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015 Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Mechaniczny obowiązuje studentów rozpoczynających studia w roku akademickim 014/015 Kierunek studiów: Inżynieria Wzornictwa Przemysłowego

Bardziej szczegółowo

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja

Bardziej szczegółowo

Fizyka dla Informatyki Stosowanej

Fizyka dla Informatyki Stosowanej Fizyka dla Informatyki Stosowanej Jacek Golak Semestr zimowy 8/9 Wykład nr 5 Fale elektromagnetyczne Punkt wyjścia: równania Maxwella (układ SI!) Najpierw dla próżni ε przenikalność dielektryczna próżni

Bardziej szczegółowo

1. Przedstaw w postaci algebraicznej liczby zespolone: 2. Narysuj zbiory punktów na pªaszczy¹nie:

1. Przedstaw w postaci algebraicznej liczby zespolone: 2. Narysuj zbiory punktów na pªaszczy¹nie: ZADANIA Z MATEMATYKI Zestaw. Przedstaw w postaci algebraicznej liczby zespolone: (3 + j)(5 j) 3 j +j (5 + j) (3 + j) 3. Narysuj zbiory punktów na pªaszczy¹nie: +j +j 3 Re z = Im z = 5 z ( j) = z j z +

Bardziej szczegółowo

Wykład 17: Optyka falowa cz.2.

Wykład 17: Optyka falowa cz.2. Wykład 17: Optyka falowa cz.2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Interferencja w cienkich warstwach Załamanie

Bardziej szczegółowo

ANALIZA WIDMOWA (dla szkoły średniej) 1. Dane osobowe. 2. Podstawowe informacje BHP. 3. Opis stanowiska pomiarowego. 4. Procedura pomiarowa

ANALIZA WIDMOWA (dla szkoły średniej) 1. Dane osobowe. 2. Podstawowe informacje BHP. 3. Opis stanowiska pomiarowego. 4. Procedura pomiarowa ANALIZA WIDMOWA (dla szkoły średniej) 1. Dane osobowe Data wykonania ćwiczenia: Nazwa szkoły, klasa: Dane uczniów: 1 4 2 5 3 6 2. Podstawowe informacje BHP Możliwość porażenia prądem lampa jest zasilana

Bardziej szczegółowo

Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach

Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach Teoria obowi zuje z wykªadu, dlatego te» zostan tutaj przedstawione tylko podstawowe denicje, twierdzenia i wzory. Denicja 1. Równanie

Bardziej szczegółowo

Metody dowodzenia twierdze«

Metody dowodzenia twierdze« Metody dowodzenia twierdze«1 Metoda indukcji matematycznej Je±li T (n) jest form zdaniow okre±lon w zbiorze liczb naturalnych, to prawdziwe jest zdanie (T (0) n N (T (n) T (n + 1))) n N T (n). 2 W przypadku

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 51: Współczynnik załamania światła dla ciał stałych

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 51: Współczynnik załamania światła dla ciał stałych Nazwisko i imię: Zespół: Data: Ćwiczenie nr 5: Współczynnik załamania światła dla ciał stałych Cel ćwiczenia: Wyznaczenie współczynnika załamania światła dla szkła i pleksiglasu metodą pomiaru grubości

Bardziej szczegółowo

ELEMENTARNA TEORIA LICZB. 1. Podzielno±

ELEMENTARNA TEORIA LICZB. 1. Podzielno± ELEMENTARNA TEORIA LICZB IZABELA AGATA MALINOWSKA N = {1, 2,...} 1. Podzielno± Denicja 1.1. Niepusty podzbiór A zbioru liczb naturalnych jest ograniczony, je»eli istnieje taka liczba naturalna n 0,»e m

Bardziej szczegółowo

14P2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM PODSTAWOWY

14P2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM PODSTAWOWY 14P2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM PODSTAWOWY Ruch jednostajny po okręgu Pole grawitacyjne Rozwiązania zadań należy zapisać w wyznaczonych miejscach pod treścią zadania

Bardziej szczegółowo

Aproksymacja funkcji metod najmniejszych kwadratów

Aproksymacja funkcji metod najmniejszych kwadratów Aproksymacja funkcji metod najmniejszych kwadratów Teoria Interpolacja polega na znajdowaniu krzywej przechodz cej przez wszystkie w zªy. Zdarzaj si jednak sytuacje, w których dane te mog by obarczone

Bardziej szczegółowo

Ksztaªt orbity planety: I prawo Keplera

Ksztaªt orbity planety: I prawo Keplera V 0 V 0 Ksztaªt orbity planety: I prawo Keplera oka»emy,»e orbit planety poruszaj cej si pod dziaªaniem siªy ci»ko±ci ze strony Sªo«ca jest krzywa sto»kowa, w szczególno±ci elipsa. Wektor pr dko±ci planety

Bardziej szczegółowo

Przeksztaªcenia liniowe

Przeksztaªcenia liniowe Przeksztaªcenia liniowe Przykªady Pokaza,»e przeksztaªcenie T : R 2 R 2, postaci T (x, y) = (x + y, x 6y) jest przeksztaªceniem liniowym Sprawdzimy najpierw addytywno± przeksztaªcenia T Niech v = (x, y

Bardziej szczegółowo

. 0 0... 1 0. 0 0 0 0 1 gdzie wektory α i tworz baz ortonormaln przestrzeni E n

. 0 0... 1 0. 0 0 0 0 1 gdzie wektory α i tworz baz ortonormaln przestrzeni E n GAL II 2013-2014 A. Strojnowski str.45 Wykªad 20 Denicja 20.1 Przeksztaªcenie aniczne f : H H anicznej przestrzeni euklidesowej nazywamy izometri gdy przeksztaªcenie pochodne f : T (H) T (H) jest izometri

Bardziej szczegółowo

Ekonometria - wykªad 8

Ekonometria - wykªad 8 Ekonometria - wykªad 8 3.1 Specykacja i werykacja modelu liniowego dobór zmiennych obja±niaj cych - cz ± 1 Barbara Jasiulis-Goªdyn 11.04.2014, 25.04.2014 2013/2014 Wprowadzenie Ideologia Y zmienna obja±niana

Bardziej szczegółowo

Spis tre±ci. Plan. 1 Pochodna cz stkowa. 1.1 Denicja Przykªady Wªasno±ci Pochodne wy»szych rz dów... 3

Spis tre±ci. Plan. 1 Pochodna cz stkowa. 1.1 Denicja Przykªady Wªasno±ci Pochodne wy»szych rz dów... 3 Plan Spis tre±ci 1 Pochodna cz stkowa 1 1.1 Denicja................................ 2 1.2 Przykªady............................... 2 1.3 Wªasno±ci............................... 2 1.4 Pochodne wy»szych

Bardziej szczegółowo

1 Metody iteracyjne rozwi zywania równania f(x)=0

1 Metody iteracyjne rozwi zywania równania f(x)=0 1 Metody iteracyjne rozwi zywania równania f()=0 1.1 Metoda bisekcji Zaªó»my,»e funkcja f jest ci gªa w [a 0, b 0 ]. Pierwiastek jest w przedziale [a 0, b 0 ] gdy f(a 0 )f(b 0 ) < 0. (1) Ustalmy f(a 0

Bardziej szczegółowo

Wyznaczanie współczynnika załamania światła za pomocą mikroskopu i pryzmatu

Wyznaczanie współczynnika załamania światła za pomocą mikroskopu i pryzmatu POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: MATEMATYKA Z ELEMENTAMI FIZYKI Kod przedmiotu: ISO73; INO73 Ćwiczenie Nr Wyznaczanie współczynnika

Bardziej szczegółowo

Teoria wzgl dno±ci Einsteina

Teoria wzgl dno±ci Einsteina Fizyka dla Informatyków Wykªad 12 Katedra Informatyki Stosowanej P J W S T K 2 0 0 9 Spis tre±ci Spis tre±ci 1 Wst p 2 3 4 Spis tre±ci Spis tre±ci 1 Wst p 2 3 4 Spis tre±ci Spis tre±ci 1 Wst p 2 3 4 Spis

Bardziej szczegółowo

Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska Podstawy fizyki Wykład 11 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 3, Wydawnictwa Naukowe PWN, Warszawa 2003. K.Sierański, K.Jezierski,

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA W PRZEZROCZYSTYM MATERIALE METODĄ KĄTA NAJMNIEJSZEGO ODCHYLENIA

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA W PRZEZROCZYSTYM MATERIALE METODĄ KĄTA NAJMNIEJSZEGO ODCHYLENIA I PRACOWNIA FIZYCZNA, INSTYTUT FIZYKI UMK, TORUŃ Instrukcja do ćwiczenia nr 59 WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA W PRZEZROCZYSTYM MATERIALE METODĄ KĄTA NAJMNIEJSZEGO ODCHYLENIA. Cel ćwiczenia

Bardziej szczegółowo

Ćwiczenie 373. Wyznaczanie stężenia roztworu cukru za pomocą polarymetru. Długość rurki, l [dm] Zdolność skręcająca a. Stężenie roztworu II d.

Ćwiczenie 373. Wyznaczanie stężenia roztworu cukru za pomocą polarymetru. Długość rurki, l [dm] Zdolność skręcająca a. Stężenie roztworu II d. Nazwisko Data Nr na liście Imię Wydział Dzień tyg Godzina Ćwiczenie 373 Wyznaczanie stężenia roztworu cukru za pomocą polarymetru Stężenie roztworu I d [g/dm 3 ] Rodzaj cieczy Położenie analizatora [w

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz

Bardziej szczegółowo

Wykªad 4. Funkcje wielu zmiennych.

Wykªad 4. Funkcje wielu zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 4. Funkcje wielu zmiennych. Zbiory na pªaszczy¹nie i w przestrzeni.

Bardziej szczegółowo

Kinematyka 2/15. Andrzej Kapanowski ufkapano/ Instytut Fizyki, Uniwersytet Jagiello«ski, Kraków. A. Kapanowski Kinematyka

Kinematyka 2/15. Andrzej Kapanowski   ufkapano/ Instytut Fizyki, Uniwersytet Jagiello«ski, Kraków. A. Kapanowski Kinematyka Kinematyka 2/15 Andrzej Kapanowski http://users.uj.edu.pl/ ufkapano/ Instytut Fizyki, Uniwersytet Jagiello«ski, Kraków 2018 Podstawowe poj cia Kinematyka jest cz ±ci mechaniki, która zajmuje si opisem

Bardziej szczegółowo

Elementarna statystyka Wnioskowanie o regresji (Inference 2 czerwca for regression) / 13

Elementarna statystyka Wnioskowanie o regresji (Inference 2 czerwca for regression) / 13 Elementarna statystyka Wnioskowanie o regresji (Inference for regression) Alexander Bendikov Uniwersytet Wrocªawski 2 czerwca 2016 Elementarna statystyka Wnioskowanie o regresji (Inference 2 czerwca for

Bardziej szczegółowo

Ć W I C Z E N I E N R O-10

Ć W I C Z E N I E N R O-10 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O-10 POMIAR PRĘDKOŚCI ŚWIATŁA I. Zagadnienia do opracowania 1. Metody

Bardziej szczegółowo

Fizyka dla Informatyków Wykªad 10 Elektrodynamika

Fizyka dla Informatyków Wykªad 10 Elektrodynamika Fizyka dla Informatyków Wykªad 10 Elektrodynamika Katedra Informatyki Stosowanej PJWSTK 2009 Dzisiaj b dziemy opowiada o elektryczno±ci. I o tym, i co z tego wynika! Rys. 1: Model atomu wodoru Spis tre±ci

Bardziej szczegółowo

BADANIE WŁASNOŚCI FAL ELEKTOMAGNETYCZNYCH

BADANIE WŁASNOŚCI FAL ELEKTOMAGNETYCZNYCH Ćwiczenie nr 6 BADANIE WŁASNOŚCI FAL ELEKTOMAGNETYCZNYCH Aparatura Komputer, laser półprzewodnikowy (λ em = 650 nm) z obrotowym analizatorem, światłowody o różnej długości, aparat pomiarowy prędkości światła,

Bardziej szczegółowo

POLARYZACJA ŚWIATŁA. Uporządkowanie kierunku drgań pola elektrycznego E w poprzecznej fali elektromagnetycznej (E B). światło niespolaryzowane

POLARYZACJA ŚWIATŁA. Uporządkowanie kierunku drgań pola elektrycznego E w poprzecznej fali elektromagnetycznej (E B). światło niespolaryzowane FALE ELEKTROMAGNETYCZNE Polaryzacja światła Sposoby polaryzacji Dwójłomność Skręcanie płaszczyzny polaryzacji Zastosowania praktyczne polaryzacji Efekty fotoelastyczne Stereoskopia Holografia Politechnika

Bardziej szczegółowo

Wyznaczanie współczynnika załamania światła za pomocą mikroskopu i pryzmatu

Wyznaczanie współczynnika załamania światła za pomocą mikroskopu i pryzmatu POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: FIZYKA Kod przedmiotu: KS037; KN037; LS037; LN037 Ćwiczenie Nr Wyznaczanie współczynnika załamania

Bardziej szczegółowo

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne POLITECHNIKA POZNAŃSKA INSTYTUT INŻYNIERII ŚRODOWISKA PROWADZĄCY: mgr inż. Łukasz Amanowicz Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne 3 TEMAT ĆWICZENIA: Badanie składu pyłu za pomocą mikroskopu

Bardziej szczegółowo

Kinetyczna teoria gazów

Kinetyczna teoria gazów Kinetyczna teoria gazów Gaz doskonaªy 1. Cz steczki gazu wzajemnie na siebie nie dziaªaj, a» do momentu zderzenia 2. Rozmiary cz steczek mo»na pomin, traktuj c je jako punkty Ka»da cz steczka gazu porusza

Bardziej szczegółowo

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15 ANALIZA NUMERYCZNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Metoda Eulera 3 1.1 zagadnienia brzegowe....................... 3 1.2 Zastosowanie ró»niczki...................... 4 1.3 Output do pliku

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT

Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT Laboratorium techniki laserowej Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 006 1.Wstęp Rozwój techniki optoelektronicznej spowodował poszukiwania nowych materiałów

Bardziej szczegółowo