Dr Ewa Roszkowska Wydział Ekonomiczny UwB Zakład Ekonometrii i Statystyki O TEORII GIER, EKONOMII I MATEMATYCE

Wielkość: px
Rozpocząć pokaz od strony:

Download "Dr Ewa Roszkowska Wydział Ekonomiczny UwB Zakład Ekonometrii i Statystyki O TEORII GIER, EKONOMII I MATEMATYCE"

Transkrypt

1 Dr Ewa Roszkowska Wydział Ekonomiczny UwB Zakład Ekonometrii i Statystyki O TEORII GIER, EKONOMII 1

2 Matematykę moŝna określić jako przedmiot, w którym nigdy nie wiemy, o czym mówimy, ani teŝ, czy to, co mówimy, jest prawdą [Bertrand Russell, matematyk i filozof brytyjski] 2

3 Znany fizyk, laureat Nagrody Nobla, Chen Ning Yang głosił, Ŝe są tylko dwa rodzaje ksiąŝek o współczesnej matematyce: takie, z których daje się zrozumieć tylko pierwsze zdanie, oraz takie, z których moŝna pojąć tylko pierwszą stronę. 3

4 Rok 1944: John von Neumann, Oskar Morgenstern Theory of Games and Economic Behavior (Teoria gier i postępowanie ekonomiczne) 4

5 Nagrody Nobla z dziedziny ekonomii 1994 John Nash, John Harsány, Reinhard Selten pionierskie badania dotyczące punktów równowagi w grach niekooperacyjnych 1996 James A. Mirrlees, William Vickrey ukazanie niektórych konsekwencji asymetrii informacji w modelach z zakresu teorii gier (modele aukcji) O TEORII GIER, EKONOMII 2005 Robert J. Aumann, Thomas C. Schelling za rozszerzenie naszego rozumienia konfliktu i współpracy poprzez analizę (w kategoriach) teorii gier 5

6 The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 1994 "for their pioneering analysis of equilibria in the theory of non-cooperative games" John C. Harsanyi 1/3 of the prize USA University of California Berkeley, CA, USA b (in Budapest, Hungary) d John F. Nash Jr. 1/3 of the prize USA Princeton University Princeton, NJ, USA b Reinhard Selten 1/3 of the prize Federal Republic of Germany Rheinische Friedrich- Wilhelms-Universität Bonn, Federal Republic of Germany 6

7 The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 1996 "for their fundamental contributions to the economic theory of incentives under asymmetric information" James A. Mirrlees 1/2 of the prize United Kingdom University of Cambridge Cambridge, United Kingdom b William Vickrey 1/2 of the prize USA Columbia University New York, NY, USA b (in Victoria, BC, Canada) d

8 The Bank of Sweden Prize in Economic Sciences in Memory of Alfred Nobel 2005 "for having enhanced our understanding of conflict and cooperation through game-theory analysis" Robert J. Aumann 1/2 of the prize Israel and USA University of Jerusalem, Center for RationalityHebrew Jerusalem, Israel b (in Frankfurt-on-the-Main, Germany) Thomas C. Schelling 1/2 of the prize USA University of Maryland, Department of Economics and School of Public Policy College Park, MD, USA b

9 Czym zajmuje się teoria gier? 9

10 Teoria gier zajmuje się analizą matematycznych modeli konfliktu i kooperacji, czyli analizą sytuacji zupełnego lub częściowego konfliktu interesów pomiędzy racjonalnymi graczami. 10

11 Teoria gier zajmuje się przede wszystkim sytuacjami konfliktowymi, ale równieŝ sytuacjami, w których interesy graczy są zgodne, ale ze względu na kłopoty w porozumiewaniu się trudno im ustalić jednolity sposób postępowania. 11

12 Głównym celem takiej analizy jest ustalenie kryteriów podejmowania decyzji, czyli przewidywanie wyników sytuacji gry przy załoŝeniu, Ŝe gracze są racjonalni tzn. kierują się maksymalizacją swojej wygranej oraz potrafią ocenić skutki swoich decyzji, posiadają teŝ wiedzę na temat wypłat moŝliwych pozostałych graczy i potrafią ocenić ich decyzje. 12

13 Teorię gier wykorzystuje się w wielu dziedzinach nauki, a zwłaszcza w: ekonomii, naukach politycznych, socjologii, psychologii, biologii, informatyce. 13

14 Uczestnicy (gracze) NajwaŜniejsze załoŝenia klasycznej teorii gier są następujące: Interesy Strategie Reguły gry Wyniki Działania Racjonalność 14

15 Graczami mogą być osoby, przedsiębiorstwa, kraje, ale takŝe natura. Strategia to kompletny opis postępowania gracza w kaŝdej sytuacji, w jakiej moŝe się znaleźć. 15

16 Wszystkim strategiom są przypisane odpowiednie wypłaty dla poszczególnych graczy. Wypłaty mogą mieć róŝną postać: pienięŝną (np. osiągnięte zyski, poniesione koszty) niepienięŝną (np. zdobycze terytorialne, liczb lat spędzonych w więzieniu) 16

17 KaŜdy gracz chce jak najlepiej dla siebie, czyli maksymalizuje swoje zyski lub minimalizuje straty. 17

18 Jak grać, czyli rozwiązania gry? 18

19 W celu opisu, wyjaśnienia, czy przewidywania wyborów dokonywanych przez uczestników gry przeprowadza się analizę strategii stron. Celem takiej analizy jest poszukiwanie stanów równowagi wyznaczających rozwiązanie gry. 19

20 Równowaga Nasha - poszukuje się takich strategii działania kaŝdej strony, dla których przy załoŝeniu wyboru drugiej strony, nie pragnie ona dokonywania zmiany swych planów. Optymalny układ strategii w sensie Pareto oznacza, Ŝe gracze nie mogą polepszyć swojej sytuacji nie pogarszając jednocześnie sytuacji pozostałych graczy. 20

21 W równowadze Nasha wybór przez jednego z graczy danej strategii jest najlepszą odpowiedzią na strategię drugiego gracza i na odwrót, strategia drugiego gracza jest najlepszą odpowiedzią na strategię pierwszego gracza. 21

22 Równowaga Nasha moŝe być nieefektywna w sensie tzw. optimum Pareta, co oznacza, Ŝe istnieją w grze inne moŝliwe rozwiązania, które mogą polepszyć sytuację określonych jednostek, ale niestety kosztem pozostałych. Klasycznym przykładem nieefektywności Pareta jest tzw. dylemat więźnia. 22

23 PRZYKŁAD O TEORII GIER, EKONOMII Jacek i Placek zostali aresztowani za wspólnie dokonane przestępstwo. Obaj chłopcy są przesłuchiwani oddzielnie i mają do dyspozycji następujące moŝliwości: przyznać się do winy, nie przyznać się do winy. 23

24 Jeśli obaj przyznają się do winy, to obaj zostaną skazani na 5 miesięcy więzienia. Jeśli Ŝaden z nich nie przyzna się do winy, to obaj dostaną 2 miesiące więzienia. Jeśli jeden z nich przyzna się do winy, a drugi nie, to ten co się przyzna zostanie skazany na 1 miesiąc więzienia, a ten który się nie przyzna dostanie karę 12 miesięcy więzienia. 24

25 Gracze: Jacek i Placek O TEORII GIER, EKONOMII Strategie Jacka: Przyznać się do winy Nie przyznać się do winy Strategie Placka: Przyznać się do winy Nie przyznać się do winy 25

26 Cel kaŝdego gracza: Maksymalizacja wypłaty, czyli jak najkrótszy pobyt w więzieniu. Sytuacja konfliktowa: Decyzja jednego gracza wpływa na wypłatę drugiego gracza. 26

27 Wypłaty: Obaj przyznają się do winy Żaden z nich nie przyzna się do winy Tylko Jacek przyzna się do winy Tylko Placek przyzna się do winy Wypłata Jacka Wypłata Placka

28 ILUSTRACJA GRY: Gracz 2 (Placek) Gracz 1 (Jacek) Przyznać się Przyznać się ( 5; 5) Nie przyznać się ( 1; 12) Nie przyznać się ( 12; 1) ( 2; 2) 28

29 JeŜeli Jacek przyzna się do winy, najlepszą odpowiedzią Placka jest takŝe przyznać się i na odwrót, jeŝeli Placek przyzna się do winy, najlepszą odpowiedzią Jacka jest równieŝ przyznanie się do winy. Gdy obaj gracze przyznają się do winy, Ŝaden z nich nie zwiększy swojej wypłaty zmieniając jednostronnie strategię i nie przyznając się do winy. 29

30 W równowadze Nasha wybór przez jednego z graczy danej strategii jest najlepszą odpowiedzią na strategię drugiego gracza i na odwrót, strategia drugiego gracza jest najlepszą odpowiedzią na strategię pierwszego gracza. 30

31 W dylemacie więźnia równowagę Nasha tworzy para strategii ( przyznać się, przyznać się ). Obaj gracze (Jacek i Placek) zostają aresztowani na 5 miesięcy więzienia. 31

32 Równowaga Nasha nie oznacza jednak tego, Ŝe obaj gracze osiągają największe moŝliwe wypłaty!!!!!!!!!!!!!. Gdyby obaj gracze nie przyznali się do winy, uzyskaliby wyŝsze wypłaty niŝ przyznając się do winy. 32

33 Jacek Placek Strategia A (Przyznać się) Strategia B (Nie przyznać się) Strategia A (Przyznać się) (-5; -5) Równowaga Nasha (-12;-1) Strategia B (Nie przyznać się) (-1; -12) (-2; -2) Strategie optymalne Pareto 33

34 Badania dylematu więźnia pokazują, Ŝe najczęściej wybierane są strategie rywalizacyjne, przy czym wybór strategii jest uzaleŝniony od struktury wypłat macierzy gry zaleŝności między stronami nastawienia psychicznego informacji o liczbie powtórzeń gry 34

35 Konflikt między racjonalnością indywidualną a społeczną, gry tego typu powinny być zabronione zmiana postaw graczy tak, aby preferowane były reguły racjonalności społecznej ustanowienie władzy lub stosunków dominacji między graczami, zmiana wypłat w grze łapówki dobrowolne przyjęcie na siebie kary w przypadku gdy zerwie się współpracę, drugi natomiast będzie współpracował. 35

36 Dylemat więźnia, gdy jeden z graczy wykonuje ruch jako pierwszy mamy moŝliwość ustalania posunięć przed ich wykonaniem komunikacja między graczami, stosowanie nacisku w postaci gróźb i obietnic jest dozwolone gra jest rozgrywana wielokrotnie. 36

37 Ruchy strategiczne T.Schellinga: zobowiązania groźby obietnice. 37

38 Zobowiązanie to jednostronna deklaracja podjęcia przez gracza określonego działania. Groźba to deklaracja, Ŝe w przypadku, podjęcia określonego działania przez drugą stronę gracz sam podejmie działanie, które: i) będzie niekorzystne dla drugiej strony; ii) będzie niekorzystne dla niego. 38

39 Obietnica to deklaracja, Ŝe w przypadku, podjęcia określonego działania przez drugą stronę sam podejmie działanie, które: i) będzie korzystne dla drugiej strony; ii) będzie niekorzystne dla niego. 39

40 Obietnica jak i groźba to zobowiązania warunkowe, jeśli bowiem nie zostaną potraktowane powaŝnie gracz nie ma motywacji do jej dotrzymania. Jak przekonać gracza, Ŝe podejmie działanie szkodliwe dla siebie w sytuacji, gdy Ŝadne zmiany juŝ są niemoŝliwe? 40

41 T.Schelling podaje róŝne sposoby budowania wiarygodności: obniŝenie jednej lub kilku wypłat, danie słowa honoru podpisanie prawne wiąŝącego oświadczenia przyjęcie niskich wypłat w kilku pierwszych grach aby uwiarygodnić obietnice lub groźby w następnych. 41

42 W pojedynczej grze o schemacie dylematu więźnia groźba nie ma sensu (posunięcie rywalizacyjne jest i tak racjonalne dla obu partnerów). Sensowna natomiast jest obietnica: odpowiem Współpracą na twoją Współpracę, która daje szansę na uzyskanie obopólnych korzyści. 42

43 Iterowany dylemat więźnia - gra rozgrywana wielokrotnie. Politolog R. Axelrod ogłosił turniej na najlepszą strategię będącą kombinacją posunięć współpraca rywalizacja w iteracji dylematu więźnia. 43

44 Strategie: uprzejme, pierwsze O TEORII GIER, EKONOMII które nigdy nie zdradzały jako wredne, które notorycznie lub od czasu do czasu dopuszczały się zdrady pamiętliwe, które karały partnera za zdradę wielkoduszne nie odpowiadały na atak serią odwetów. 44

45 W turnieju, w którym kaŝda strategia walczyła po kolei z wszystkimi innymi, zwycięŝyła strategia psychologa A.Rapoporta o nazwie Wet za Wet, czyli zawsze zaczynaj od współpracy, a następnie powielaj posunięcia drugiej strony. 45

46 , Strategia Wet za Wet jest strategią uprzejmą, gdyŝ nigdy jako pierwsza nie posuwa się do zdrady, jednocześnie pamiętliwa, gdyŝ na atak odpowiada atakiem, ale wybacza zdradę i nie stosuje dalszych akcji prewencyjnych. Strategia ta wykazuje się odpornością na zdradę, partner stosujący bardziej wredne strategie otrzyma gorsze wyniki. 46

47 , Inne analizowane strategie to: zawsze W, czyli zawsze stosujemy strategię W zawsze R, czyli zawsze stosujemy strategię R Wet za dwa Wety czy stosowanie strategii R dopiero po zastosowaniu dwukrotnym strategii R przez partnera Tat-forTit, gdzie w pierwszym ruchu stosujemy strategię R, a następnie powtarzamy strategię drugiej strony. 47

48 Literatura Malawski M., Wieczorek A., Sosnowska H., Konkurencja i kooperacja. Teoria gier w ekonomii i naukach społecznych, Wydawnictwo Naukowe PWN, Warszawa 1997 Straffin P., Teoria gier, Wydawnictwo Naukowe Scholar, Warszawa

49 DZIEKUJĘ ZA UWAGĘ 49

TEORIA GIER W EKONOMII. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ

TEORIA GIER W EKONOMII. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ TEORIA GIER W EKONOMII dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Informacje Ogólne Wykład: Sobota/Niedziela Ćwiczenia: Sobota/Niedziela Dyżur: Czwartek 14.00-16.00

Bardziej szczegółowo

TEORIA GIER W EKONOMII. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ

TEORIA GIER W EKONOMII. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ TEORIA GIER W EKONOMII dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Informacje Ogólne (dr Robert Kowalczyk) Wykład: Poniedziałek 16.15-.15.48 (sala A428) Ćwiczenia:

Bardziej szczegółowo

Teoria gier. Łukasz Balbus Anna Jaśkiewicz

Teoria gier. Łukasz Balbus Anna Jaśkiewicz Teoria gier Łukasz Balbus Anna Jaśkiewicz Teoria gier opisuje sytuacje w których zachodzi konflikt interesów. Znajduje zastosowanie w takich dziedzinach jak: Ekonomia Socjologia Politologia Psychologia

Bardziej szczegółowo

Teoria gier matematyki). optymalności decyzji 2 lub więcej Decyzja wpływa na wynik innych graczy strategiami

Teoria gier matematyki). optymalności decyzji 2 lub więcej Decyzja wpływa na wynik innych graczy strategiami Teoria gier Teoria gier jest częścią teorii decyzji (czyli gałęzią matematyki). Teoria decyzji - decyzje mogą być podejmowane w warunkach niepewności, ale nie zależą od strategicznych działań innych Teoria

Bardziej szczegółowo

Teoria gier matematyki). optymalności decyzji 2 lub więcej Decyzja wpływa na wynik innych graczy strategiami

Teoria gier matematyki). optymalności decyzji 2 lub więcej Decyzja wpływa na wynik innych graczy strategiami Teoria gier Teoria gier jest częścią teorii decyzji (czyli gałęzią matematyki). Teoria decyzji - decyzje mogą być podejmowane w warunkach niepewności, ale nie zależą od strategicznych działań innych Teoria

Bardziej szczegółowo

Konkurencja i współpraca w procesie podejmowania decyzji

Konkurencja i współpraca w procesie podejmowania decyzji Konkurencja i współpraca w procesie podejmowania woland@mat.umk.pl Wydział Matematyki i Informatyki Uniwersytet Mikołaja Kopernika w Toruniu Dzień liczby π, Toruń, 12 marca 2015 Plan działania Przykład

Bardziej szczegółowo

NASH I JEGO HISTORIA

NASH I JEGO HISTORIA NASH I JEGO HISTORIA Anna Krymska, Michał Sawicki, Mateusz Tkaczyk, Agnieszka Zięba Krótki Kurs Historii Matematyki Politechnika Warszawska, Wydział Matematyki i Nauk Informacyjnych Semestr letni rok akademickiego

Bardziej szczegółowo

TEORIA GIER HISTORIA TEORII GIER. Rok 1944: powszechnie uznana data narodzin teorii gier. Rok 1994: Nagroda Nobla z dziedziny ekonomii

TEORIA GIER HISTORIA TEORII GIER. Rok 1944: powszechnie uznana data narodzin teorii gier. Rok 1994: Nagroda Nobla z dziedziny ekonomii TEORIA GIER HISTORIA TEORII GIER Rok 1944: powszechnie uznana data narodzin teorii gier Monografia: John von Neumann, Oskar Morgenstern Theory of Games and Economic Behavior (Teoria gier i postępowanie

Bardziej szczegółowo

Teoria gier w ekonomii - opis przedmiotu

Teoria gier w ekonomii - opis przedmiotu Teoria gier w ekonomii - opis przedmiotu Informacje ogólne Nazwa przedmiotu Teoria gier w ekonomii Kod przedmiotu 11.9-WZ-EkoP-TGE-S16 Wydział Kierunek Wydział Ekonomii i Zarządzania Ekonomia Profil ogólnoakademicki

Bardziej szczegółowo

Materiał dydaktyczny dla nauczycieli przedmiotów ekonomicznych. Mikroekonomia. w zadaniach. Gry strategiczne. mgr Piotr Urbaniak

Materiał dydaktyczny dla nauczycieli przedmiotów ekonomicznych. Mikroekonomia. w zadaniach. Gry strategiczne. mgr Piotr Urbaniak Materiał dydaktyczny dla nauczycieli przedmiotów ekonomicznych Mikroekonomia w zadaniach Gry strategiczne mgr Piotr Urbaniak Teoria gier Dział matematyki zajmujący się badaniem optymalnego zachowania w

Bardziej szczegółowo

Mateusz Topolewski. Świecie, 8 grudnia 2014

Mateusz Topolewski. Świecie, 8 grudnia 2014 woland@mat.umk.pl Wydział Matematyki i Informatyki Uniwersytet Mikołaja Kopernika w Toruniu Świecie, 8 grudnia 2014 Plan działania Przykład 1. Negocjacje Właściciele dwóch domów negocjują w którym miejscu

Bardziej szczegółowo

MODELOWANIE RZECZYWISTOŚCI

MODELOWANIE RZECZYWISTOŚCI MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona

Bardziej szczegółowo

MODELOWANIE RZECZYWISTOŚCI

MODELOWANIE RZECZYWISTOŚCI MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/

Bardziej szczegółowo

Propedeutyka teorii gier

Propedeutyka teorii gier Propedeutyka teorii gier AUTORZY: KAROLINA STOLARCZYK, WIKTOR SZOPIŃSKI, KONRAD TOMASZEK, MATEUSZ ZAKRZEWSKI WYDZIAŁ MINI POLITECHNIKA WARSZAWSKA ROK AKADEMICKI 2016/2017, SEMESTR LETNI KRÓTKI KURS HISTORII

Bardziej szczegółowo

TEORIA GIER W EKONOMII WYKŁAD 5: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE NIESTAŁEJ

TEORIA GIER W EKONOMII WYKŁAD 5: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE NIESTAŁEJ TEORI GIER W EKONOMII WYKŁD 5: GRY DWUOSOOWE KOOPERCYJNE O SUMIE NIESTŁEJ dr Robert Kowalczyk Katedra nalizy Nieliniowej Wydział Matematyki i Informatyki UŁ Gry dwumacierzowe Skończoną grę dwuosobową o

Bardziej szczegółowo

Wprowadzenie do teorii gier

Wprowadzenie do teorii gier Instytut Informatyki Uniwersytetu Śląskiego Wykład 1 1 Klasyfikacja gier 2 Gry macierzowe, macierz wypłat, strategie czyste i mieszane 3 Punkty równowagi w grach o sumie zerowej 4 Gry dwuosobowe oraz n-osobowe

Bardziej szczegółowo

STRUKTURY RYNKU I ICH REGULACJE. Wykład 4: Oligopol. Wrocław

STRUKTURY RYNKU I ICH REGULACJE. Wykład 4: Oligopol.   Wrocław STRUKTURY RYNKU I ICH REGULACJE Wykład 4: Oligopol Prowadzący zajęcia: dr inŝ. Edyta Ropuszyńska Surma Politechnika Wrocławska Wydział Informatyki i Zarządzania Instytut Organizacji i Zarządzania E-mail:

Bardziej szczegółowo

TEORIA GIER WPROWADZENIE. Czesław Mesjasz

TEORIA GIER WPROWADZENIE. Czesław Mesjasz TEORIA GIER WPROWADZENIE Czesław Mesjasz 2010 1 GENEZA TEORII GIER Próby budowy matematycznych modeli konfliktów i negocjacji podejmowane były już przez A. Cournota, F. Edgewortha i F. Zeuthena. Koncepcje

Bardziej szczegółowo

Konkurencja i kooperacja w dwuosobowych grach strategicznych. Anna Lamek

Konkurencja i kooperacja w dwuosobowych grach strategicznych. Anna Lamek Konkurencja i kooperacja w dwuosobowych grach strategicznych Anna Lamek Plan prezentacji Ujęcie kooperacji i konkurencji w teorii gier Nowe podejście CoCo value CoCo value dla gier bayesowskich Uzasadnienie

Bardziej szczegółowo

ur. 28 Czerwca 1928 w Bluefield w Wirginii, matematyk i ekonomista, profesor Uniwersytetu Princeton

ur. 28 Czerwca 1928 w Bluefield w Wirginii, matematyk i ekonomista, profesor Uniwersytetu Princeton ur. 28 Czerwca 1928 w Bluefield w Wirginii, matematyk i ekonomista, profesor Uniwersytetu Princeton Przygotowali Ostrowski Damian Ryciak Norbert Ryciuk Wiktor Seliga Marcin Lata młodości ojciec John Forbes

Bardziej szczegółowo

OPISU MODUŁU KSZTAŁCENIA (SYLABUS) dla przedmiotu Teoria gier na kierunku Zarządzanie

OPISU MODUŁU KSZTAŁCENIA (SYLABUS) dla przedmiotu Teoria gier na kierunku Zarządzanie Poznań, 1.10.2016 r. Dr Grzegorz Paluszak OPISU MODUŁU KSZTAŁCENIA (SYLABUS) dla przedmiotu Teoria gier na kierunku Zarządzanie I. Informacje ogólne 1. Nazwa modułu : Teoria gier 2. Kod modułu : 1 TGw

Bardziej szczegółowo

Gry o sumie niezerowej

Gry o sumie niezerowej Gry o sumie niezerowej Równowagi Nasha 2011-12-06 Zdzisław Dzedzej 1 Pytanie Czy profile równowagi Nasha są dobrym rozwiązaniem gry o dowolnej sumie? Zaleta: zawsze istnieją (w grach dwumacierzowych, a

Bardziej szczegółowo

10. Wstęp do Teorii Gier

10. Wstęp do Teorii Gier 10. Wstęp do Teorii Gier Definicja Gry Matematycznej Gra matematyczna spełnia następujące warunki: a) Jest co najmniej dwóch racjonalnych graczy. b) Zbiór możliwych dezycji każdego gracza zawiera co najmniej

Bardziej szczegółowo

Skowrońska-Szmer. Instytut Organizacji i Zarządzania Politechniki Wrocławskiej Zakład Zarządzania Jakością. 04.01.2012r.

Skowrońska-Szmer. Instytut Organizacji i Zarządzania Politechniki Wrocławskiej Zakład Zarządzania Jakością. 04.01.2012r. mgr inż. Anna Skowrońska-Szmer Instytut Organizacji i Zarządzania Politechniki Wrocławskiej Zakład Zarządzania Jakością 04.01.2012r. 1. Cel prezentacji 2. Biznesplan podstawowe pojęcia 3. Teoria gier w

Bardziej szczegółowo

Uniwersytet Warszawski Teoria gier dr Olga Kiuila LEKCJA 3

Uniwersytet Warszawski Teoria gier dr Olga Kiuila LEKCJA 3 LEKCJA 3 Wybór strategii mieszanej nie jest wyborem określonych decyzji, lecz pozornie sztuczną procedurą która wymaga losowych lub innych wyborów. Gracze mieszają nie dlatego że jest im obojętna strategia,

Bardziej szczegółowo

2010 W. W. Norton & Company, Inc. Oligopol

2010 W. W. Norton & Company, Inc. Oligopol 2010 W. W. Norton & Company, Inc. Oligopol Oligopol Monopol jedna firma na rynku. Duopol dwie firmy na rynku. Oligopol kilka firm na rynku. W szczególności decyzje każdej firmy co do ceny lub ilości produktu

Bardziej szczegółowo

Gry w postaci normalnej

Gry w postaci normalnej Gry w postaci normalnej Rozgrzewka Przykład 1. (Dylemat więźnia) Dwóch przestępców, którzy zorganizowali napad na bank, zostało tymczasowo aresztowanych i czeka ich rozprawa. Jeżeli obaj będa zeznawać

Bardziej szczegółowo

Elementy Modelowania Matematycznego

Elementy Modelowania Matematycznego Elementy Modelowania Matematycznego Wykład 12 Teoria gier II Spis treści Wstęp Oligopol, cła oraz zbrodnia i kara Strategie mieszane Analiza zachowań w warunkach dynamicznych Indukcja wsteczna Gry powtarzane

Bardziej szczegółowo

TEORIA GIER. Wspólna wiedza dotyczy nie tylko zachowań (reguł postępowania), ale i samej gry : każdy zna jej reguły i wypłaty (swoje i uczestników).

TEORIA GIER. Wspólna wiedza dotyczy nie tylko zachowań (reguł postępowania), ale i samej gry : każdy zna jej reguły i wypłaty (swoje i uczestników). TEOR GER 1. Wstęp Teoria gier jest dziedziną zajmującą się opisem sytuacji, w których podmioty (gracze) podejmujący świadome decyzje (nazywane strategie), w wyniku których zapadają rozstrzygnięcia mogące

Bardziej szczegółowo

11. Gry Macierzowe - Strategie Czyste i Mieszane

11. Gry Macierzowe - Strategie Czyste i Mieszane 11. Gry Macierzowe - Strategie Czyste i Mieszane W grze z doskonałą informacją, gracz nie powinien wybrać akcję w sposób losowy (o ile wypłaty z różnych decyzji nie są sobie równe). Z drugiej strony, gdy

Bardziej szczegółowo

Tworzenie gier na urządzenia mobilne

Tworzenie gier na urządzenia mobilne Katedra Inżynierii Wiedzy Teoria podejmowania decyzji w grze Gry w postaci ekstensywnej Inaczej gry w postaci drzewiastej, gry w postaci rozwiniętej; formalny opis wszystkich możliwych przebiegów gry z

Bardziej szczegółowo

Teoria Gier - wojna, rybołówstwo i sprawiedliwość w polityce.

Teoria Gier - wojna, rybołówstwo i sprawiedliwość w polityce. Liceum Ogólnokształcące nr XIV we Wrocławiu 5 maja 2009 1 2 Podobieństwa i różnice do gier o sumie zerowej Równowaga Nasha I co teraz zrobimy? 3 Idee 1 Grać będą dwie osoby. U nas nazywają się: pan Wiersz

Bardziej szczegółowo

Dylemat więźnia jako przykład wykorzystania teorii gier

Dylemat więźnia jako przykład wykorzystania teorii gier Paulina Nogal * Dylemat więźnia jako przykład wykorzystania teorii gier Wstęp Na skutek postępu technologicznego, rozwoju nowych możliwości komunikowania się, przesyłania informacji na odległość, przewidywanie

Bardziej szczegółowo

D. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne, gry konfliktowe 1

D. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne, gry konfliktowe 1 D. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne, gry konfliktowe Gra w sensie niżej przedstawionym to zasady którymi kierują się decydenci. Zakładamy, że rezultatem gry jest wypłata, którą zgodnie

Bardziej szczegółowo

TEORIA GIER W EKONOMII WYKŁAD 6: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE DOWOLNEJ

TEORIA GIER W EKONOMII WYKŁAD 6: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE DOWOLNEJ TEORIA GIER W EKONOMII WYKŁAD 6: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE DOWOLNEJ dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Gry dwuosobowe z kooperacją Przedstawimy

Bardziej szczegółowo

Rozwiązania gier o charakterze kooperacyjnym

Rozwiązania gier o charakterze kooperacyjnym 13 października 2008 Część 1 Część 1: Kooperacja Kooperacja Postać normalna gry Definicja gry Grą w postaci normalnej nazywamy układ (S 1, S 2, W 1, W 2 ), gdzie S i zbiór strategii i-tego gracza (i =

Bardziej szczegółowo

Wstęp do Teorii Gier 5 X Tadeusz P/latkowski

Wstęp do Teorii Gier 5 X Tadeusz P/latkowski Tadeusz Płatkowski 5 X 2017 Organizacyjne Pokój: 4440 Konsultacje: np. poniedziałek 15.00 16.00 Drzwi 4440: koperta WTG Grupa I: Pon 16:00 s. 2100, Grupa II: Czwartek 12:15 s. 3320. Organizacyjne Pokój:

Bardziej szczegółowo

Teoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1

Teoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier wstęp 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier zajmuje się logiczną analizą sytuacji, gdzie występują konflikty interesów, a także istnieje możliwość kooperacji. Zakładamy zwykle,

Bardziej szczegółowo

Parę stron internetowych.

Parę stron internetowych. Parę stron internetowych http://www.gametheory.net/ http://www.mazeworks.com/home.htm http://arielrubinstein.tau.ac.il Kryteria/typy Niekooperacyjna vs. kooperacyjna Symetryczna vs. Asymetryczna O sumie

Bardziej szczegółowo

DECYZJE nr 8 grudzień 2007 ANATOL RAPOPORT. Tadeusz Tyszka. Wy sza Szko³a Przedsiêbiorczoœci i Zarz¹dzania im. L. KoŸmiñskiego w Warszawie

DECYZJE nr 8 grudzień 2007 ANATOL RAPOPORT. Tadeusz Tyszka. Wy sza Szko³a Przedsiêbiorczoœci i Zarz¹dzania im. L. KoŸmiñskiego w Warszawie DECYZJE nr 8 grudzień 2007 ANATOL RAPOPORT Tadeusz Tyszka Wy sza Szko³a Przedsiêbiorczoœci i Zarz¹dzania im. L. KoŸmiñskiego w Warszawie Anatol Rapoport urodził się w 1911 roku w Rosji w miejscowości Łozîwaja,

Bardziej szczegółowo

TEORIA GIER W NAUKACH SPOŁECZNYCH. Równowagi Nasha. Rozwiązania niekooperacyjne.

TEORIA GIER W NAUKACH SPOŁECZNYCH. Równowagi Nasha. Rozwiązania niekooperacyjne. TEORIA GIER W NAUKACH SPOŁECZNYCH Równowagi Nasha. Rozwiązania niekooperacyjne. Przypomnienie Gra o sumie zerowej Kryterium dominacji Kryterium wartości oczekiwanej Diagram przesunięć Równowaga Can a Round

Bardziej szczegółowo

Mikroekonomia B Mikołaj Czajkowski

Mikroekonomia B Mikołaj Czajkowski Mikroekonomia.10-11 Mikołaj Czajkowski Teoria gier Teoria gier Teoria gier analiza strategicznego zachowania uczestników, których decyzje wzajemnie wpływają na wyniki Teoria decyzji decyzje mogą być podejmowane

Bardziej szczegółowo

Po co matematykom Jan Jakub Rousseau?

Po co matematykom Jan Jakub Rousseau? PROBLEMY WCZESNEJ EDUKACJI / ISSUES IN EARLY EDUCATION 3 (30) / 2015 ISSN 1734-1582 Alina Kalinowska Uniwersytet Warmińsko-Mazurski w Olsztynie alina.kalinowska@uwm.edu.pl Adam Stański Intel Technology

Bardziej szczegółowo

Systemy rozgrywek sportowych OGÓLNE ZASADY ORGANIZOWANIA ROZGRYWEK SPORTOWYCH

Systemy rozgrywek sportowych OGÓLNE ZASADY ORGANIZOWANIA ROZGRYWEK SPORTOWYCH Systemy rozgrywek sportowych OGÓLNE ZASADY ORGANIZOWANIA ROZGRYWEK SPORTOWYCH Rozgrywki sportowe moŝna organizować na kilka róŝnych sposobów, w zaleŝności od liczby zgłoszonych druŝyn, czasu, liczby boisk

Bardziej szczegółowo

Zasada racjonalnego gospodarowania RACJONALNE GOSPODAROWANIE. Zasada racjonalnego gospodarowania. Zasada racjonalnego gospodarowania

Zasada racjonalnego gospodarowania RACJONALNE GOSPODAROWANIE. Zasada racjonalnego gospodarowania. Zasada racjonalnego gospodarowania HOMO OECONOMICUS Człowiek jest z natury próżny, dumny, leniwy, chciwy, samolubny, niemoralny, kieruje się własnym interesem i chce osiągnąć maksimum zysku przy minimum wysiłku Każdy człowiek w sposób wrodzony

Bardziej szczegółowo

Polskie Towarzystwo Ekonomiczne Oddział w Toruniu

Polskie Towarzystwo Ekonomiczne Oddział w Toruniu Polskie Towarzystwo Ekonomiczne Oddział w Toruniu PTE Toruń Working Papers No 26/2008 KONKURENCJA I KOOPERACJA PRZEDSIĘBIORSTW W ŚWIETLE FUNDAMENTALNYCH MODELI TEORII GIER Dariusz Karaś Toruń 2008 1 Dariusz

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Gry dwuosobowe i gry z naturą............... 5

Bardziej szczegółowo

GRY DWUOSOBOWE O SUMIE NIEZEROWEJ. Równowaga Nasha Rozwiązania niekooperacyjne

GRY DWUOSOBOWE O SUMIE NIEZEROWEJ. Równowaga Nasha Rozwiązania niekooperacyjne GRY DWUOSOBOWE O SUMIE NIEZEROWEJ 1. 2. Równowaga Nasha Rozwiązania niekooperacyjne Gdy dwuosobowa gra nie jest grą o sumie zerowej, to aby ją opisać musimy podać wypłaty obu graczy. Jak wiadomo niektóre

Bardziej szczegółowo

FUNDAMENTALNY WKŁAD JOHNA NASHA W ROZWÓJ TEORII GIER

FUNDAMENTALNY WKŁAD JOHNA NASHA W ROZWÓJ TEORII GIER DECYZJE nr 2 grudzień 2004 115 FUNDAMENTALNY WKŁAD JOHNA NASHA W ROZWÓJ TEORII GIER Jaideep Roy * Wyższa Szkoła Przedsiębiorczości i Zarządzania im. Leona Koźmińskiego Wstęp W 1948 roku profesor R.J. Duffin

Bardziej szczegółowo

Temat 1: Pojęcie gry, gry macierzowe: dominacje i punkty siodłowe

Temat 1: Pojęcie gry, gry macierzowe: dominacje i punkty siodłowe Temat 1: Pojęcie gry, gry macierzowe: dominacje i punkty siodłowe Teorię gier można określić jako teorię podejmowania decyzji w szczególnych warunkach. Zajmuje się ona logiczną analizą sytuacji konfliktu

Bardziej szczegółowo

Teoria gier. prof. UŚ dr hab. Mariusz Boryczka. Wykład 4 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego

Teoria gier. prof. UŚ dr hab. Mariusz Boryczka. Wykład 4 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego Instytut Informatyki Uniwersytetu Śląskiego Wykład 4 - Gry o sumie zero Gry o sumie zero Dwuosobowe gry o sumie zero (ogólniej: o sumie stałej) były pierwszym typem gier dla których podjęto próby ich rozwiązania.

Bardziej szczegółowo

Teoria gier. mgr Przemysław Juszczuk. Wykład 5 - Równowagi w grach n-osobowych. Instytut Informatyki Uniwersytetu Śląskiego

Teoria gier. mgr Przemysław Juszczuk. Wykład 5 - Równowagi w grach n-osobowych. Instytut Informatyki Uniwersytetu Śląskiego Instytut Informatyki Uniwersytetu Śląskiego Wykład 5 - Równowagi w grach n-osobowych Figure: Podział gier Definicje Formalnie, jednoetapowa gra w postaci strategicznej dla n graczy definiowana jest jako:

Bardziej szczegółowo

STRUKTURY RYNKU I ICH REGULACJE. Wykład 5 i 6: Konkurencja monopolistyczna i oligopol.

STRUKTURY RYNKU I ICH REGULACJE. Wykład 5 i 6: Konkurencja monopolistyczna i oligopol. STRUKTURY RYNKU I ICH REGULACJE Wykład 5 i 6: Konkurencja monopolistyczna i oligopol Prowadzący zajęcia: dr inŝ. Edyta Ropuszyńska Surma Politechnika Wrocławska Wydział Informatyki i Zarządzania Instytut

Bardziej szczegółowo

Konspekt 7. Strategie postępowania oligopolu - zastosowania teorii gier.

Konspekt 7. Strategie postępowania oligopolu - zastosowania teorii gier. KRAJOWA SZKOŁA ADMINISTRACJI PUBLICZNEJ Ryszard Rapacki EKONOMIA MENEDŻERSKA Konspekt 7. Strategie postępowania oligopolu - zastosowania teorii gier. A. Cele zajęć. 1. Porównanie różnych struktur rynku

Bardziej szczegółowo

Konflikt i Kooperacja

Konflikt i Kooperacja Konflikt i Kooperacja O modelowaniu ludzkich zachowań na gruncie Teorii Gier Karol Wawrzyniak Zespól Systemów Złożonych Centrum Informatyczne Świerk (www.cis.gov.pl), Narodowe Centurm Badań Jądrowych (www.ncbj.gov.pl)

Bardziej szczegółowo

Modelowanie sytuacji konfliktowych, w których występują dwie antagonistyczne strony.

Modelowanie sytuacji konfliktowych, w których występują dwie antagonistyczne strony. GRY (część 1) Zastosowanie: Modelowanie sytuacji konfliktowych, w których występują dwie antagonistyczne strony. Najbardziej znane modele: - wybór strategii marketingowych przez konkurujące ze sobą firmy

Bardziej szczegółowo

Wpływ zastosowanych narzędzi informatycznych na przebieg procesu uczenia się i nauczania na platformie e-learning.

Wpływ zastosowanych narzędzi informatycznych na przebieg procesu uczenia się i nauczania na platformie e-learning. Wpływ zastosowanych narzędzi informatycznych na przebieg procesu uczenia się i nauczania na platformie e-learning. Marcin Albiniak Department of Computer Science, Wyższa Szkoła Ekonomii I Innowacji w Lublinie

Bardziej szczegółowo

TEORIA GIER W NAUKACH SPOŁECZNYCH. Gry macierzowe, rybołówstwo na Jamajce, gry z Naturą

TEORIA GIER W NAUKACH SPOŁECZNYCH. Gry macierzowe, rybołówstwo na Jamajce, gry z Naturą TEORIA GIER W NAUKACH SPOŁECZNYCH Gry macierzowe, rybołówstwo na Jamajce, gry z Naturą Przypomnienie Gry w postaci macierzowej i ekstensywnej Gry o sumie zerowej i gry o sumie niezerowej Kryterium dominacji

Bardziej szczegółowo

EKONOMIA MENEDŻERSKA. Wykład 5 Oligopol. Strategie konkurencji a teoria gier. 1 OLIGOPOL. STRATEGIE KONKURENCJI A TEORIA GIER.

EKONOMIA MENEDŻERSKA. Wykład 5 Oligopol. Strategie konkurencji a teoria gier. 1 OLIGOPOL. STRATEGIE KONKURENCJI A TEORIA GIER. Wykład 5 Oligopol. Strategie konkurencji a teoria gier. 1 OLIGOPOL. STRATEGIE KONKURENCJI A TEORIA GIER. 1. OLIGOPOL Oligopol - rynek, na którym działa niewiele przedsiębiorstw (od do 10) Cecha charakterystyczna

Bardziej szczegółowo

Teoria gier. Teoria gier. Odróżniać losowość od wiedzy graczy o stanie!

Teoria gier. Teoria gier. Odróżniać losowość od wiedzy graczy o stanie! Gry dzielimy ze względu na: liczbę graczy: 1-osobowe, bez przeciwników(np. pasjanse, 15-tka, gra w życie, itp.), 2-osobowe(np. szachy, warcaby, go, itp.), wieloosobowe(np. brydż, giełda, itp.); wygraną/przegraną:

Bardziej szczegółowo

Teoria gier. Gry powtarzane i ruchy strategiczne w stronę kooperacji Zdzisław Dzedzej 1

Teoria gier. Gry powtarzane i ruchy strategiczne w stronę kooperacji Zdzisław Dzedzej 1 Teoria gier Gry powtarzane i ruchy strategiczne w stronę kooperacji 2011-12-06 Zdzisław Dzedzej 1 Agenda Na przykładach zanalizujemy wrażliwość gier dwuosobowych na: Kolejność ruchów graczy Wielokrotne

Bardziej szczegółowo

Teoria gier. Wykład7,31III2010,str.1. Gry dzielimy

Teoria gier. Wykład7,31III2010,str.1. Gry dzielimy Wykład7,31III2010,str.1 Gry dzielimy Wykład7,31III2010,str.1 Gry dzielimy ze względu na: liczbę graczy: 1-osobowe, bez przeciwników(np. pasjanse, 15-tka, gra w życie, itp.), Wykład7,31III2010,str.1 Gry

Bardziej szczegółowo

Mikroekonomia. O czym dzisiaj?

Mikroekonomia. O czym dzisiaj? Mikroekonomia Joanna Tyrowicz jtyrowicz@wne.uw.edu.pl http://www.wne.uw.edu.pl/~jtyrowicz 1.12.2007r. Mikroekonomia WNE UW 1 O czym dzisiaj? Macierze wypłat, czyli ile trzeba mieć w razie się straci...

Bardziej szczegółowo

Teoria gier a ewolucja. Paweł Kliber (UEP)

Teoria gier a ewolucja. Paweł Kliber (UEP) Teoria gier a ewolucja Paweł Kliber (UEP) Plan 1.Teoria gier co to jest? 2.Dynamika replikatorów 3.Zastosowania ewolucyjne 4.Dynamika interakcji społecznych 5.Symulacje agentów ekonomicznych 6.Kooperacja

Bardziej szczegółowo

JOHN HARSANYI I TEORIA GIER

JOHN HARSANYI I TEORIA GIER DECYZJE nr 17 czerwiec 2012 JOHN HARSANYI I TEORIA GIER Honorata Sosnowska 1 Szkoła Główna Handlowa Życie Johna Harsanyiego obfitowało w przeróżne wydarzenia i zwroty akcji. Cztery państwa (Węgry, Australia,

Bardziej szczegółowo

PODSTAWY WSPOMAGANIA PODEJMOWANIA DECYZJI W ZARZĄDZANIU BEZPIECZEŃSTWEM. cz. 6. dr BOŻENA STARUCH

PODSTAWY WSPOMAGANIA PODEJMOWANIA DECYZJI W ZARZĄDZANIU BEZPIECZEŃSTWEM. cz. 6. dr BOŻENA STARUCH PODSTAWY WSPOMAGANIA PODEJMOWANIA DECYZJI W ZARZĄDZANIU BEZPIECZEŃSTWEM cz. 6 dr BOŻENA STARUCH bostar@matman.uwm.edu.pl Optymalizacja wielokryterialna Optymalizacją wielokryterialną nazwiemy próbę znalezienia

Bardziej szczegółowo

LEKCJA 4. Gry dynamiczne z pełną (kompletną) i doskonałą informacją. Grą dynamiczną jest każda gra w której gracze wykonują ruchy w pewnej kolejności.

LEKCJA 4. Gry dynamiczne z pełną (kompletną) i doskonałą informacją. Grą dynamiczną jest każda gra w której gracze wykonują ruchy w pewnej kolejności. LEKCJA 4 Gry dynamiczne z pełną (kompletną) i doskonałą informacją Grą dynamiczną jest każda gra w której gracze wykonują ruchy w pewnej kolejności. Czy w dowolnej grze dynamicznej lepiej być graczem,

Bardziej szczegółowo

MODELOWANIE NIEPEŁNEJ INFORMACJI ZA POMOCĄ TEORII GIER

MODELOWANIE NIEPEŁNEJ INFORMACJI ZA POMOCĄ TEORII GIER Anna Blajer-Gołębiewska Katedra Mikroekonomii Uniwersytet Gdański MODELOWANIE NIEPEŁNEJ INFORMACJI ZA POMOCĄ TEORII GIER Niepełna informacja Zjawisko niepełnej (niekompletnej) informacji wraz z jego implikacjami

Bardziej szczegółowo

Punkty równowagi w grach koordynacyjnych

Punkty równowagi w grach koordynacyjnych Uniwersytet Śląski w Katowicach, Instytut Informatyki ul. Będzińska 39 41-200 Sosnowiec 9 grudnia 2014, Chorzów 1 Motywacja 2 3 4 5 6 Wnioski i dalsze badania Motywacja 1 są klasą gier, w których istnieje

Bardziej szczegółowo

EKONOMIA MENEDŻERSKA

EKONOMIA MENEDŻERSKA oraz na kierunku zarządzanie i marketing (jednolite studia magisterskie) 1 EKONOMIA MENEDŻERSKA PROGRAM WYKŁADÓW Wykład 1. Wprowadzenie do ekonomii menedŝerskiej. Podejmowanie optymalnych decyzji na podstawie

Bardziej szczegółowo

Teoria gier. dr Przemysław Juszczuk. Wykład 2 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego

Teoria gier. dr Przemysław Juszczuk. Wykład 2 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego Instytut Informatyki Uniwersytetu Śląskiego Wykład 2 - Gry o sumie zero Gry o sumie zero Dwuosobowe gry o sumie zero (ogólniej: o sumie stałej) były pierwszym typem gier dla których podjęto próby ich rozwiązania.

Bardziej szczegółowo

1. S³owo wstêpne Geologia gospodarcza g³ówne aspekty problematyki badawczej Zakres, treœæ i cel rozprawy...

1. S³owo wstêpne Geologia gospodarcza g³ówne aspekty problematyki badawczej Zakres, treœæ i cel rozprawy... Spis treœci Streszczenie... 11 Summary... 13 1. S³owo wstêpne... 15 1.1. Geologia gospodarcza g³ówne aspekty problematyki badawczej... 16 1.2. Zakres, treœæ i cel rozprawy... 17 2. Zarys teorii decyzji...

Bardziej szczegółowo

Nazwa przedmiotu. pierwsza

Nazwa przedmiotu. pierwsza Nazwa przedmiotu K A R T A P R Z E D M I O T U ( S Y L L A B U S ) O p i s p r z e d m i o t u Kod przedmiotu Teoria gier UTH/I/O/MT//C/ST/1(i)/ 6L /C1B.6a Game theory Język wykładowy polski Wersja przedmiotu

Bardziej szczegółowo

Jak rozgrywać turnieje tenisowe?

Jak rozgrywać turnieje tenisowe? Jak rozgrywać turnieje tenisowe? Kamila Agnieszka Baten Kamila Agnieszka Baten Strona 1 008-10-16 ISTOTA PROBLEMU Będziemy zajmować się problemem, który został sformułowany w 199 roku przez prof. Hugona

Bardziej szczegółowo

Materiały wykładowe (fragmenty)

Materiały wykładowe (fragmenty) Materiały wykładowe (fragmenty) 1 Robert Susmaga Instytut Informatyki ul. Piotrowo 2 Poznań kontakt mail owy Robert.Susmaga@CS.PUT.Poznan.PL kontakt osobisty Centrum Wykładowe, blok informatyki, pok. 7

Bardziej szczegółowo

Wprowadzenie do konferencji - Budowanie sytuacji promujących kooperację. Michał Jasieński Centrum Innowatyki WSB-NLU 3 grudnia 2010

Wprowadzenie do konferencji - Budowanie sytuacji promujących kooperację. Michał Jasieński Centrum Innowatyki WSB-NLU 3 grudnia 2010 Wprowadzenie do konferencji - Budowanie sytuacji promujących kooperację Michał Jasieński Centrum Innowatyki WSB-NLU 3 grudnia 2010 Kooperacja: mocny kapitał społeczny sprzyja innowacyjności czy innowacyjność

Bardziej szczegółowo

1 S t r o n a. Teoria Gier Praca domowa 1 - rozwiązania

1 S t r o n a. Teoria Gier Praca domowa 1 - rozwiązania 1 S t r o n a Teoria Gier Praca domowa 1 - rozwiązania Zadanie 1 Gdy korzystamy z toalet publicznych dominującą strategią jest: nie sprzątać po sobie. Skorzystanie z toalety przynosi dodatnią wypłatę,

Bardziej szczegółowo

Elementy teorii wyboru publicznego. Marek Oramus

Elementy teorii wyboru publicznego. Marek Oramus Elementy teorii wyboru publicznego Marek Oramus Prowadzący Marek Oramus marek.oramus@uek.krakow.pl tel. 12 293 58-40 Konsultacje: Czwartki 10:00-11:00 + do ustalenia Rakowicka 16, pok. 22 Wprowadzenie

Bardziej szczegółowo

Materiały wykładowe (fragmenty)

Materiały wykładowe (fragmenty) Materiały wykładowe (fragmenty) 1 Robert Susmaga Instytut Informatyki ul. Piotrowo 2 Poznań kontakt mail owy Robert.Susmaga@CS.PUT.Poznan.PL kontakt osobisty Centrum Wykładowe, blok informatyki, pok. 7

Bardziej szczegółowo

Strategie rozwoju dla Jednostek Samorządu Terytorialnego i przedsiębiorstw. Przedstawiciel zespołu: dr inŝ. Jan Skonieczny

Strategie rozwoju dla Jednostek Samorządu Terytorialnego i przedsiębiorstw. Przedstawiciel zespołu: dr inŝ. Jan Skonieczny Strategie rozwoju dla Jednostek Samorządu Terytorialnego i przedsiębiorstw metodologia formułowania i implementacji Przedstawiciel zespołu: dr inŝ. Jan Skonieczny Wrocław 12.12.2007 Zakres zadania Zadanie

Bardziej szczegółowo

Wykład Ćwiczenia Laboratoriu m 30 30 1,5 1,5 WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI CELE PRZEDMIOTU

Wykład Ćwiczenia Laboratoriu m 30 30 1,5 1,5 WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI CELE PRZEDMIOTU Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim ELEMENTY TEORII GIER Nazwa w języku angielskim ELEMENTS OF GAME THEORY Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

Elementy teorii gier. Badania operacyjne

Elementy teorii gier. Badania operacyjne 2016-06-12 1 Elementy teorii gier Badania operacyjne Plan Przykład Definicja gry dwuosobowej o sumie zerowej Macierz gry Strategie zdominowane Mieszane rozszerzenie gry Strategie mieszane Rozwiązywanie

Bardziej szczegółowo

Optymalizacja decyzji

Optymalizacja decyzji Optymalizacja decyzji Dr hab. inż Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć będa dostępne na stronie www.ioz.pwr.wroc.pl/pracownicy/kasperski Forma zaliczenia

Bardziej szczegółowo

Praca powstała w ramach zajęć Ekonomia Eksperymentalna

Praca powstała w ramach zajęć Ekonomia Eksperymentalna arszawa 5.04.00r. Uniwersytet arszawski ydział auk konomicznych Poker drogowy gra eksperymentalna Praca powstała w ramach zajęć konomia ksperymentalna ykonały: Małgorzata Krasoń Aneta Staniszewska Spis

Bardziej szczegółowo

Twierdzenie Kakutaniego Jarosław GÓRNICKI, Rzeszów

Twierdzenie Kakutaniego Jarosław GÓRNICKI, Rzeszów Rys. 1 Twierdzenie Kakutaniego Jarosław GÓRNICKI, Rzeszów W wielu sytuacjach społecznych, ekonomicznych dokonujemy wyborów uwzględniając wybrane oddziaływania zewnętrzne. Modele matematyczne tego typu

Bardziej szczegółowo

Trwałość sieci gospodarczych w świetle teorii gier

Trwałość sieci gospodarczych w świetle teorii gier Andrzej Borczuch Wojciech Czakon Uniwersytet Ekonomiczny w Katowicach Trwałość sieci gospodarczych w świetle teorii gier Ostatnie dwadzieścia lat to okres rosnącego zainteresowania problematyką powiązań

Bardziej szczegółowo

Optymalizacją wielokryterialną nazwiemy próbę znalezienia wektora zmiennych decyzyjnych: x = [x 1

Optymalizacją wielokryterialną nazwiemy próbę znalezienia wektora zmiennych decyzyjnych: x = [x 1 1 Optymalizacją wielokryterialną nazwiemy próbę znalezienia wektora zmiennych decyzyjnych: x = [x 1,x 2,,x k ], który spełnia warunki ograniczające: g i (x) 0 (i = 1 m), h i (x) = 0 (i = 1 p) oraz optymalizuje

Bardziej szczegółowo

TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ

TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Definicja gry o sumie zerowej Powiemy, że jest grą o

Bardziej szczegółowo

Informacja i decyzje w ekonomii

Informacja i decyzje w ekonomii Informacja i decyzje w ekonomii Prof. Tomasz Bernat tomasz.bernat@usz.edu.pl Krótko o programie Informacja i decyzje w ekonomii miejsce i zastosowanie w teorii Ryzyko, niepewność i informacja w podejmowaniu

Bardziej szczegółowo

Historia ekonomii. Mgr Robert Mróz. Mikroekonomia w XX wieku

Historia ekonomii. Mgr Robert Mróz. Mikroekonomia w XX wieku Historia ekonomii Mgr Robert Mróz Mikroekonomia w XX wieku 17.01.2017 Marshall i Walras Ojcowie założyciele nowoczesnej mikroekonomii pozostawili w spadku: Założenie o racjonalnych, maksymalizujących podmiotach

Bardziej szczegółowo

Teoria gier. Strategie stabilne ewolucyjnie Zdzisław Dzedzej 1

Teoria gier. Strategie stabilne ewolucyjnie Zdzisław Dzedzej 1 Teoria gier Strategie stabilne ewolucyjnie 2012-01-11 Zdzisław Dzedzej 1 John Maynard Smith (1920-2004) 2012-01-11 Zdzisław Dzedzej 2 Hawk- Dove Game Przedstawimy uproszczony model konfliktu omówiony w

Bardziej szczegółowo

TEORIA GIER DEFINICJA (VON NEUMANN, MORGENSTERN) GRA. jednostek (graczy) znajdujących się w sytuacji konfliktowej (konflikt interesów),w

TEORIA GIER DEFINICJA (VON NEUMANN, MORGENSTERN) GRA. jednostek (graczy) znajdujących się w sytuacji konfliktowej (konflikt interesów),w TEORIA GIER GRA DEFINICJA (VON NEUMANN, MORGENSTERN) Gra składa się z zestawu reguł określających możliwości wyboru postępowania jednostek (graczy) znajdujących się w sytuacji konfliktowej (konflikt interesów),w

Bardziej szczegółowo

TEORIA GIER W EKONOMII ZADANIA DO CZĘŚCI 1-4. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ

TEORIA GIER W EKONOMII ZADANIA DO CZĘŚCI 1-4. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ TEORIA GIER W EKONOMII ZADANIA DO CZĘŚCI 1-4 dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Zadanie 1 Dwie konkurencyjne firmy X i Y są dealerami dobrze znanej marki

Bardziej szczegółowo

KONSTYTUCJA W ŚWIETLE NAUK EKONOMICZNYCH

KONSTYTUCJA W ŚWIETLE NAUK EKONOMICZNYCH KONSTYTUCJA W ŚWIETLE NAUK EKONOMICZNYCH dr Katarzyna Metelska-Szaniawska Wydział Nauk Ekonomicznych UW Seminarium PSEAP 25/10/2007 PLAN WYSTĄPIENIA I II III IV Ekonomia konstytucyjna jako program badawczy

Bardziej szczegółowo

Load balancing games

Load balancing games Load balancing games Marcin Witkowski Uniwersytet im. Adama Mickiewicza w Poznaniu 11 grudnia 2010 1 / 34 Szeregowanie zadań Przyporządkowanie zbioru zadań do zbioru maszyn, w ten sposób, aby obciążenie

Bardziej szczegółowo

Proces formułowania strategii. wnioski i doświadczenia praktyczne. dr inŝ. Piotr Kubiński

Proces formułowania strategii. wnioski i doświadczenia praktyczne. dr inŝ. Piotr Kubiński Proces formułowania strategii dla podmiotów gospodarczych wnioski i doświadczenia praktyczne dr inŝ. Piotr Kubiński Seminarium DCSR Wrocław 31.10.2007 Proces formułowania strategii Misja Wizja Analiza

Bardziej szczegółowo

Teoria Gier i Optymalne Wykorzystanie Wspólnych Zasobów p. 1/4

Teoria Gier i Optymalne Wykorzystanie Wspólnych Zasobów p. 1/4 Teoria Gier i Optymalne Wykorzystanie Wspólnych Zasobów p. 1/4 Teoria Gier i Optymalne Wykorzystanie Wspólnych Zasobów Krzysztof R. Apt CWI, Amsterdam Uniwersytet Amsterdamski Teoria Gier i Optymalne Wykorzystanie

Bardziej szczegółowo

Journal of Agribusiness and Rural Development

Journal of Agribusiness and Rural Development pissn 1899-5241 eissn 1899-5772 Journal of Agribusiness and Rural Development www.jard.edu.pl 2(24) 2012, 119-126 MOŻLIWOŚCI ZASTOSOWANIA TEORII GIER DO ANALIZY KONFLIKTÓW DECYZYJNYCH POWSTAJĄCYCH WE WSPÓLNEJ

Bardziej szczegółowo

Wykłady specjalistyczne. (Matematyka w finansach i ekonomii; Matematyczne podstawy informatyki)

Wykłady specjalistyczne. (Matematyka w finansach i ekonomii; Matematyczne podstawy informatyki) Wykłady specjalistyczne (Matematyka w finansach i ekonomii; Matematyczne podstawy informatyki) oferowane na stacjonarnych studiach I stopnia (dla 3 roku) w roku akademickim 2017/2018 (semestr zimowy) Spis

Bardziej szczegółowo

Modelowanie Preferencji a Ryzyko. Dlaczego w dylemat więźnia warto grać kwantowo?

Modelowanie Preferencji a Ryzyko. Dlaczego w dylemat więźnia warto grać kwantowo? Modelowanie Preferencji a Ryzyko Dlaczego w dylemat więźnia warto grać kwantowo? Marek Szopa U n iwe r s y t e t Ś l ą s k i INSTYTUT FIZYKI im. Augusta Chełkowskiego Zakład Fizyki Teoretycznej Klasyczny

Bardziej szczegółowo