TEORIA GIER WPROWADZENIE. Czesław Mesjasz
|
|
- Patrycja Szczepańska
- 8 lat temu
- Przeglądów:
Transkrypt
1 TEORIA GIER WPROWADZENIE Czesław Mesjasz
2 GENEZA TEORII GIER Próby budowy matematycznych modeli konfliktów i negocjacji podejmowane były już przez A. Cournota, F. Edgewortha i F. Zeuthena. Koncepcje dwóch pierwszych autorów do dzisiaj stosowane są w mikroekonomii - równowaga Cournota czy też prostokąt Edgewortha Czesław Mesjasz
3 GENEZA TEORII GIER Rozwój teorii gier nastąpił po ukazaniu się w 1944 roku pracy J. von Neumanna i O. Morgensterna Theory of Games and Economic Behavior W pracy tej dokonali oni systematyzacji istniejącej wiedzy dotyczącej racjonalnego zachowania podejmujących decyzje ekonomiczne i wskazali na interakcyjny charakter tych decyzji. Wprowadzili oni pojęcie gier kooperacyjnych oraz rozwinęli w formie aksjomatycznej teorię oczekiwanej użyteczności. Czesław Mesjasz
4 TEORII GIER DEFINICJA TEORIA GIER = INTERAKCYJNA TEORIA DECYZJI Dotyczy ona zachowania racjonalnych decydentów (graczy), których decyzje nawzajem wpływają na siebie. Nazwa jej wynika z tego, że początkowo stosowana była ona w analizie takich gier jak szachy czy poker. Oprócz teorii decyzji, teoria gier wykorzystywana jest w opisie i badaniu konfliktów i negocjacji międzynarodowych, międzygrupowych a także pomiędzy indywidualnymi osobami Czesław Mesjasz
5 TEORII GIER DEFINICJA TEORIA GIER = INTERAKCYJNA TEORIA DECYZJI Podstawowym założeniem przyjmowanym w modelach konfliktów i negocjacji opartych o teorię gier jest istnienie obiektywnej, jednoznacznie zdefiniowanej funkcji użyteczności dla każdego zagadnienia cząstkowego (issue) wyrażającej w sposób abstrakcyjny interesy dwu albo więcej stron Funkcja użyteczności może być reprezentowana za pomocą macierzy wypłat Czesław Mesjasz
6 TEORII GIER DEFINICJA TEORIA GIER = TEORIA DECYZJI INTERAKCYJNYCH Teoria gier stała się obecnie jednym z podstawowych narzędzi współczesnej ekonomii oraz teorii konfliktów i negocjacji Czesław Mesjasz
7 CECHY GRY W opisie każdej gry należy uwzględniać następujące elementy: uczestnicy gry, czasem określani jako gracze" (indywidualne osoby, zespoły ludzkie, automaty, gatunki, osobniki) możliwości postępowania każdego z uczestników gry informacje dostępne dla każdego uczestnika gry Czesław Mesjasz
8 CECHY GRY W opisie każdej gry należy uwzględniać następujące elementy: cele uczestników gry kryteria wyboru, którymi posługują się uczestnicy gry Czesław Mesjasz
9 TYPY GIER Gry o sumie zerowej (gry o sumie stałej) maja charakter antagonistyczny; przyrost użyteczności jednego uczestnika (osiągnięcie korzyści) równa się zmniejszeniu użyteczności drugiego gracza (zmniejszenie korzyści) Gry o sumie niezerowej (gry o sumie zmiennej) - nie mają charakteru ściśle antagonistycznego, czyli, że istnieją w nich takie wyniki, które są dla wszystkich uczestników lepsze od jakichś innych Czesław Mesjasz
10 TYPY GIER Gry niekooperacyjne - są to takie gry, w których niedozwolone jest jakiekolwiek porozumiewanie się. Dla takich gier wdrożenie wyniku jest efektem samej struktury gry oraz założenia o racjonalności uczestników w sensie ekonomicznym. Uczestnicy nie współpracują ze sobą w trakcie gry Gry kooperacyjne (negocjacyjne) - (gry targu) - są to gry, w których dopuszcza się pełną swobodę porozumiewania Czesław Mesjasz
11 STRATEGIA Strategia - kompletny plan postępowania obejmujący wszystkie posunięcia, które gracz powinien wybrać w każdym etapie gry Strategie, które wybierane są w sposób jednoznaczny określa się jako strategie czyste, natomiast te, dla których określone jest jedynie prawdopodobieństwo ich wyboru określa się jako strategie mieszane Czesław Mesjasz
12 RÓWNOWAGA W GRZE Optymalność (równowaga) w sensie Pareto - ( rozsądek grupowy ) - jest to taki wynik gry, który nie jest dominowany przez żaden inny wynik (dla obydwu graczy). Innymi słowy, każdy inny wynik można poprawić co najmniej dla jednego gracza, nie czyniąc przy tym szkody drugiemu Inna definicja tej optymalności mówi, że jest to taki stan, w którym sytuacja jednego uczestnika nie może być poprawiona bez powodowania straty innych uczestników Czesław Mesjasz
13 Vilfredo Pareto Teoria gier wprowadzenie RÓWNOWAGA W GRZE (OPTYMALNOŚĆ W SENSIE PARETO) Czesław Mesjasz
14 RÓWNOWAGA W GRZE STRATEGIE W RÓWNOWADZE (RÓWNOWAGA NASHA) Dla żadnego z graczy nie jest korzystna zmiana strategii, o ile drugi gracz nie zmienia swej strategii Czesław Mesjasz
15 John F. Nash Jr 15
16 Nash Equilibrium Nash Equilibrium is the strategy that leads to the most preferred outcome. It`s a set of strategies such that each strategy is a best response to all the others. Nash equilibrium maximizes each person`s expected utility given that every other person is choosing a Nash Equilibrium strategy. 16
17 Nash Equilibrium 17
18 DYLEMAT WIĘŹNIA (PRISONER S DILEMMA) Dwóch odizolowanych więźniów podejrzewa się o dokonanie przestępstwa zagrożonego wysoką karą 25 lat. Oskarżenie posiada dowody dotyczące jedynie niewielkiego przestępstwa. Jeżeli żaden z nich nie przyzna się do winy, wówczas obydwaj dostaną łagodny wyrok - 2 lata. Oznacza to. że każdy z więźniów bierze pod uwagę interesy drugiego. Można tę sytuację opisać symbolem (WW). Jeżeli jeden z więźniów zdradzi a drugi nie przyzna się do winy, wówczas ten, który przyznał się zostanie zwolniony - brak współpracy i współpraca (BW), natomiast drugi z więźniów otrzyma ciężki wyrok 25 lat - współpraca i brak współpracy (WB). Jeżeli przyznają się obydwaj to dostaną wyrok, który można określić jako umiarkowany, np. 7 lat - obopólny brak współpracy (BB). Czesław Mesjasz
19 DYLEMAT WIĘŹNIA (PRISONER S DILEMMA) (Macierz wypłat) W B W 3,3 1,4 (RP) B 4,1 2,2 (RN) Czesław Mesjasz
20 DYLEMAT WIĘŹNIA (PRISONER S DILEMMA) Porządek preferencji dla każdego z uczestników tego konfliktu jest następujący: 4 (wolność)» 3 (2 lata)» 2 (7 lat)» 1 (25 lat) Czesław Mesjasz
21 DYLEMAT WIĘŹNIA (PRISONER S DILEMMA) Porządek preferencji dla każdego z uczestników tego konfliktu jest następujący: BW» WW» BB» WB WW równowaga Pareto BB równowaga Nasha Czesław Mesjasz
22 TCHÓRZ ( POKER DROGOWY )( CHICKEN ) Dwóch kierowców, sprawdza swoją odwagę w ten sposób, że jadą samochodami naprzeciwko siebie. Jeżeli jeden z nich skręci wcześniej, czyli gdy bierze pod uwagę interesy drugiego, wówczas zostanie on tchórzem, Chicken - (WB), natomiast drugi uznany zostanie za bohatera (BW). Jeżeli żaden z nich nie stchórzy, czyli gdy nie wezmą pod uwagę interesów drugiej strony, to wówczas dojdzie do zderzenia (BB). Jeżeli obydwaj skręcą wcześniej, czyli gdy uwzględniają interesy swego oponenta, wówczas ich reputacja nie ucierpi za bardzo (WW). Czesław Mesjasz
23 TCHÓRZ ( POKER DROGOWY )( CHICKEN ) (Macierz wypłat) W B W 3,3 2,4 B 4,2 1,1 Czesław Mesjasz
24 DYLEMAT WIĘŹNIA (PRISONER S DILEMMA) Porządek preferencji dla każdego z uczestników tego konfliktu jest następujący: BW» WW» WB» BB WW równowaga Pareto Brak dominującej równowagi Nasha Czesław Mesjasz
25 Games of Chicken Chickie Run James Dean Rebel Without a Cause 25
26 Game of Chicken 26
27 GRA KOOPERACYJNA - KONFLIKT MAŁŻEŃSKI ( THE BATTLE OF THE SEXES ) Wprowadzenie możliwości porozumiewania się stron wydaje się na pierwszy rzut oka ułatwiać sytuację negocjatorów. Dokładniejsza analiza tego problemu pokazuje, że rozwiązanie zadowalające jest trudne do znalezienia. Sytuację taką ilustruje gra konflikt małżeński Czesław Mesjasz
28 GRA KOOPERACYJNA - KONFLIKT MAŁŻEŃSKI ( THE BATTLE OF THE SEXES ) Pewne małżeństwo rozważa wybór między dwoma alternatywami: pójść na mecz bokserski (M1, K1), albo na balet (M2, K2). Mężczyzna wolałby pójść na mecz bokserski, kobieta zaś woli balet. Istnieje również możliwość rozdzielenia się tak, aby każde wybrało swoją ulubioną rozrywkę (M1, K2), a mogą też tak się rozdzielić, że każde z nich wybierze mniej dla siebie atrakcyjną rozrywkę (M2, K1). W obu ostatnich przypadkach satysfakcja ich będzie niewielka (mniejsza niż wspólne spędzenie czasu przy jednej bądź drugiej rozrywce), gdyż bardzo cenią sobie wspólne spędzenie czasu. Zrozumiałym jest, że najgorszym z możliwych wyników jest rozdzielenie i wybór mniej lubianej rozrywki Czesław Mesjasz
29 GRA KOOPERACYJNA - KONFLIKT MAŁŻEŃSKI ( THE BATTLE OF THE SEXES ) Gdyby małżonkowie byli zmuszeni niezależnie wybierać swoje strategie (nie mając z jakichś powodów możliwości porozumienia), to mogłoby się zdarzyć wszystko, włącznie z najgorszymi wynikami (-2, - 2). Pary strategii w równowadze (M1,K1) i (M2,K2) nie są bowiem zamienne i w tym sensie gra ta nie ma rozwiązania. Problem ten staje się łatwiejszy do rozwiązania, gdy istnieje możliwość porozumiewania. Czesław Mesjasz
30 GRA KOOPERACYJNA - KONFLIKT MAŁŻEŃSKI ( THE BATTLE OF THE SEXES ) (Macierz wypłat) K1 K2 M1 1,0-1,-1 M2-2,-2 0,1 Czesław Mesjasz
31 GRA KOOPERACYJNA - KONFLIKT MAŁŻEŃSKI ( THE BATTLE OF THE SEXES ) Zamiast strategii czystych należy wprowadzić strategie mieszane. Strony dokonują wyboru wprowadzając możliwość losowania. Ponieważ mogą się oni porozumiewać dlatego też mogą uzgodnić, że np. będą stosowali tylko pary strategii (M1, K1) albo (M2, K2) Czesław Mesjasz
32 GRA KOOPERACYJNA - KONFLIKT MAŁŻEŃSKI ( THE BATTLE OF THE SEXES ) O wartości wyniku zadecyduje wówczas prawdopodobieństwo jego wystąpienia, określone np. za pomocą rzutu monetą. Równowaga Nasha przy strategiach mieszanych odnosi się do takiego stanu, w którym każdy uczestnik gry wybiera optymalną częstość stosowania własnej strategii przy danej częstości stosowania swojej strategii przez drugiego uczestnika Czesław Mesjasz
33 PRZYWÓDCA ( LEADER ) (Macierz wypłat) W B W 2,2 3,4 B 4,3 1,1 Czesław Mesjasz
34 BOHATER ( HERO ) (Macierz wypłat) W B W 2,2 4,3 B 3,4 1,1 Czesław Mesjasz
35 PEŁNA WSPÓŁPRCA ( HARMONY ) (Macierz wypłat) W B W 4,4 2,3 B 3,2 1,1 Czesław Mesjasz
36 POLOWANIE NA JELENIA ( STAG HUNT ) (Macierz wypłat) W B W 4,4 1,3 B 3,1 2,2 Czesław Mesjasz
Propedeutyka teorii gier
Propedeutyka teorii gier AUTORZY: KAROLINA STOLARCZYK, WIKTOR SZOPIŃSKI, KONRAD TOMASZEK, MATEUSZ ZAKRZEWSKI WYDZIAŁ MINI POLITECHNIKA WARSZAWSKA ROK AKADEMICKI 2016/2017, SEMESTR LETNI KRÓTKI KURS HISTORII
Bardziej szczegółowoGry o sumie niezerowej
Gry o sumie niezerowej Równowagi Nasha 2011-12-06 Zdzisław Dzedzej 1 Pytanie Czy profile równowagi Nasha są dobrym rozwiązaniem gry o dowolnej sumie? Zaleta: zawsze istnieją (w grach dwumacierzowych, a
Bardziej szczegółowoTEORIA GIER W EKONOMII. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ
TEORIA GIER W EKONOMII dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Informacje Ogólne Wykład: Sobota/Niedziela Ćwiczenia: Sobota/Niedziela Dyżur: Czwartek 14.00-16.00
Bardziej szczegółowoTeoria gier matematyki). optymalności decyzji 2 lub więcej Decyzja wpływa na wynik innych graczy strategiami
Teoria gier Teoria gier jest częścią teorii decyzji (czyli gałęzią matematyki). Teoria decyzji - decyzje mogą być podejmowane w warunkach niepewności, ale nie zależą od strategicznych działań innych Teoria
Bardziej szczegółowoTEORIA GIER W EKONOMII. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ
TEORIA GIER W EKONOMII dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Informacje Ogólne (dr Robert Kowalczyk) Wykład: Poniedziałek 16.15-.15.48 (sala A428) Ćwiczenia:
Bardziej szczegółowoTeoria gier. prof. UŚ dr hab. Mariusz Boryczka. Wykład 4 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego
Instytut Informatyki Uniwersytetu Śląskiego Wykład 4 - Gry o sumie zero Gry o sumie zero Dwuosobowe gry o sumie zero (ogólniej: o sumie stałej) były pierwszym typem gier dla których podjęto próby ich rozwiązania.
Bardziej szczegółowoTEORIA GIER W NAUKACH SPOŁECZNYCH. Równowagi Nasha. Rozwiązania niekooperacyjne.
TEORIA GIER W NAUKACH SPOŁECZNYCH Równowagi Nasha. Rozwiązania niekooperacyjne. Przypomnienie Gra o sumie zerowej Kryterium dominacji Kryterium wartości oczekiwanej Diagram przesunięć Równowaga Can a Round
Bardziej szczegółowoMODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona
Bardziej szczegółowoMODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
Bardziej szczegółowoTEORIA GIER W EKONOMII WYKŁAD 6: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE DOWOLNEJ
TEORIA GIER W EKONOMII WYKŁAD 6: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE DOWOLNEJ dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Gry dwuosobowe z kooperacją Przedstawimy
Bardziej szczegółowoTeoria gier matematyki). optymalności decyzji 2 lub więcej Decyzja wpływa na wynik innych graczy strategiami
Teoria gier Teoria gier jest częścią teorii decyzji (czyli gałęzią matematyki). Teoria decyzji - decyzje mogą być podejmowane w warunkach niepewności, ale nie zależą od strategicznych działań innych Teoria
Bardziej szczegółowoTEORIA GIER W EKONOMII WYKŁAD 5: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE NIESTAŁEJ
TEORI GIER W EKONOMII WYKŁD 5: GRY DWUOSOOWE KOOPERCYJNE O SUMIE NIESTŁEJ dr Robert Kowalczyk Katedra nalizy Nieliniowej Wydział Matematyki i Informatyki UŁ Gry dwumacierzowe Skończoną grę dwuosobową o
Bardziej szczegółowoMikroekonomia. O czym dzisiaj?
Mikroekonomia Joanna Tyrowicz jtyrowicz@wne.uw.edu.pl http://www.wne.uw.edu.pl/~jtyrowicz 1.12.2007r. Mikroekonomia WNE UW 1 O czym dzisiaj? Macierze wypłat, czyli ile trzeba mieć w razie się straci...
Bardziej szczegółowoElementy Modelowania Matematycznego
Elementy Modelowania Matematycznego Wykład 12 Teoria gier II Spis treści Wstęp Oligopol, cła oraz zbrodnia i kara Strategie mieszane Analiza zachowań w warunkach dynamicznych Indukcja wsteczna Gry powtarzane
Bardziej szczegółowo11. Gry Macierzowe - Strategie Czyste i Mieszane
11. Gry Macierzowe - Strategie Czyste i Mieszane W grze z doskonałą informacją, gracz nie powinien wybrać akcję w sposób losowy (o ile wypłaty z różnych decyzji nie są sobie równe). Z drugiej strony, gdy
Bardziej szczegółowoTeoria Gier - wojna, rybołówstwo i sprawiedliwość w polityce.
Liceum Ogólnokształcące nr XIV we Wrocławiu 5 maja 2009 1 2 Podobieństwa i różnice do gier o sumie zerowej Równowaga Nasha I co teraz zrobimy? 3 Idee 1 Grać będą dwie osoby. U nas nazywają się: pan Wiersz
Bardziej szczegółowoTeoria gier. Łukasz Balbus Anna Jaśkiewicz
Teoria gier Łukasz Balbus Anna Jaśkiewicz Teoria gier opisuje sytuacje w których zachodzi konflikt interesów. Znajduje zastosowanie w takich dziedzinach jak: Ekonomia Socjologia Politologia Psychologia
Bardziej szczegółowoRozwiązania gier o charakterze kooperacyjnym
13 października 2008 Część 1 Część 1: Kooperacja Kooperacja Postać normalna gry Definicja gry Grą w postaci normalnej nazywamy układ (S 1, S 2, W 1, W 2 ), gdzie S i zbiór strategii i-tego gracza (i =
Bardziej szczegółowoCzym zajmuje się teroia gier
Czym zajmuje się teroia gier Analiza zachowań graczy (czyli strategii graczy) jak zachowują się gracze jakie są ich możliwe zachowania czy postępują racjonalnie i co to znaczy Poszukiwanie optymalnych
Bardziej szczegółowoWprowadzenie do teorii gier
Instytut Informatyki Uniwersytetu Śląskiego Wykład 1 1 Klasyfikacja gier 2 Gry macierzowe, macierz wypłat, strategie czyste i mieszane 3 Punkty równowagi w grach o sumie zerowej 4 Gry dwuosobowe oraz n-osobowe
Bardziej szczegółowo10. Wstęp do Teorii Gier
10. Wstęp do Teorii Gier Definicja Gry Matematycznej Gra matematyczna spełnia następujące warunki: a) Jest co najmniej dwóch racjonalnych graczy. b) Zbiór możliwych dezycji każdego gracza zawiera co najmniej
Bardziej szczegółowoCzym zajmuje się teroia gier
Czym zajmuje się teroia gier Analiza zachowań graczy (czyli strategii graczy) jak zachowują się gracze jakie są ich możliwe zachowania czy postępują racjonalnie i co to znaczy Poszukiwanie optymalnych
Bardziej szczegółowoTeoria gier. dr Przemysław Juszczuk. Wykład 2 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego
Instytut Informatyki Uniwersytetu Śląskiego Wykład 2 - Gry o sumie zero Gry o sumie zero Dwuosobowe gry o sumie zero (ogólniej: o sumie stałej) były pierwszym typem gier dla których podjęto próby ich rozwiązania.
Bardziej szczegółowoTEORIA GIER W NAUKACH SPOŁECZNYCH. Gry macierzowe, rybołówstwo na Jamajce, gry z Naturą
TEORIA GIER W NAUKACH SPOŁECZNYCH Gry macierzowe, rybołówstwo na Jamajce, gry z Naturą Przypomnienie Gry w postaci macierzowej i ekstensywnej Gry o sumie zerowej i gry o sumie niezerowej Kryterium dominacji
Bardziej szczegółowoTeoria gier. mgr Przemysław Juszczuk. Wykład 5 - Równowagi w grach n-osobowych. Instytut Informatyki Uniwersytetu Śląskiego
Instytut Informatyki Uniwersytetu Śląskiego Wykład 5 - Równowagi w grach n-osobowych Figure: Podział gier Definicje Formalnie, jednoetapowa gra w postaci strategicznej dla n graczy definiowana jest jako:
Bardziej szczegółowoTeoria gier w ekonomii - opis przedmiotu
Teoria gier w ekonomii - opis przedmiotu Informacje ogólne Nazwa przedmiotu Teoria gier w ekonomii Kod przedmiotu 11.9-WZ-EkoP-TGE-S16 Wydział Kierunek Wydział Ekonomii i Zarządzania Ekonomia Profil ogólnoakademicki
Bardziej szczegółowoModelowanie sytuacji konfliktowych, w których występują dwie antagonistyczne strony.
GRY (część 1) Zastosowanie: Modelowanie sytuacji konfliktowych, w których występują dwie antagonistyczne strony. Najbardziej znane modele: - wybór strategii marketingowych przez konkurujące ze sobą firmy
Bardziej szczegółowoMateriał dydaktyczny dla nauczycieli przedmiotów ekonomicznych. Mikroekonomia. w zadaniach. Gry strategiczne. mgr Piotr Urbaniak
Materiał dydaktyczny dla nauczycieli przedmiotów ekonomicznych Mikroekonomia w zadaniach Gry strategiczne mgr Piotr Urbaniak Teoria gier Dział matematyki zajmujący się badaniem optymalnego zachowania w
Bardziej szczegółowoTeoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1
Teoria gier wstęp 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier zajmuje się logiczną analizą sytuacji, gdzie występują konflikty interesów, a także istnieje możliwość kooperacji. Zakładamy zwykle,
Bardziej szczegółowoTemat 1: Pojęcie gry, gry macierzowe: dominacje i punkty siodłowe
Temat 1: Pojęcie gry, gry macierzowe: dominacje i punkty siodłowe Teorię gier można określić jako teorię podejmowania decyzji w szczególnych warunkach. Zajmuje się ona logiczną analizą sytuacji konfliktu
Bardziej szczegółowoOPISU MODUŁU KSZTAŁCENIA (SYLABUS) dla przedmiotu Teoria gier na kierunku Zarządzanie
Poznań, 1.10.2016 r. Dr Grzegorz Paluszak OPISU MODUŁU KSZTAŁCENIA (SYLABUS) dla przedmiotu Teoria gier na kierunku Zarządzanie I. Informacje ogólne 1. Nazwa modułu : Teoria gier 2. Kod modułu : 1 TGw
Bardziej szczegółowoOptymalizacja decyzji
Optymalizacja decyzji Dr hab. inż Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć będa dostępne na stronie www.ioz.pwr.wroc.pl/pracownicy/kasperski Forma zaliczenia
Bardziej szczegółowo2010 W. W. Norton & Company, Inc. Oligopol
2010 W. W. Norton & Company, Inc. Oligopol Oligopol Monopol jedna firma na rynku. Duopol dwie firmy na rynku. Oligopol kilka firm na rynku. W szczególności decyzje każdej firmy co do ceny lub ilości produktu
Bardziej szczegółowoDylemat więźnia jako przykład wykorzystania teorii gier
Paulina Nogal * Dylemat więźnia jako przykład wykorzystania teorii gier Wstęp Na skutek postępu technologicznego, rozwoju nowych możliwości komunikowania się, przesyłania informacji na odległość, przewidywanie
Bardziej szczegółowoUniwersytet Warszawski Teoria gier dr Olga Kiuila LEKCJA 3
LEKCJA 3 Wybór strategii mieszanej nie jest wyborem określonych decyzji, lecz pozornie sztuczną procedurą która wymaga losowych lub innych wyborów. Gracze mieszają nie dlatego że jest im obojętna strategia,
Bardziej szczegółowoKonkurencja i kooperacja w dwuosobowych grach strategicznych. Anna Lamek
Konkurencja i kooperacja w dwuosobowych grach strategicznych Anna Lamek Plan prezentacji Ujęcie kooperacji i konkurencji w teorii gier Nowe podejście CoCo value CoCo value dla gier bayesowskich Uzasadnienie
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Teoria gier i decyzji Theory of games and decisions Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom kwalifikacji:
Bardziej szczegółowoPODSTAWY WSPOMAGANIA PODEJMOWANIA DECYZJI W ZARZĄDZANIU BEZPIECZEŃSTWEM. cz. 6. dr BOŻENA STARUCH
PODSTAWY WSPOMAGANIA PODEJMOWANIA DECYZJI W ZARZĄDZANIU BEZPIECZEŃSTWEM cz. 6 dr BOŻENA STARUCH bostar@matman.uwm.edu.pl Optymalizacja wielokryterialna Optymalizacją wielokryterialną nazwiemy próbę znalezienia
Bardziej szczegółowoTeoria Gier. Piotr Kuszewski 2018L
Teoria Gier Piotr Kuszewski 2018L Tematyka wykładów plan akcji Wykład I John von Neumann Trochę historii Czym jest gra i strategia Użyteczność Jak wyeliminować niektóre strategie Wykład II John Nash Równowaga
Bardziej szczegółowoTEORIA GIER HISTORIA TEORII GIER. Rok 1944: powszechnie uznana data narodzin teorii gier. Rok 1994: Nagroda Nobla z dziedziny ekonomii
TEORIA GIER HISTORIA TEORII GIER Rok 1944: powszechnie uznana data narodzin teorii gier Monografia: John von Neumann, Oskar Morgenstern Theory of Games and Economic Behavior (Teoria gier i postępowanie
Bardziej szczegółowoModelowanie Preferencji a Ryzyko. Dlaczego w dylemat więźnia warto grać kwantowo?
Modelowanie Preferencji a Ryzyko Dlaczego w dylemat więźnia warto grać kwantowo? Marek Szopa U n iwe r s y t e t Ś l ą s k i INSTYTUT FIZYKI im. Augusta Chełkowskiego Zakład Fizyki Teoretycznej Klasyczny
Bardziej szczegółowoEKONOMIA MENEDŻERSKA. Wykład 5 Oligopol. Strategie konkurencji a teoria gier. 1 OLIGOPOL. STRATEGIE KONKURENCJI A TEORIA GIER.
Wykład 5 Oligopol. Strategie konkurencji a teoria gier. 1 OLIGOPOL. STRATEGIE KONKURENCJI A TEORIA GIER. 1. OLIGOPOL Oligopol - rynek, na którym działa niewiele przedsiębiorstw (od do 10) Cecha charakterystyczna
Bardziej szczegółowoKonspekt 7. Strategie postępowania oligopolu - zastosowania teorii gier.
KRAJOWA SZKOŁA ADMINISTRACJI PUBLICZNEJ Ryszard Rapacki EKONOMIA MENEDŻERSKA Konspekt 7. Strategie postępowania oligopolu - zastosowania teorii gier. A. Cele zajęć. 1. Porównanie różnych struktur rynku
Bardziej szczegółowoPlan. Prosty model aukcji: Aukcja drugiej ceny - równowaga Nasha w strategiach słabo dominujących Aukcja pierwszej ceny - równowaga Nasha
Plan Przypomnienie: Dominacja oraz równowaga Nasha Model konkurencji ilościowej Cournot Model konkurencji cenowej Bertranda jednakowe produkty produkty zróżnicowane Prosty model aukcji: Aukcja drugiej
Bardziej szczegółowoPrzykład. 1 losuje kartę z potasowanej talii, w której połowa kart ma kolor czarny a połowa czerwony. Postać ekstensywna Postać normalna
Przykład Postać ekstensywna Postać normalna Na poczatku gry dwaj gracze wkładaja do puli po 1$. Następnie, gracz 1 losuje kartę z potasowanej talii, w której połowa kart ma kolor czarny a połowa czerwony.
Bardziej szczegółowoTEORIA GIER DEFINICJA (VON NEUMANN, MORGENSTERN) GRA. jednostek (graczy) znajdujących się w sytuacji konfliktowej (konflikt interesów),w
TEORIA GIER GRA DEFINICJA (VON NEUMANN, MORGENSTERN) Gra składa się z zestawu reguł określających możliwości wyboru postępowania jednostek (graczy) znajdujących się w sytuacji konfliktowej (konflikt interesów),w
Bardziej szczegółowoPo co matematykom Jan Jakub Rousseau?
PROBLEMY WCZESNEJ EDUKACJI / ISSUES IN EARLY EDUCATION 3 (30) / 2015 ISSN 1734-1582 Alina Kalinowska Uniwersytet Warmińsko-Mazurski w Olsztynie alina.kalinowska@uwm.edu.pl Adam Stański Intel Technology
Bardziej szczegółowo1. S³owo wstêpne Geologia gospodarcza g³ówne aspekty problematyki badawczej Zakres, treœæ i cel rozprawy...
Spis treœci Streszczenie... 11 Summary... 13 1. S³owo wstêpne... 15 1.1. Geologia gospodarcza g³ówne aspekty problematyki badawczej... 16 1.2. Zakres, treœæ i cel rozprawy... 17 2. Zarys teorii decyzji...
Bardziej szczegółowoOptymalizacją wielokryterialną nazwiemy próbę znalezienia wektora zmiennych decyzyjnych: x = [x 1
1 Optymalizacją wielokryterialną nazwiemy próbę znalezienia wektora zmiennych decyzyjnych: x = [x 1,x 2,,x k ], który spełnia warunki ograniczające: g i (x) 0 (i = 1 m), h i (x) = 0 (i = 1 p) oraz optymalizuje
Bardziej szczegółowoSkowrońska-Szmer. Instytut Organizacji i Zarządzania Politechniki Wrocławskiej Zakład Zarządzania Jakością. 04.01.2012r.
mgr inż. Anna Skowrońska-Szmer Instytut Organizacji i Zarządzania Politechniki Wrocławskiej Zakład Zarządzania Jakością 04.01.2012r. 1. Cel prezentacji 2. Biznesplan podstawowe pojęcia 3. Teoria gier w
Bardziej szczegółowoTworzenie gier na urządzenia mobilne
Katedra Inżynierii Wiedzy Teoria podejmowania decyzji w grze Gry w postaci ekstensywnej Inaczej gry w postaci drzewiastej, gry w postaci rozwiniętej; formalny opis wszystkich możliwych przebiegów gry z
Bardziej szczegółowoElementy teorii wyboru publicznego. Marek Oramus
Elementy teorii wyboru publicznego Marek Oramus Prowadzący Marek Oramus marek.oramus@uek.krakow.pl tel. 12 293 58-40 Konsultacje: Czwartki 10:00-11:00 + do ustalenia Rakowicka 16, pok. 22 Wprowadzenie
Bardziej szczegółowoTEORIA GIER. Wspólna wiedza dotyczy nie tylko zachowań (reguł postępowania), ale i samej gry : każdy zna jej reguły i wypłaty (swoje i uczestników).
TEOR GER 1. Wstęp Teoria gier jest dziedziną zajmującą się opisem sytuacji, w których podmioty (gracze) podejmujący świadome decyzje (nazywane strategie), w wyniku których zapadają rozstrzygnięcia mogące
Bardziej szczegółowoDr Ewa Roszkowska Wydział Ekonomiczny UwB Zakład Ekonometrii i Statystyki O TEORII GIER, EKONOMII I MATEMATYCE
Dr Ewa Roszkowska Wydział Ekonomiczny UwB Zakład Ekonometrii i Statystyki O TEORII GIER, EKONOMII 1 Matematykę moŝna określić jako przedmiot, w którym nigdy nie wiemy, o czym mówimy, ani teŝ, czy to, co
Bardziej szczegółowoNASH I JEGO HISTORIA
NASH I JEGO HISTORIA Anna Krymska, Michał Sawicki, Mateusz Tkaczyk, Agnieszka Zięba Krótki Kurs Historii Matematyki Politechnika Warszawska, Wydział Matematyki i Nauk Informacyjnych Semestr letni rok akademickiego
Bardziej szczegółowoStochastyczne dynamiki z opóźnieniami czasowymi w grach ewolucyjnych
Stochastyczne dynamiki z opóźnieniami czasowymi w grach ewolucyjnych Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Warszawa 10 listopada 2016 Proseminarium licencjackie
Bardziej szczegółowoAlgorytmiczne Aspekty Teorii Gier Rozwiązania zadań
Algorytmiczne Aspekty Teorii Gier Rozwiązania zadań Bartosz Gęza 19/06/2009 Zadanie 2. (gra symetryczna o sumie zerowej) Profil prawdopodobieństwa jednorodnego nie musi być punktem równowagi Nasha. Przykładem
Bardziej szczegółowoWykład Ćwiczenia Laboratoriu m 30 30 1,5 1,5 WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI CELE PRZEDMIOTU
Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim ELEMENTY TEORII GIER Nazwa w języku angielskim ELEMENTS OF GAME THEORY Kierunek studiów (jeśli dotyczy):
Bardziej szczegółowoPojęcia podstawowe. Teoria zbiorów przybliżonych i teoria gier. Jak porównać dwa porządki?
Pojęcia podstawowe Teoria zbiorów przybliżonych i teoria gier Decision Support Systems Mateusz Lango 5 listopada 16 problem decyzyjny decydent analityk model preferencji (3 rodzaje) zbiór wariantów/alternatyw
Bardziej szczegółowoTeoria gier jest matematyczną teorią interakcji zachodzących między racjonalnymi graczami.
Mateusz WAJZER Uniwersytet Śląski w Katowicach ORCID ID: https://orcid.org/0000-000-308-883x DOI : 0.4746/pp.08.3..4 Odnajdywanie prostoty w złożoności. Wybrane zastosowania gier w badaniach zjawisk politycznych
Bardziej szczegółowo1 S t r o n a. Teoria Gier Praca domowa 1 - rozwiązania
1 S t r o n a Teoria Gier Praca domowa 1 - rozwiązania Zadanie 1 Gdy korzystamy z toalet publicznych dominującą strategią jest: nie sprzątać po sobie. Skorzystanie z toalety przynosi dodatnią wypłatę,
Bardziej szczegółowoMateusz Topolewski. Świecie, 8 grudnia 2014
woland@mat.umk.pl Wydział Matematyki i Informatyki Uniwersytet Mikołaja Kopernika w Toruniu Świecie, 8 grudnia 2014 Plan działania Przykład 1. Negocjacje Właściciele dwóch domów negocjują w którym miejscu
Bardziej szczegółowoMikroekonomia B Mikołaj Czajkowski
Mikroekonomia.10-11 Mikołaj Czajkowski Teoria gier Teoria gier Teoria gier analiza strategicznego zachowania uczestników, których decyzje wzajemnie wpływają na wyniki Teoria decyzji decyzje mogą być podejmowane
Bardziej szczegółowoPunkty równowagi w grach koordynacyjnych
Uniwersytet Śląski w Katowicach, Instytut Informatyki ul. Będzińska 39 41-200 Sosnowiec 9 grudnia 2014, Chorzów 1 Motywacja 2 3 4 5 6 Wnioski i dalsze badania Motywacja 1 są klasą gier, w których istnieje
Bardziej szczegółowo1. Które z następujących funkcji produkcji cechują się stałymi korzyściami ze skali? (1) y = 3x 1 + 7x 2 (2) y = x 1 1/4 + x 2
1. Które z następujących funkcji produkcji cechują się stałymi korzyściami ze skali? (1) y = 3x 1 + 7x 2 (2) y = x 1 1/4 + x 2 1/3 (3) y = min{x 1,x 2 } + min{x 3,x 4 } (4) y = x 1 1/5 x 2 4/5 a) 1 i 2
Bardziej szczegółowoStrategie kwantowe w teorii gier
Uniwersytet Jagielloński adam.wyrzykowski@uj.edu.pl 18 stycznia 2015 Plan prezentacji 1 Gra w odwracanie monety (PQ penny flip) 2 Wojna płci Definicje i pojęcia Równowagi Nasha w Wojnie płci 3 Kwantowanie
Bardziej szczegółowoAukcje groszowe. Podejście teoriogrowe
Aukcje groszowe Podejście teoriogrowe Plan działania Aukcje groszowe Budowa teorii Sprawdzenie teorii Bibliografia: B. Platt, J. Price, H. Tappen, Pay-to-Bid Auctions [online]. 9 lipca 2009 [dostęp 3.02.2011].
Bardziej szczegółowoLEKCJA 4. Gry dynamiczne z pełną (kompletną) i doskonałą informacją. Grą dynamiczną jest każda gra w której gracze wykonują ruchy w pewnej kolejności.
LEKCJA 4 Gry dynamiczne z pełną (kompletną) i doskonałą informacją Grą dynamiczną jest każda gra w której gracze wykonują ruchy w pewnej kolejności. Czy w dowolnej grze dynamicznej lepiej być graczem,
Bardziej szczegółowoDUE DILIGENCE W PROCESIE WYCENY - NEGOCJACJE
DUE DILIGENCE W PROCESIE WYCENY - NEGOCJACJE Damian Dworek MOTTO Trzy są sposoby zdobywania mądrości. Pierwszy to refleksja najbardziej szlachetny, następnie naśladowanie jest on najłatwiejszy, a trzeci
Bardziej szczegółowoTEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ
TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Definicja gry o sumie zerowej Powiemy, że jest grą o
Bardziej szczegółowoD. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne, gry konfliktowe 1
D. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne, gry konfliktowe Gra w sensie niżej przedstawionym to zasady którymi kierują się decydenci. Zakładamy, że rezultatem gry jest wypłata, którą zgodnie
Bardziej szczegółowoHyper-resolution. Śmieciarki w Manncheim
Hyper-resolution Hyper-resolution Algorytm repeat NGi NGi NGj NGi nowe Nogoods, które da się wywieść z NGi if NGi then NGi NGi NGi roześlij NGi do wszystkich sąsiadów if NGi then stop end until NGi nie
Bardziej szczegółowoZasada racjonalnego gospodarowania RACJONALNE GOSPODAROWANIE. Zasada racjonalnego gospodarowania. Zasada racjonalnego gospodarowania
HOMO OECONOMICUS Człowiek jest z natury próżny, dumny, leniwy, chciwy, samolubny, niemoralny, kieruje się własnym interesem i chce osiągnąć maksimum zysku przy minimum wysiłku Każdy człowiek w sposób wrodzony
Bardziej szczegółowo-Teoria gier zajmuje się logiczną analizą sytuacji konfliktu i kooperacji
1 -Teoria gier zajmuje się logiczną analizą sytuacji konfliktu i kooperacji 2 Teoria gier bada,w jaki sposób gracze powinnirozgrywać grę, a każdy dąży do takiego wyniku gry, który daje mu jak największą
Bardziej szczegółowoSTRUKTURY RYNKU I ICH REGULACJE. Wykład 4: Oligopol. Wrocław
STRUKTURY RYNKU I ICH REGULACJE Wykład 4: Oligopol Prowadzący zajęcia: dr inŝ. Edyta Ropuszyńska Surma Politechnika Wrocławska Wydział Informatyki i Zarządzania Instytut Organizacji i Zarządzania E-mail:
Bardziej szczegółowoD. Miszczyńska, M.Miszczyński KBO UŁ 1 GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO
D. Miszczyńska, M.Miszczyński KBO UŁ GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO Gra w sensie niżej przedstawionym to zasady którymi kierują się decydenci. Zakładamy, że rezultatem gry jest wypłata,
Bardziej szczegółowoLista zadań. Równowaga w strategiach czystych
Lista zadań Równowaga w strategiach czystych 1. Podaj wszystkie czyste równowagi Nasha. Podaj definicję Pareto optymalności i znajdź pary strategii, które są Pareto optymalne. U 2,3-2,7 D 6,-5 0,-1 (b)
Bardziej szczegółowoWYKORZYSTANIE TEORII GIER W MODELOWANIU NEGOCJACJI GRECJI Z WIERZYCIELAMI W 2015 ROKU
STUDIA OECONOMICA POSNANIENSIA 2017, vol. 5, no. 8 DOI: 10.18559/SOEP.2017.8.2 Lidia Mesjasz, Czesław Mesjasz Uniwersytet Ekonomiczny w Krakowie, Wydział Ekonomii i Stosunków Międzynarodowych, Katedra
Bardziej szczegółowoTworzenie gier na urządzenia mobilne
Katedra Inżynierii Wiedzy Wykład 8 Przekształcenia wiedzy generalizacja/specjalizacja; abstrakcja/konkretyzacja; podobieństwo/kontrastowanie; wyjaśnianie/predykcja. Przetwarzanie danych Przetwarzanie wstępne
Bardziej szczegółowour. 28 Czerwca 1928 w Bluefield w Wirginii, matematyk i ekonomista, profesor Uniwersytetu Princeton
ur. 28 Czerwca 1928 w Bluefield w Wirginii, matematyk i ekonomista, profesor Uniwersytetu Princeton Przygotowali Ostrowski Damian Ryciak Norbert Ryciuk Wiktor Seliga Marcin Lata młodości ojciec John Forbes
Bardziej szczegółowoMixed-UCT: Zastosowanie metod symulacyjnych do poszukiwania równowagi Stackelberga w grach wielokrokowych
Mixed-UCT: Zastosowanie metod symulacyjnych do poszukiwania równowagi Stackelberga w grach wielokrokowych Jan Karwowski Zakład Sztucznej Inteligencji i Metod Obliczeniowych Wydział Matematyki i Nauk Informacyjnych
Bardziej szczegółowoa) Znajdź równowagi Nasha tej gry oraz wypłaty w równowadze obu tenisistek...
Egzamin z przedmiotu: Wstęp do Teorii Gier Zadanie 1 Prowadzący: dr Michał Lewandowski gnieszka Radwańska gra w tenisa z Karoliną Woźniacki. gnieszka może zaserwować na backhand lub na forehand Woźniacki.
Bardziej szczegółowoSchemat sprawdzianu. 25 maja 2010
Schemat sprawdzianu 25 maja 2010 5 definicji i twierdzeń z listy 12(po 10 punktów) np. 1. Proszę sformułować twierdzenie Brouwera o punkcie stałym. 2. Niech X będzie przestrzenią topologiczną. Proszę określić,
Bardziej szczegółowoWprowadzenie do teorii gier Ryszard Paweł Kostecki
Wprowadzenie do teorii gier Ryszard Paweł Kostecki 1. Wstęp Obszarem zainteresowania teorii gier są problemy związane z decyzjami w układach z wieloma uczestnikami (agentami, graczami), z których każdy
Bardziej szczegółowoGRY DWUOSOBOWE O SUMIE NIEZEROWEJ. Równowaga Nasha Rozwiązania niekooperacyjne
GRY DWUOSOBOWE O SUMIE NIEZEROWEJ 1. 2. Równowaga Nasha Rozwiązania niekooperacyjne Gdy dwuosobowa gra nie jest grą o sumie zerowej, to aby ją opisać musimy podać wypłaty obu graczy. Jak wiadomo niektóre
Bardziej szczegółowoHistoria ekonomii. Mgr Robert Mróz. Mikroekonomia w XX wieku
Historia ekonomii Mgr Robert Mróz Mikroekonomia w XX wieku 17.01.2017 Marshall i Walras Ojcowie założyciele nowoczesnej mikroekonomii pozostawili w spadku: Założenie o racjonalnych, maksymalizujących podmiotach
Bardziej szczegółowoTeoria Gier i Optymalne Wykorzystanie Wspólnych Zasobów p. 1/4
Teoria Gier i Optymalne Wykorzystanie Wspólnych Zasobów p. 1/4 Teoria Gier i Optymalne Wykorzystanie Wspólnych Zasobów Krzysztof R. Apt CWI, Amsterdam Uniwersytet Amsterdamski Teoria Gier i Optymalne Wykorzystanie
Bardziej szczegółowoWyznaczanie strategii w grach
Wyznaczanie strategii w grach Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Definicja gry Teoria gier i konstruowane na jej podstawie programy stanowią jeden z głównych
Bardziej szczegółowoElementy teorii gier. Badania operacyjne
2016-06-12 1 Elementy teorii gier Badania operacyjne Plan Przykład Definicja gry dwuosobowej o sumie zerowej Macierz gry Strategie zdominowane Mieszane rozszerzenie gry Strategie mieszane Rozwiązywanie
Bardziej szczegółowoNazwa przedmiotu. pierwsza
Nazwa przedmiotu K A R T A P R Z E D M I O T U ( S Y L L A B U S ) O p i s p r z e d m i o t u Kod przedmiotu Teoria gier UTH/I/O/MT//C/ST/1(i)/ 6L /C1B.6a Game theory Język wykładowy polski Wersja przedmiotu
Bardziej szczegółowoEgzamin z Wstępu do Teorii Gier. 19 styczeń 2016, sala A9, g Wykładowca: dr Michał Lewandowski. Instrukcje
Egzamin z Wstępu do Teorii Gier 19 styczeń 2016, sala A9, g. 11.40-13.10 Wykładowca: dr Michał Lewandowski Instrukcje 1) Egzamin trwa 90 minut. 2) Proszę wyraźnie zapisać swoje imię, nazwisko oraz numer
Bardziej szczegółowoDaria Sitkowska Katarzyna Urbaniak
Teorię gier można określić jako teorię podejmowania decyzji w szczególnych warunkach. Zajmuje się ona logiczną analizą sytuacji konfliktu i kooperacji; bada jak gracze racjonalnie powinni rozgrywać grę.
Bardziej szczegółowoParę stron internetowych.
Parę stron internetowych http://www.gametheory.net/ http://www.mazeworks.com/home.htm http://arielrubinstein.tau.ac.il Kryteria/typy Niekooperacyjna vs. kooperacyjna Symetryczna vs. Asymetryczna O sumie
Bardziej szczegółowoWstęp do Teorii Gier 5 X Tadeusz P/latkowski
Tadeusz Płatkowski 5 X 2017 Organizacyjne Pokój: 4440 Konsultacje: np. poniedziałek 15.00 16.00 Drzwi 4440: koperta WTG Grupa I: Pon 16:00 s. 2100, Grupa II: Czwartek 12:15 s. 3320. Organizacyjne Pokój:
Bardziej szczegółowoGry wieloosobowe. Zdzisław Dzedzej
Gry wieloosobowe Zdzisław Dzedzej 2012 2013-01-16 1 Przykład 1 Warstwa A Warstwa B K K W A B W A B A 1,1,-2-4,3,1 A 3,-2,-1-6,-6,12 B 2,-4,2-5,-5,10 B 2,2,-4-2,3,-1 2013-01-16 2 Diagram przesunięć 2013-01-16
Bardziej szczegółowoWPROWADZENIE DO KOMUNIKACJI NEGOCJACJE
WPROWADZENIE DO KOMUNIKACJI NEGOCJACJE DLA ZAINTERESOWANYCH NEGOCJACJE http://www.uwm.edu.pl/pa/fileadmin/pliki_do_pobrania/przewodnik_negocjacje.pdf Zbigniew Nęcki Negocjacje w biznesie Fisher, Ury, Patton
Bardziej szczegółowo13. Teoriogrowe Modele Konkurencji Gospodarczej
13. Teoriogrowe Modele Konkurencji Gospodarczej Najpierw, rozważamy model monopolu. Zakładamy że monopol wybiera ile ma produkować w danym okresie. Jednostkowy koszt produkcji wynosi k. Cena wynikająca
Bardziej szczegółowoOligopol. Jest to rynek, na którym niewielka liczba firm zachowuje się w sposób b strategiczny i ają niezależnie od siebie, ale uwzględniaj
Oligopol Jest to rynek, na którym niewielka liczba firm zachowuje się w sposób b strategiczny i działaj ają niezależnie od siebie, ale uwzględniaj dniają istnienie pozostałych firm. Na decyzję firmy wpływaj
Bardziej szczegółowoPodejmowanie decyzji gospodarczych
Podejmowanie decyzji gospodarczych Zakres podejmowanych decyzji jest bardzo szeroki zarówno na poziomie przedsiębiorstwa jak i na szczeblu państwa. W każdym przypadku sensowna analiza wariantów decyzji
Bardziej szczegółowoHistoria ekonomii. Mgr Robert Mróz. Leon Walras
Historia ekonomii Mgr Robert Mróz Leon Walras 06.12.2016 Leon Walras (1834 1910) Jeden z dwóch ojców neoklasycznej mikroekonomii (drugim Marshall) Nie był tak dobrym matematykiem jak niektórzy inni ekonomiści
Bardziej szczegółowo