ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM. Ćwiczenie 2. Badanie algorytmów adaptacyjnych LMS i RLS

Wielkość: px
Rozpocząć pokaz od strony:

Download "ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM. Ćwiczenie 2. Badanie algorytmów adaptacyjnych LMS i RLS"

Transkrypt

1 ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM Ćwiczenie 2 Badanie algorytmów adaptacyjnych LMS i RLS 1. CEL ĆWICZENIA Celem ćwiczenia jest samodzielna implementacja przez studentów dwóch podstawowych algorytmów adaptacyjnych, LMS (Least Mean Square) i RLS (Recursive Least Squares), oraz zbadanie ich podstawowych właściwości, takich jak: stabilność, szybkość zbieżności, niedopasowanie, a także zdolność do śledzenia liniowych systemów niestacjonarnych. 2. ZAKRES BADAŃ Badania eksperymentalne algorytmów LMS i RLS obejmują: samodzielną implementację algorytmów LMS i RLS w języku MATLAB badanie stabilności algorytmu LMS w zależności od rzędu filtru adaptacyjnego, kroku adaptacji α oraz typu sygnału wejściowego określenie parametrów filtru adaptacyjnego i właściwości sygnału wejściowego mających wpływ na niedopasowanie algorytmów LMS i RLS w stanie ustalonym analizę porównawczą szybkości zbieżności dwóch badanych w ćwiczeniu algorytmów w układzie adaptacyjnej identyfikacji liniowego systemu stacjonarnego ocenę zdolności śledzenia przez filtry adaptacyjne LMS i RLS niestacjonarności identyfikowanego systemu 3. PODSTAWY TEORETYCZNE Algorytmy LMS i RLS są podstawowymi algorytmami adaptacyjnymi, z których wywodzi się cały szereg ich najrozmaitszych modyfikacji. Celem tych modyfikacji jest poprawa właściwości algorytmów pierwotnych. Głównie dąży się do zwiększenia szybkości zbieżności algorytmu LMS oraz do redukcji złożoności obliczeniowej osiągającego świetne wyniki algorytmu RLS. Bardzo często inspiracją do tworzenia nowych algorytmów adaptacyjnych są wymagania konkretnej aplikacji, w której wykorzystano technikę filtracji adaptacyjnej. Z wybranymi nowymi podejściami do syntezy algorytmów adaptacyjnych oraz specyficznymi aplikacjami, w których znajdują one zastosowanie, studenci zapoznają się podczas realizacji swoich zadań projektowych. Ze względu na fakt, że szczegółowe wyprowadzenia algorytmów LMS i RLS przedstawiono na wykładzie, jak również można je znaleźć w literaturze poświęconej tematyce filtracji 1

2 adaptacyjnej, w niniejszym punkcie instrukcji przytoczymy jedynie rekursje obydwu algorytmów oraz przedstawimy podstawowe zależności opisujące ich właściwości. 3.1 Algorytm LMS i jego właściwości Wprowadźmy na początek wspólne dla wszystkich algorytmów adaptacyjnych oznaczenia. Przez x n = [x(n), x(n 1),..., x(n L + 1)] T oznaczać będziemy wektor danych wejściowych filtru adaptacyjnego, zaś przez f n = [f n (0), f n (1),..., f n (L 1)] T wektor jego współczynników w chwili n, przy czym L jest tu rzędem filtru. Rekursje algorytmu LMS wraz z warunkami początkowymi zamieszczono w tablicy 1. Tablica 1 Algorytm LMS Warunki początkowe: f 0 = 0 Dla kolejnych chwil czasu n obliczamy: e(n) = d(n) f T nx n f n+1 = f n + αe(n)x n Sygnały x(n), d(n) i e(n) to odpowiednio sygnał wejściowy, sygnał odniesienia oraz sygnał błędu. Stała α, nazywana również krokiem adaptacji, jest stałą heurystyczną dobieraną doświadczalnie w zależności od konkretnego zastosowania algorytmu. Aby algorytm pracował stabilnie musi ona spełniać warunek [4, 1, 3]: 0 < α < 2 λ max, (1) gdzie λ max jest największą wartością własną macierzy autokorelacji R sygnału wejściowego x(n). W praktyce jednak do oszacowania górnej granicy wartości jakie może przyjmować stała α wykorzystuje się warunek nie wymagający znajomości wartości własnych macierzy autokorelacyjnej: 2 0 < α < L E[x 2 (n)], (2) z którego wynika, że kres górny wartości, jakie może przyjmować stała α jest okreslony przez rząd filtru i moc sygnału wejściowego. Wektor współczynników obliczany za pomocą algorytmu LMS ma charakter losowy i nie ma gwarancji, że jest on zbieżny do optymalnego rozwiązania wienerowskiego f. Przy pewnych mocnych założeniach odnośnie sygnałów x(n) i d(n) dowodzi się [3], że wektor współczynników f n filtru adaptacyjnego LMS jest średnio zbieżny do tego rozwiązania, tzn. lim E[f n n] f. (3) Warunek (3) nie oznacza jednak zbieżności błędu średniokwadratowego J(n) = E[e 2 (n)] rozwiązań generowanych przez algorytm LMS do minimalnego błędu średniokwadratowego J min optymalnego rozwiązania MMSE. W rzeczywistości błąd średniokwadratowy zbiega do pewnej ustalonej wartości, którą oznaczymy przez J. Wynika to z faktu, że wartości współczynników f n filtru, podlegają po osiągnięciu stanu ustalonego pewnym fluktuacjom wokół rozwiązania optymalnego f. Różnica między wartością błędu średniokwadratowego 2

3 uzyskaną przez algorytm w stanie ustalonym, a minimalną wartością tego błędu nazywana jest błędem ekscesu i oznaczana przez J ex = J J min. Stosunek błędu ekscesu do minimalnego błędu średniokwadratowego, będący miarą stopnia odchylenia rozwiązań generowanych przez algorytm od optymalnego rozwiązania wienerowskiego, jest określany jako niedopasowanie M (ang. misadjustment): M = J ex J min = J J min J min. (4) Niedopasowanie algorytmu LMS, przy założeniu stacjonarności sygnałów x(n) i d(n), określa wzór: M LMS = αtr(r), (5) gdzie tr(r) jest śladem macierzy autokorelacji sygnału wejściowego. Dla algorytmów adaptacyjnych określa się ponadto parametr zwany stałą zbieżności algorytmu τ, który jest zdefiniowany jako czas, po którym błąd estymacji najwolniej zbieżnego współczynnika filtru adaptacyjnego maleje e-krotnie [4, 1]. Dla algorytmu LMS stałą zbieżności określa wzór: τ LMS = 1 αλ min, (6) gdzie λ min jest najmniejszą wartością własną macierzy autokorelacji R. Wracając do kroku adaptacji α, możemy, po przyjrzeniu się wzorom (5) i (6), łatwo stwierdzić, że dobór tego parametru wiąże się z kompromisem między szybkością zbieżności algorytmu a jego niedopasowaniem. Wraz ze wzrostem wartości kroku adaptacji, rośnie szybkość zbieżności, ale towarzyszy temu również wzrost niedopasowania. 3.2 Algorytm RLS i jego właściwości Drugim z badanych w niniejszym ćwiczeniu algorytmów adaptacyjnych jest algorytm RLS. Otrzymujemy go w wyniku minimalizacji funkcji kosztu określonej wzorem: n J(n) = λ n i e 2 (i), (7) i=1 gdzie λ jest stałą zapominania, przyjmującą wartości z przedziału (0, 1]. Wprowadzenie tego parametru powoduje wykładnicze oknowanie sygnału błędu e(n), tzn. działanie polegające na tym, że starsze próbki sygnału błędu estymacji są brane do sumarycznej miary błędu J(n) z odpowiednio mniejszą wagą. Za miarę pamięci algorytmu RLS można przyjąć odwrotność dopełnienia współczynnika λ do jedności, tj. 1/(1 λ). W przypadku podstawowej wersji algorytmu RLS, stosowanej z reguły dla sygnałów stacjonarnych, przyjmuje się λ = 1. Dostajemy wtedy rekursywne rozwiązanie klasycznego, dobrze znanego zagadnienia najmniejszych kwadratów, a pamięć algorytmu jest wtedy nieskończona. Przyjmując λ 1, otrzymujemy tzw. algorytm RLS z wykładniczą stałą zapominania. Algorytm ten zamieszczono w tablicy 2. 3

4 Tablica 2 Warunki początkowe: P 0 = γi γ 1 f 0 = 0 Algorytm RLS Dla kolejnych chwil czasu n obliczamy: e(n n 1) = d(n) f T n 1x n P n 1 x n k n = λ + x T np n 1 x n f n = f n 1 + k n e(n n 1) P n = 1 [ ] P n 1 k n x T λ np n 1 Występująca w rekursjach algorytmu RLS macierz P n o wymiarze dim(p n ) = L L jest estymatą w chwili n macierzy R 1, odwrotnej do macierzy autokorelacji sygnału wejściowego x(n) filtru adaptacyjnego. Symbol e(n n 1) oznacza tu błąd estymacji a priori, w odróżnieniu do wykorzystanego w kryterium minimalizacji (7) błędu a posteriori e(n). Błąd estymacji a posteriori oblicza się wykorzystując aktualny wektor współczynników filtru f n, zaś błąd a priori - korzystając z wektora współczynników filtru f n 1 z chwili poprzedniej. Wektor k n nazywany jest wektorem wzmocnienia algorytmu lub wektorem wzmocnienia kalmanowskiego. Druga z przytoczonych nazw wektora k n wynika z faktu, że algorytm RLS może być rozpatrywany jako szczególny przypadek filtru Kalmana. Niedopasowanie algorytmu RLS w przypadku stacjonarności sygnałów x(n) i d(n) opisuje następująca formuła [2]: M RLS = 1 λ L. (8) 1 + λ Ze wzoru (8) wynika, że błąd średniokwadratowy rozwiązań generowanych przez algorytm RLS z nieskończoną pamięcią (λ = 1) w przypadku, gdy sygnały x(n) i d(n) są stacjonarne, jest zbieżny do minimalnego błędu średniokwadratowego J min. To z kolei oznacza, że algorytm RLS pracujący w określonych wyżej warunkach, jest w stanie zapewnić w stanie ustalonym optymalne rozwiązanie problemu liniowej estymacji średniokwadratowej sygnałów. 3.3 Identyfikacja systemu liniowego za pomocą filtru adaptacyjnego Część badań eksperymentalnych przeprowadzanych przez studentów podczas niniejszego ćwiczenia, a dokładniej analiza porównawcza szybkości zbieżności algorytmów LMS i RLS oraz ocena zdolności śledzenia systemów niestacjonarnych przez te algorytmy, przeprowadzona zostanie z wykorzystaniem filtru adaptacyjnego w systemie adaptacyjnej identyfikacji nieznanego liniowego, w ogólności niestacjonarnego układu. Schemat takiego systemu przedstawiono na rys. 1. Zadaniem filtru adaptacyjnego jest tu takie przetworzenie sygnału x(n), aby błąd estymacji e(n) był minimalny w sensie pewnego kryterium, które jest zależne od zastosowanego algorytmu. Po osiągnięciu zbieżności, filtr adaptacyjny modeluje z pewną dokładnością nieznany system, z którym równolegle przetwarza sygnał wejściowy x(n). Stopień naszej niewiedzy o identyfikowanym systemie może być różny. 4

5 x( n) y( n) hn + s( n) + d( n) y ^ ( n) - f n + e( n) Rys. 1: Schemat adaptacyjnego systemu identyfikacji nieznanego liniowego układu niestacjonarnego W pierwszym podejściu możemy przyjąć, że nic nie wiemy ani o strukturze modelu ani o właściwościach identyfikowanego systemu. W kolejnych przybliżeniach możemy zakładać, że system jest liniowy, dalej stacjonarny, aż po przyjęcie, że jest modelowany filtrem SOI o znanym rzędzie. I takie, dość mocne założenia przyjmiemy w naszych badaniach. W ostatnim eksperymencie ćwiczenia, w którym poddamy ocenie zdolność śledzenia fitrów adaptacyjnych, z oczywistych względów odejdziemy od założenia o stacjonarności identyfikowanego systemu. Stosowaną w symulacjach miarę dokładności estymacji odpowiedzi impulsowej identyfikowanego systemu będzie względny błąd estymacji określony wzorem: δ(n) = 10 log h n f n 2 h n 2, (9) gdzie h n jest odpowiedzią impulsową systemu niestacjonarnego w chwili n. Dla przypadku stacjonarnego przyjmować będziemy, że h n = h. 4. IMPLEMENTACJA ALGORYTMÓW LMS I RLS (zadanie domowe) Przed przystąpieniem do badań eksperymentalnych, zadaniem studentów jest samodzielne zaimplementowanie algorytmów LMS i RLS jako funkcji pakietu MATLAB. Implementacje te należy zrealizować przyjmując następujące prototypy tychże funkcji: 1. dla algorytmu LMS [e, F] = lms(x, d, L, alfa) 2. dla algorytmu RLS [e, F] = rls(x, d, L, lambda) W trakcie implementacji przyjąć, że stała γ o dużej wartości, występująca w określonych dla algorytmu RLS warunkach początkowych, wynosi 100. Sygnały oznaczone literami x, d, e oraz parametry alfa i lambda korespondują w sposób oczywisty z sygnałami i parametrami, które pojawiają się w równaniach algorytmów LMS i RLS zamieszczonych w tabelach 1 i 2, zaś L jest liczbą określającą rząd filtru adaptacyjnego. Wyjaśnienia wymaga natomiast macierz oznaczona przez F. Jest to macierz współczynników filtru adaptacyjnego w kolejnych chwilach przetwarzania. Ma ona wymiar 5

6 dim(f) = L M, gdzie M oznacza długość (liczbę próbek) realizacji sygnałów x(n) i d(n). Macierz F jest potrzebna do wyznaczania względnego błędu estymacji δ(n) odpowiedzi impulsowej identyfikowanego systemu w kolejnych chwilach czasu n. 5. BADANIA EKSPERYMENTALNE (zadania laboratoryjne) 5.1 Badanie stabilności algorytmu LMS 1. Wygenerować 1000 próbek realizacji następujących sygnałów wejściowych: x 1 (n) szumem białym o rozkładzie równomiernym w przedziale [-1, 1]; x 2 (n) szumem białym gaussowskim o zerowej średniej i jednostkowej wariancji; x 3 (n) sygnałem cosinusoidalnym o pulsacji π/5 i zerowej fazie. Dla każdego typu danych oraz dla rzędów filtrów L = 5 i L = 50 w pierwszej kolejności oszacować górną granice kroku adaptacji α g, zapewniającą stabilną pracę algorytmu, a następnie wyznaczyć eksperymentalnie maksymalną graniczną wartość tegoż parametru. Jako kryterium stabilności przyjąć wartości sygnału błędu. Duże i niemalejące dla kolejnych chwil czasu n błędy świadczą o niestabilnym zachowaniu algorytmu adaptacyjnego. We wszystkich przypadkach przyjąć, że sygnał odniesienia d(n) jest tym samym sygnałem, co sygnał wejściowy. Skomentować uzyskane rezultaty. 2. Wygenerować dwa nieskorelowane ciągi 1000 próbek szumu białego o rozkładzie równomiernym w przedziale [-1, 1]. Obejrzeć przebieg sygnału błędu przyjmując jako sygnał d(n) pierwszy ciąg, a jako sygnał x(n) drugi ciąg próbek. Rząd filtru ustalić na L = 50, zaś krok adaptacji zmieniać w zakresie od α g (wyznaczonego wcześniej dla tego typu danych i filtru o 50 współczynnikach) do wartości bliskiej 0. Porównać przebiegi sygnałów błędu e(n) otrzymane w tym i w poprzednim doświadczeniu. 5.2 Wpływ stałych algorytmu oraz właściwości sygnału wejściowego na szybkość zbieżności i niedopasowanie filtrów adaptacyjnych W tym punkcie badań eksperymentalnych, jako sygnały wejściowe wykorzystamy M = 2000 próbkowe realizacje szumu gaussowskiego x 1 (n) o zerowej średniej i jednostkowej wariancji (rozrzut wartości własnych macierzy autokorelacji χ(r) = 1) oraz sygnału x 2 (n) będącego realizacją procesu autoregresyjnego AR(1) o współczynnikach a = [1-0,8] T oraz o rozrzucie wartości własnych macierzy autokorelacji χ(r) = 9. Znormalizować wariancję sygnału x 2 (n) poprzez wykonanie następującej operacji: x2 = 0.6 * x2;. W celu uzyskania sygnałów odniesienia d 1 (n) oraz d 2 (n) określone sygnały wejściowe należy poddać filtracji za pomocą filtru SOI o odpowiedzi impulsowej h = [1,0000 0,9000 0,3000-0,5500-0,4850 0,1424 0,4107 0,1056-0,2347-0,1913] T. 1. Dla algorytmu LMS przyjąć rząd filtru L = 10. Dokonać filtracji sygnałów wejściowych x 1 (n) i x 2 (n) dla dwóch wartości kroków adaptacji: α 1 = 0, 05 i α 2 = 0, 005. Na jednym rysunku wykreślić wszystkie cztery trajektorie sygnału błędu podniesionego do kwadratu, wykorzystując do tego celu funkcję semilogy. Co można powiedzieć 6

7 o wpływie wartości kroku adaptacji oraz rozrzutu wartości własnych macierzy autokorelacji sygnału wejściowego na szybkość zbieżności filtru adaptacyjnego strojonego za pomocą algorytmu LMS? 2. Dla algorytmu RLS przyjąć rząd filtru L = 10. Dokonać filtracji sygnałów wejściowych x 1 (n) i x 2 (n) dla dwóch wartości stałych zapominania: λ 1 = 0, 9 i λ 2 = 0, 999. Na jednym rysunku wykreślić wszystkie cztery trajektorie sygnału błędu podniesionego do kwadratu, tak jak to miało miejsce w przypadku algorytmu LMS. Co można powiedzieć o wpływie wartości stałej zapominania i typu sygnału wejściowego na niedopasowanie oraz szybkość zbieżności algorytmu adaptacyjnego RLS? 5.3 Porównanie szybkości zbieżności algorytmów LMS i RLS Badania przeprowadzone w punkcie 5.2 dały nam już pewien pogląd na szybkość zbieżności algorytmów LMS i RLS. W tym punkcie ćwiczenia dokonamy analizy porównawczej szybkości zbieżności tych algorytmów w układzie adaptacyjnej identyfikacji systemu stacjonarnego. Miarą, którą wykorzystamy w eksperymencie będzie względny błąd estymacji δ(n) odpowiedzi impulsowej systemu w kolejnych chwilach czasu, wyznaczony dla filtrów LMS i RLS pobudzanych różnymi sygnałami wejściowymi. Sposób postępowania przy realizacji doświadczenia symulacyjnego ujęto w kolejnych punktach. 1. Wygenerować M = 3000 próbek realizacji szumu gaussowskiego x 1 (n) o zerowej średniej i jednostkowej wariancji oraz sygnału x 2 (n) będącego realizacją procesu AR(4) o współczynnikach a = [1 0,3 0,9 0,4 0,7] T (χ(r) 630). Trzecim sygnałem, który zostanie wykorzystany będzie rzeczywisty sygnał mowy. Odpowiednia ilość próbek takiego sygnału x m (n) jest zapisana jako wektor xm w pliku fraza.mat. 2. Wczytać dane z pliku h.mat. Wektor h stanowi odpowiedź impulsową h identyfikowanego systemu stacjonarnego. Wykorzystując znajomość charakterystyki systemu wygenerować sygnały odniesienia d 1 (n), d 2 (n) oraz d m (n). Przyjąć, że szum zakłócający s(n) = Dokonać identyfikacji odpowiedzi impulsowej nieznanego systemu za pomocą algorytmów LMS i RLS, wykorzystując wszystkie trzy rodzaje sygnałów wejściowych. Po każdorazowym wyznaczeniu macierzy F zawierającej estymaty odpowiedzi impulsowej systemu dla kolejnych chwil czasu n obliczyć względny błąd estymacji δ(n) tejże odpowiedzi, wykorzystując funkcję delta.m. W celu uniknięcia zapełnienia pamięci komputera, w kolejnych eksperymentach nadpisywać macierz F. W pamięci przechowywać jedynie przebiegi błędu δ(n), które zostaną porównane w końcowej fazie badań. W przypadku algorytmu LMS zastosować następujące wartości kroku adaptacji: α 1 = 0, 030, α 2 = 0, 003 i α m = 0, 050. Są to wyznaczone doświadczalnie maksymalne wartości tego parametru dla każdego typu sygnału wejściowego. Dla algorytmu RLS we wszystkich trzech przypadkach przyjąć, że λ = 0, 980. Rząd filtrów L = Wykreślić trzy rysunki. Na pierwszym i drugim przedstawić przebiegi względnego błędu estymacji δ(n) wyznaczone odpowiednio przy zastosowaniu algorytmu LMS (pierwszy rysunek) oraz algorytmu RLS (rysunek drugi). Na trzecim wykresie zamieścić dwa przebiegi błędu δ(n): uzyskany w przypadku wykorzystania w procesie identyfikacji filtru LMS pobudzanego sygnałem x 1 (n) oraz otrzymany z użyciem filtru RLS pracującego z sygnałem x m (n) jako sygnałem wejściowym. 7

8 Przeanalizować otrzymane wyniki. Skomentować zależność szybkości zbieżności algorytmów LMS i RLS od rodzaju sygnału wejściowego. Dokonać analizy porównawczej badanych algorytmów pod kątem szybkości zbieżności. 5.4 Badanie zdolności śledzenia przez filtry adaptacyjne LMS i RLS niestacjonarności identyfikowanego systemu Ostatnie zadanie laboratoryjne poświęcone jest bardzo istotnej, z punktu widzenia praktycznych zastosowań, cesze algorytmów adaptacyjnych, jaką jest zdolność do śledzenia niestacjonarności sygnałów bądź systemów. Cecha ta jest poniekąd podstawowym powodem wielkiej popularności i atrakcyjności tego narzędzia przetwarzania sygnałów. To zmiany widma estymowanych sygnałów, fluktuacje odpowiedzi impulsowej identyfikowanych systemów czy wahania wyrównywanej charakterystyki częstotliwościowej kanału transmisyjnego powodują, że w aplikacjach charakteryzujących się tego typu problemami, nieodzownym staje się zastosowanie filtrów adaptacyjnych, które są w stanie owe zmiany śledzić. Eksperyment wykonywany przez studentów w tym punkcie polega na identyfikacji przy użyciu filtrów typu LMS i RLS, zmieniającej się w czasie odpowiedzi impulsowej h n systemu niestacjonarnego (rys. 1). W celu dokonania oceny zdolności filtrów LMS i RLS do śledzenia niestacjonarności systemu, należy wykonać niżej opisane badania symulacyjne. 1. Wygenerować M = 6000 próbek sygnału AR(5) o współczynnikach a = [1-0,65 0,70-0,22 0,31-0,18] T, będącego sygnałem wejściowym x(n). Uruchomić skrypt hn.m generujący macierz Hn o wymiarach dim(hn)= , której kolejne kolumny stanowią odpowiedzi impulsowe identyfikowanego systemu niestacjonarnego. Za pomocą funkcji gain.m zobrazować jak zmienia się maksymalne wzmocnienie systemu o odpowiedzi h n dla kolejnych chwil czasu n. Wytworzyć sygnał wyjściowy y(n) systemu niestacjonarnego przy użyciu funkcji nsfilter.m. Wyznaczyć sygnał odniesienia d(n) = y(n) + s(n) przyjmując, że zakłócenia s(n) są modelowane białym szumem gaussowskim o standardowym odchyleniu σ s = 0, Dokonać identyfikacji systemu niestacjonarnego za pomocą algorytmu LMS. Przyjąć następujące parametry: L = 100, α = 0, 003. Następnie powtórzyć jeszcze dwukrotnie ten proces, stosując algorytm RLS i przyjmując następujące wartości stałych: L = 100, λ 1 = 0, 985 dla pierwszego przypadku i λ 2 = 0, 999 dla drugiego przypadku. Po każdorazowym zakończeniu procesu identyfikacji wyznaczyć za pomocą funkcji delta.m przebieg względnego błędu estymacji δ(n). 3. Na jednym ekranie wykreślić dwa wykresy. Na pierwszym z nich zamieścić przebiegi błędu δ(n) wyznaczone przy wykorzystaniu algorytmu LMS oraz RLS ze stałą λ 1 = 0, 985. Na drugim, ponownie przebieg błędu uzyskany z użyciem algorytmu LMS oraz wykres δ(n) uzyskany przy zastosowaniu filtru RLS ze stałą zapominania λ 2 = 0, 999. Na podstawie analizy wykreślonych krzywych sformułować odpowiednie wnioski dotyczące zdolności śledzenia systemów niestacjonarnych przez algorytmy adaptacyjne. 8

9 LITERATURA [1] Clarkson P. M.: Optimal and Adaptive Signal Processing. CRC Press, [2] Eleftheriou E. and Falconer D. D.: Tracking properties and steady-state performance of RLS adaptive filter algorithms. IEEE Trans. on Acoustic, Speech, and Signal Processing, vol. ASSP-34, no. 2, October 1986, pp [3] Haykin S.: Adaptive Filter Theory. Englewood Cliffs, New York: Prentice-Hall, [4] Widrow B. and Stearns S. D.: Adaptive Signal Processing. Prentice-Hall, Englewood Cliffs,

ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM. Ćwiczenie 2. Badanie algorytmów adaptacyjnych LMS i RLS

ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM. Ćwiczenie 2. Badanie algorytmów adaptacyjnych LMS i RLS ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM Ćwiczenie 2 Badanie algorytmów adaptacyjnych LMS i RLS 1. CEL ĆWICZENIA Celem ćwiczenia jest samodzielna implementacja przez studentów dwóch podstawowych

Bardziej szczegółowo

[d(i) y(i)] 2. Do wyprowadzenia algorytmu RLS posłuży kryterium autokorelacyjne: J n = e 2 (i) i=1. λ n i [d(i) y(i)] 2 λ (0, 1]

[d(i) y(i)] 2. Do wyprowadzenia algorytmu RLS posłuży kryterium autokorelacyjne: J n = e 2 (i) i=1. λ n i [d(i) y(i)] 2 λ (0, 1] Algorytm RLS Recursive Least Squares Ogólna postać kryterium LS: J = i e 2 (i) = i [d(i) y(i)] 2 Do wyprowadzenia algorytmu RLS posłuży kryterium autokorelacyjne: J n = e 2 (i) Zmodyfikowane kryterium

Bardziej szczegółowo

Praca dyplomowa magisterska

Praca dyplomowa magisterska Praca dyplomowa magisterska Implementacja algorytmów filtracji adaptacyjnej o strukturze transwersalnej na platformie CUDA Dyplomant: Jakub Kołakowski Opiekun pracy: dr inż. Michał Meller Plan prezentacji

Bardziej szczegółowo

Adaptacyjne Przetwarzanie Sygnałów. Filtracja adaptacyjna w dziedzinie częstotliwości

Adaptacyjne Przetwarzanie Sygnałów. Filtracja adaptacyjna w dziedzinie częstotliwości W Filtracja adaptacyjna w dziedzinie częstotliwości Blokowy algorytm LMS (BLMS) N f n+n = f n + α x n+i e(n + i), i= N L Slide e(n + i) =d(n + i) f T n x n+i (i =,,N ) Wprowadźmy nowy indeks: n = kn (

Bardziej szczegółowo

ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM. Ćwiczenie 3. Adaptacyjne usuwanie szumów i interferencji

ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM. Ćwiczenie 3. Adaptacyjne usuwanie szumów i interferencji ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM Ćwiczenie 3 Adaptacyjne usuwanie szumów i interferencji 1. CEL ĆWICZENIA Usuwanie szumów i interferencji to jeden z pierwszych obszarów, można rzec klasyczny,

Bardziej szczegółowo

ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM. Ćwiczenie 3. Adaptacyjne usuwanie szumów i interferencji

ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM. Ćwiczenie 3. Adaptacyjne usuwanie szumów i interferencji ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM Ćwiczenie 3 Adaptacyjne usuwanie szumów i interferencji 1. CEL ĆWICZENIA Usuwanie szumów i interferencji to jeden z pierwszych obszarów, można rzec klasyczny,

Bardziej szczegółowo

ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM. Ćwiczenie 1. Modelowanie i analiza widmowa dyskretnych sygnałów losowych

ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM. Ćwiczenie 1. Modelowanie i analiza widmowa dyskretnych sygnałów losowych ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM Ćwiczenie 1 Modelowanie i analiza widmowa dyskretnych sygnałów losowych 1. CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie studentów z wybranymi algorytmami

Bardziej szczegółowo

Rozpoznawanie obrazów

Rozpoznawanie obrazów Rozpoznawanie obrazów Laboratorium Python Zadanie nr 1 Regresja liniowa autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, M. Zięba, J. Kaczmar Cel zadania Celem zadania jest implementacja liniowego zadania

Bardziej szczegółowo

Optymalizacja ciągła

Optymalizacja ciągła Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej

Bardziej szczegółowo

Narzędzia matematyczne zastosowane w systemie biomonitoringu wody

Narzędzia matematyczne zastosowane w systemie biomonitoringu wody Narzędzia matematyczne zastosowane w systemie biomonitoringu wody Piotr Przymus Krzysztof Rykaczewski Wydział Matematyki i Informatyki Uniwersytet Mikołaja Kopernika Toruń 1 of 24 18 marca 2009 Cel referatu

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 1 Regresja liniowa autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z liniowym zadaniem najmniejszych

Bardziej szczegółowo

Laboratorium Przetwarzania Sygnałów Biomedycznych

Laboratorium Przetwarzania Sygnałów Biomedycznych Laboratorium Przetwarzania Sygnałów Biomedycznych Ćwiczenie 1 Wydobywanie sygnałów z szumu z wykorzystaniem uśredniania Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - mgr inż. Tomasz Kubik

Bardziej szczegółowo

Sposoby opisu i modelowania zakłóceń kanałowych

Sposoby opisu i modelowania zakłóceń kanałowych INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Podstawy Telekomunikacji Sposoby opisu i modelowania zakłóceń kanałowych Warszawa 2010r. 1. Cel ćwiczeń: Celem ćwiczeń

Bardziej szczegółowo

Sterowanie napędów maszyn i robotów

Sterowanie napędów maszyn i robotów Wykład 5 - Identyfikacja Instytut Automatyki i Robotyki (IAiR), Politechnika Warszawska Warszawa, 2015 Koncepcje estymacji modelu Standardowe drogi poszukiwania modeli parametrycznych M1: Analityczne określenie

Bardziej szczegółowo

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka. Wstęp teoretyczny Zmienne losowe Zmienne losowe

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania MODELOWANIE I IDENTYFIKACJA Studia niestacjonarne Estymacja parametrów modeli, metoda najmniejszych kwadratów.

Bardziej szczegółowo

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:

Bardziej szczegółowo

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:

Bardziej szczegółowo

Promotor: dr Marek Pawełczyk. Marcin Picz

Promotor: dr Marek Pawełczyk. Marcin Picz Promotor: dr Marek Pawełczyk Marcin Picz Stosowane metody: - Grupa metod odejmowania widm (subtractive( subtractive-typetype algorithms); - Filtracja Wienera; - Neural networks & Fuzzy logic (sieci neuronowe

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Cyfrowe Przetwarzanie Obrazów i Sygnałów

Cyfrowe Przetwarzanie Obrazów i Sygnałów Cyfrowe Przetwarzanie Obrazów i Sygnałów Laboratorium EX Lokalne transformacje obrazów Joanna Ratajczak, Wrocław, 28 Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się z własnościami lokalnych

Bardziej szczegółowo

SPRZĘTOWA REALIZACJA FILTRÓW CYFROWYCH TYPU SOI

SPRZĘTOWA REALIZACJA FILTRÓW CYFROWYCH TYPU SOI 1 ĆWICZENIE VI SPRZĘTOWA REALIZACJA FILTRÓW CYFROWYCH TYPU SOI (00) Celem pracy jest poznanie sposobu fizycznej realizacji filtrów cyfrowych na procesorze sygnałowym firmy Texas Instruments TMS320C6711

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:

Bardziej szczegółowo

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1C400027 Temat ćwiczenia:

Bardziej szczegółowo

Spacery losowe generowanie realizacji procesu losowego

Spacery losowe generowanie realizacji procesu losowego Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z

Bardziej szczegółowo

Laboratorium Przetwarzania Sygnałów

Laboratorium Przetwarzania Sygnałów PTS - laboratorium Laboratorium Przetwarzania Sygnałów Ćwiczenie 4 Transformacja falkowa Opracował: - prof. dr hab. inż. Krzysztof Kałużyński Zakład Inżynierii Biomedycznej Instytut Metrologii i Inżynierii

Bardziej szczegółowo

ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM. Ćwiczenie 5 - suplement

ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM. Ćwiczenie 5 - suplement ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM Ćwiczenie 5 - suplement Realizacja na procesorze sygnałowym adaptacyjnego usuwania echa w łączu telefonicznym 1. SYMULACJA ECHA W ŁĄCZU TELEFONICZNYM I JEGO

Bardziej szczegółowo

ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM. Ćwiczenie 4. Wybrane telekomunikacyjne zastosowania algorytmów adaptacyjnych

ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM. Ćwiczenie 4. Wybrane telekomunikacyjne zastosowania algorytmów adaptacyjnych ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM Ćwiczenie 4 Wybrane telekomunikacyjne zastosowania algorytmów adaptacyjnych 1. CEL ĆWICZENIA Celem niniejszego ćwiczenia jest zapoznanie studentów z dwoma

Bardziej szczegółowo

Politechnika Świętokrzyska. Laboratorium. Cyfrowe przetwarzanie sygnałów. Ćwiczenie 8. Filtracja uśredniająca i statystyczna.

Politechnika Świętokrzyska. Laboratorium. Cyfrowe przetwarzanie sygnałów. Ćwiczenie 8. Filtracja uśredniająca i statystyczna. Politechnika Świętokrzyska Laboratorium Cyfrowe przetwarzanie sygnałów Ćwiczenie 8 Filtracja uśredniająca i statystyczna. Cel ćwiczenia Celem ćwiczenia jest zdobycie umiejętności tworzenia i wykorzystywania

Bardziej szczegółowo

Aproksymacja funkcji a regresja symboliczna

Aproksymacja funkcji a regresja symboliczna Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą

Bardziej szczegółowo

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11,

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11, 1 Kwantyzacja skalarna Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11, 10.05.005 Kwantyzacja polega na reprezentowaniu dużego zbioru wartości (być może nieskończonego) za pomocą wartości

Bardziej szczegółowo

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp.

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp. Sprawdzian 2. Zadanie 1. Za pomocą KMNK oszacowano następującą funkcję produkcji: Gdzie: P wartość produkcji, w tys. jp (jednostek pieniężnych) K wartość kapitału zaangażowanego w proces produkcji, w tys.

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

INTERPOLACJA I APROKSYMACJA FUNKCJI

INTERPOLACJA I APROKSYMACJA FUNKCJI Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Wprowadzenie Na czym polega interpolacja? Interpolacja polega

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi

Bardziej szczegółowo

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane

Bardziej szczegółowo

Egzamin / zaliczenie na ocenę*

Egzamin / zaliczenie na ocenę* WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI Zał. nr 4 do ZW 33/01 KARTA PRZEDMIOTU Nazwa w języku polskim CYFROWE PRZETWARZANIE SYGNAŁÓW Nazwa w języku angielskim DIGITAL SIGNAL PROCESSING Kierunek studiów

Bardziej szczegółowo

Przekształcenia sygnałów losowych w układach

Przekształcenia sygnałów losowych w układach INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Sygnały i kodowanie Przekształcenia sygnałów losowych w układach Warszawa 010r. 1. Cel ćwiczenia: Ocena wpływu charakterystyk

Bardziej szczegółowo

Elektrotechnika II stopień ogólnoakademicki. stacjonarne. przedmiot specjalnościowy. obowiązkowy polski semestr II semestr letni. tak. Laborat. 30 g.

Elektrotechnika II stopień ogólnoakademicki. stacjonarne. przedmiot specjalnościowy. obowiązkowy polski semestr II semestr letni. tak. Laborat. 30 g. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Metody estymacji parametrów i sygnałów Estimation methods of parameters

Bardziej szczegółowo

Andrzej Leśnicki Laboratorium CPS Ćwiczenie 9 1/5 ĆWICZENIE 9. Kwantowanie sygnałów

Andrzej Leśnicki Laboratorium CPS Ćwiczenie 9 1/5 ĆWICZENIE 9. Kwantowanie sygnałów Andrzej Leśnicki Laboratorium CP Ćwiczenie 9 1/5 ĆWICZEIE 9 Kwantowanie sygnałów 1. Cel ćwiczenia ygnał przesyłany w cyfrowym torze transmisyjnym lub przetwarzany w komputerze (procesorze sygnałowym) musi

Bardziej szczegółowo

Szeregi czasowe, analiza zależności krótkoi długozasięgowych

Szeregi czasowe, analiza zależności krótkoi długozasięgowych Szeregi czasowe, analiza zależności krótkoi długozasięgowych Rafał Weron rweron@im.pwr.wroc.pl Definicje Mając dany proces {X t } autokowariancję definiujemy jako : γ(t, t ) = cov(x t, X t ) = = E[(X t

Bardziej szczegółowo

Estymacja wektora stanu w prostym układzie elektroenergetycznym

Estymacja wektora stanu w prostym układzie elektroenergetycznym Zakład Sieci i Systemów Elektroenergetycznych LABORATORIUM INFORMATYCZNE SYSTEMY WSPOMAGANIA DYSPOZYTORÓW Estymacja wektora stanu w prostym układzie elektroenergetycznym Autorzy: dr inż. Zbigniew Zdun

Bardziej szczegółowo

Podstawy Przetwarzania Sygnałów

Podstawy Przetwarzania Sygnałów Adam Szulc 188250 grupa: pon TN 17:05 Podstawy Przetwarzania Sygnałów Sprawozdanie 6: Filtracja sygnałów. Filtry FIT o skończonej odpowiedzi impulsowej. 1. Cel ćwiczenia. 1) Przeprowadzenie filtracji trzech

Bardziej szczegółowo

Sterowanie wielkością zamówienia w Excelu - cz. 3

Sterowanie wielkością zamówienia w Excelu - cz. 3 Sterowanie wielkością zamówienia w Excelu - cz. 3 21.06.2005 r. 4. Planowanie eksperymentów symulacyjnych Podczas tego etapu ważne jest określenie typu rozkładu badanej charakterystyki. Dzięki tej informacji

Bardziej szczegółowo

Macierze. Rozdział Działania na macierzach

Macierze. Rozdział Działania na macierzach Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 7

INSTRUKCJA DO ĆWICZENIA NR 7 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 7 PRZEDMIOT TEMAT OPRACOWAŁ LABORATORIUM MODELOWANIA Przykładowe analizy danych: przebiegi czasowe, portrety

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI)

Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe

Bardziej szczegółowo

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1C400027 Temat ćwiczenia:

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI

WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskiego 8, 04-703 Warszawa tel. (0)

Bardziej szczegółowo

Hierarchiczna analiza skupień

Hierarchiczna analiza skupień Hierarchiczna analiza skupień Cel analizy Analiza skupień ma na celu wykrycie w zbiorze obserwacji klastrów, czyli rozłącznych podzbiorów obserwacji, wewnątrz których obserwacje są sobie w jakimś określonym

Bardziej szczegółowo

2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona

2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona Sprawdzanie założeń przyjętych o modelu (etap IIIC przyjętego schematu modelowania regresyjnego) 1. Szum 2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona

Bardziej szczegółowo

Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy

Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy Grupa: wtorek 18:3 Tomasz Niedziela I. CZĘŚĆ ĆWICZENIA 1. Cel i przebieg ćwiczenia. Celem ćwiczenia

Bardziej szczegółowo

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 2 Badanie funkcji korelacji w przebiegach elektrycznych.

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 2 Badanie funkcji korelacji w przebiegach elektrycznych. Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie Badanie unkcji korelacji w przebiegach elektrycznych. Cel ćwiczenia: Celem ćwiczenia jest zbadanie unkcji korelacji w okresowych sygnałach

Bardziej szczegółowo

Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów

Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa Diagnostyka i niezawodność robotów Laboratorium nr 6 Model matematyczny elementu naprawialnego Prowadzący: mgr inż. Marcel Luzar Cele ćwiczenia:

Bardziej szczegółowo

CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera)

CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera) I. Wprowadzenie do ćwiczenia CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera) Ogólnie termin przetwarzanie sygnałów odnosi się do nauki analizowania zmiennych w czasie procesów fizycznych.

Bardziej szczegółowo

Metody Prognozowania

Metody Prognozowania Wprowadzenie Ewa Bielińska 3 października 2007 Plan 1 Wprowadzenie Czym jest prognozowanie Historia 2 Ciągi czasowe Postępowanie prognostyczne i prognozowanie Predykcja długo- i krótko-terminowa Rodzaje

Bardziej szczegółowo

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 9. Dobór nastaw

Bardziej szczegółowo

Kompresja danych DKDA (7)

Kompresja danych DKDA (7) Kompresja danych DKDA (7) Marcin Gogolewski marcing@wmi.amu.edu.pl Uniwersytet im. Adama Mickiewicza w Poznaniu Poznań, 22 listopada 2016 1 Kwantyzacja skalarna Wprowadzenie Analiza jakości Typy kwantyzatorów

Bardziej szczegółowo

WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH

WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH Dobrze przygotowane sprawozdanie powinno zawierać następujące elementy: 1. Krótki wstęp - maksymalnie pół strony. W krótki i zwięzły

Bardziej szczegółowo

ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH

ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH Generowanie podstawowych przebiegów okresowych sawtooth() przebieg trójkątny (wierzhołki +/-1, okres 2 ) square() przebieg kwadratowy (okres 2 ) gauspuls()przebieg sinusoidalny

Bardziej szczegółowo

HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N =

HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N = HISTOGRAM W pewnych przypadkach interesuje nas nie tylko określenie prawdziwej wartości mierzonej wielkości, ale także zbadanie całego rozkład prawdopodobieństwa wyników pomiarów. W takim przypadku wyniki

Bardziej szczegółowo

Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania

Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania Prognozowanie i Symulacje. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Szeregi czasowe 1 Szeregi czasowe 2 3 Szeregi czasowe Definicja 1 Szereg czasowy jest to proces stochastyczny z czasem dyskretnym

Bardziej szczegółowo

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

Testowanie hipotez statystycznych. Wnioskowanie statystyczne Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy

Bardziej szczegółowo

Laboratorium 5 Przybliżone metody rozwiązywania równań nieliniowych

Laboratorium 5 Przybliżone metody rozwiązywania równań nieliniowych Uniwersytet Zielonogórski Wydział Informatyki, Elektrotechniki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych Elektrotechnika niestacjonarne-zaoczne pierwszego stopnia z tyt. inżyniera

Bardziej szczegółowo

Estymacja częstotliwości podstawowej sieci energetycznej na podstawie scałkowanego sygnału napięcia

Estymacja częstotliwości podstawowej sieci energetycznej na podstawie scałkowanego sygnału napięcia SIWOŃ Cezary 1 Estymacja częstotliwości podstawowej sieci energetycznej na podstawie scałkowanego sygnału napięcia WSTĘP Utrzymanie stałej częstotliwości napięcia w sieci energetycznej jest jednym z najważniejszych

Bardziej szczegółowo

Analiza właściwości filtrów dolnoprzepustowych

Analiza właściwości filtrów dolnoprzepustowych Ćwiczenie Analiza właściwości filtrów dolnoprzepustowych Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra dolnoprzepustowego (DP) rzędu i jego parametrami.. Analiza widma sygnału prostokątnego.

Bardziej szczegółowo

4. Średnia i autoregresja zmiennej prognozowanej

4. Średnia i autoregresja zmiennej prognozowanej 4. Średnia i autoregresja zmiennej prognozowanej 1. Średnia w próbie uczącej Własności: y = y = 1 N y = y t = 1, 2, T s = s = 1 N 1 y y R = 0 v = s 1 +, 2. Przykład. Miesięczna sprzedaż żelazek (szt.)

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium JAVA Zadanie nr 2 Rozpoznawanie liter autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z problemem klasyfikacji

Bardziej szczegółowo

Interpolacja, aproksymacja całkowanie. Interpolacja Krzywa przechodzi przez punkty kontrolne

Interpolacja, aproksymacja całkowanie. Interpolacja Krzywa przechodzi przez punkty kontrolne Interpolacja, aproksymacja całkowanie Interpolacja Krzywa przechodzi przez punkty kontrolne Aproksymacja Punkty kontrolne jedynie sterują kształtem krzywej INTERPOLACJA Zagadnienie interpolacji można sformułować

Bardziej szczegółowo

Filtry aktywne filtr środkowoprzepustowy

Filtry aktywne filtr środkowoprzepustowy Filtry aktywne iltr środkowoprzepustowy. Cel ćwiczenia. Celem ćwiczenia jest praktyczne poznanie właściwości iltrów aktywnych, metod ich projektowania oraz pomiaru podstawowych parametrów iltru.. Budowa

Bardziej szczegółowo

PRZETWARZANIE SYGNAŁÓW LABORATORIUM

PRZETWARZANIE SYGNAŁÓW LABORATORIUM 2018 AK 1 / 5 PRZETWARZANIE SYGNAŁÓW LABORATORIUM Ćw. 0 Wykonujący: Grupa dziekańska: MATLAB jako narzędzie w przetwarzaniu sygnałów Grupa laboratoryjna: (IMIĘ NAZWISKO, nr albumu) Punkty / Ocena Numer

Bardziej szczegółowo

Implementacja algorytmów filtracji adaptacyjnej o strukturze transwersalnej na platformie CUDA.

Implementacja algorytmów filtracji adaptacyjnej o strukturze transwersalnej na platformie CUDA. Politechnika Gdańska Wydział Elektroniki, Telekomunikacji i Informatyki Automatyka i Robotyka Praca magisterska Implementacja algorytmów filtracji adaptacyjnej o strukturze transwersalnej na platformie

Bardziej szczegółowo

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia I stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Pojęcie

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

Za pierwszy niebanalny algorytm uważa się algorytm Euklidesa wyszukiwanie NWD dwóch liczb (400 a 300 rok przed narodzeniem Chrystusa).

Za pierwszy niebanalny algorytm uważa się algorytm Euklidesa wyszukiwanie NWD dwóch liczb (400 a 300 rok przed narodzeniem Chrystusa). Algorytmy definicja, cechy, złożoność. Algorytmy napotykamy wszędzie, gdziekolwiek się zwrócimy. Rządzą one wieloma codziennymi czynnościami, jak np. wymiana przedziurawionej dętki, montowanie szafy z

Bardziej szczegółowo

Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( )

Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( ) Statystyka Rozkład prawdopodobieństwa Testowanie hipotez Wykład III (04.01.2016) Rozkład t-studenta Rozkład T jest rozkładem pomocniczym we wnioskowaniu statystycznym; stosuje się go wyznaczenia przedziału

Bardziej szczegółowo

IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ

IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ Celem ćwiczenia jest zapoznanie się ze sposobem działania sieci neuronowych typu MLP (multi-layer perceptron) uczonych nadzorowaną (z nauczycielem,

Bardziej szczegółowo

5 Błąd średniokwadratowy i obciążenie

5 Błąd średniokwadratowy i obciążenie 5 Błąd średniokwadratowy i obciążenie Przeprowadziliśmy 200 powtórzeń przebiegu próbnika dla tego samego zestawu parametrów modelowych co w Rozdziale 1, to znaczy µ = 0, s = 10, v = 10, n i = 10 (i = 1,...,

Bardziej szczegółowo

Ćwiczenie nr 2: ZaleŜność okresu drgań wahadła od amplitudy

Ćwiczenie nr 2: ZaleŜność okresu drgań wahadła od amplitudy Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 2: ZaleŜność okresu

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Teoria i przetwarzanie sygnałów Rok akademicki: 2013/2014 Kod: EEL-1-524-s Punkty ECTS: 6 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Elektrotechnika

Bardziej szczegółowo

Estymacja parametrów, przedziały ufności etc

Estymacja parametrów, przedziały ufności etc Estymacja parametrów, przedziały ufności etc Liniowa MNK przypomnienie Wariancja parametrów Postulat Bayesa: rozkłady p-stwa dla parametrów Przypadek nieliniowy Przedziały ufności Rozkłady chi-kwadrat,

Bardziej szczegółowo

REGRESJA LINIOWA Z UOGÓLNIONĄ MACIERZĄ KOWARIANCJI SKŁADNIKA LOSOWEGO. Aleksander Nosarzewski Ekonometria bayesowska, prowadzący: dr Andrzej Torój

REGRESJA LINIOWA Z UOGÓLNIONĄ MACIERZĄ KOWARIANCJI SKŁADNIKA LOSOWEGO. Aleksander Nosarzewski Ekonometria bayesowska, prowadzący: dr Andrzej Torój 1 REGRESJA LINIOWA Z UOGÓLNIONĄ MACIERZĄ KOWARIANCJI SKŁADNIKA LOSOWEGO Aleksander Nosarzewski Ekonometria bayesowska, prowadzący: dr Andrzej Torój 2 DOTYCHCZASOWE MODELE Regresja liniowa o postaci: y

Bardziej szczegółowo

Symulacja sygnału czujnika z wyjściem częstotliwościowym w stanach dynamicznych

Symulacja sygnału czujnika z wyjściem częstotliwościowym w stanach dynamicznych XXXVIII MIĘDZYUCZELNIANIA KONFERENCJA METROLOGÓW MKM 06 Warszawa Białobrzegi, 4-6 września 2006 r. Symulacja sygnału czujnika z wyjściem częstotliwościowym w stanach dynamicznych Eligiusz PAWŁOWSKI Politechnika

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

Metody numeryczne I Równania nieliniowe

Metody numeryczne I Równania nieliniowe Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 7 i 8 1 / 9 EFEKTYWNOŚĆ ESTYMATORÓW, próba

Bardziej szczegółowo

Dopasowywanie modelu do danych

Dopasowywanie modelu do danych Tematyka wykładu dopasowanie modelu trendu do danych; wybrane rodzaje modeli trendu i ich właściwości; dopasowanie modeli do danych za pomocą narzędzi wykresów liniowych (wykresów rozrzutu) programu STATISTICA;

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność - definicja 1 O układzie możemy mówić, że jest stabilny gdy wytrącony ze stanu równowagi

Bardziej szczegółowo

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0, Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.

Bardziej szczegółowo

CYFROWE PRZETWARZANIE SYGNAŁÓW

CYFROWE PRZETWARZANIE SYGNAŁÓW POLITECHNIKA RZESZOWSKA im. I. Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI Katedra Metrologii i Systemów Diagnostycznych CYFROWE PRZETWARZANIE SYGNAŁÓW Sygnały stochastyczne, parametry w dziedzinie

Bardziej szczegółowo

Tematy magisterskie: Lp. Sugerowany stopień, kierunek studiów oraz specjalność Elektrotechnika Magisterska Dr hab. inż.

Tematy magisterskie: Lp. Sugerowany stopień, kierunek studiów oraz specjalność Elektrotechnika Magisterska Dr hab. inż. Katedra Automatyki i Elektroniki Wydział Elektryczny Zgodnie z procedurą dyplomowania na Wydziale, poniżej przedstawiono tematy prac dyplomowych dla studentów Elektrotechnika oraz Telekomunikacja kończących

Bardziej szczegółowo

KATEDRA SYSTEMÓW MULTIMEDIALNYCH. Inteligentne systemy decyzyjne. Ćwiczenie nr 12:

KATEDRA SYSTEMÓW MULTIMEDIALNYCH. Inteligentne systemy decyzyjne. Ćwiczenie nr 12: KATEDRA SYSTEMÓW MULTIMEDIALNYCH Inteligentne systemy decyzyjne Ćwiczenie nr 12: Rozpoznawanie mowy z wykorzystaniem ukrytych modeli Markowa i pakietu HTK Opracowanie: mgr inż. Kuba Łopatka 1. Wprowadzenie

Bardziej szczegółowo

Rozdział 8. Regresja. Definiowanie modelu

Rozdział 8. Regresja. Definiowanie modelu Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność

Bardziej szczegółowo

b n y k n T s Filtr cyfrowy opisuje się również za pomocą splotu dyskretnego przedstawionego poniżej:

b n y k n T s Filtr cyfrowy opisuje się również za pomocą splotu dyskretnego przedstawionego poniżej: 1. FILTRY CYFROWE 1.1 DEFIICJA FILTRU W sytuacji, kiedy chcemy przekształcić dany sygnał, w inny sygnał niezawierający pewnych składowych np.: szumów mówi się wtedy o filtracji sygnału. Ogólnie Filtracją

Bardziej szczegółowo

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F

Bardziej szczegółowo

KARTA MODUŁU / KARTA PRZEDMIOTU

KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Cyfrowe przetwarzanie sygnałów pomiarowych_e2s

Bardziej szczegółowo