Promotor: dr Marek Pawełczyk. Marcin Picz

Wielkość: px
Rozpocząć pokaz od strony:

Download "Promotor: dr Marek Pawełczyk. Marcin Picz"

Transkrypt

1 Promotor: dr Marek Pawełczyk Marcin Picz

2

3 Stosowane metody: - Grupa metod odejmowania widm (subtractive( subtractive-typetype algorithms); - Filtracja Wienera; - Neural networks & Fuzzy logic (sieci neuronowe & logika rozmyta); - Filtracja Kalmana;

4 Zastosowania: - poprawa jakości mowy oraz jej zrozumiałości w multimediach,, komunikacji bezprzewodowej; - komunikacja pomiędzy pilotami samolotów a wieżami kontroli ruchu lotniczego; - aparaty słuchowe; - rozpoznawanie mowy;

5 Metody SS (ogólny zarys): (analiza-> > okienkowanie + fft)

6 - wykorzystanie okna Hamminga by uniknąć zniekształceń poprzez stosowanie FFT

7 2 2 Y ( k ) = S ( k ) + D ( k ) 2 mamy: y(n)= s(n) ) + d(n) z tego: Y(k) ^2 S(k) ^2 + D(k) ^2 gdzie: Y,S,D to DFT y,s,d czyli: S(k) ^2 Y(k) ^2 - D(k) ^2 w związku z możliwością S(k) ^2 < 0 przyjmuje się: S(k) ^2 = S(k) ^2 jeżeli S(k) ^2 > 0 lub 0 jeżeli S(k) ^2 < 0 Stąd szukane: s(n) ) = IDFT( S(k) )

8

9 Można to również zapisać jako: S(k)=H(k)*Y(k) gdzie H(k) ) jest funkcją wzmocnienia zapisaną: i dalej: H ( k) = 1 D( k) Y( k) 2 2 H( k) = Y( k) 2 D( k) Y( k) 2 2 A z tego podobnie jak wcześniej: s(n) ) = IDFT( S(k) ) Oczywiście nie znamy widma szumu D(k).

10 Sposoby wyznaczania widma szumu: - Metody opierające się na estymacji widma szumu w chwilach nieaktywności sygnału pożądanego czyli mowy( wykorzystuje się poziomy energii ramek, statystyczne właściwości oraz właściwości widma). Metody te wymagają zaprojektowania detektorów aktywności mowy(vad). Najczęściej wektor wybranych parametrów zostaje obliczony dla d ramki sygnału wejściowego. Następnie porównuje się różnice w wartościach ch tych parametrów- jeżeli porównujemy wartości parametrów ramki sygnału wejściowego oraz wstępnie ustalonej wartości progowej to jest to tak zwany algorytm całkowy, który pozwala wykryć całe przedziały aktywności i mowy; jeżeli natomiast porównujemy różnice wartości parametrów ramek sąsiednich to wtedy jest mamy styczność z tak zwanym algorytmem różnicowym, który pozwala wykryć jedynie granice aktywności mowy.

11 Na podstawie tak wyznaczonych części (ramek) sygnału wejściowego,, w których występuje jedynie szum dokonujemy estymacji widma szumu. - Metody nie wymagające detekcji występowania sygnału użytecznego w sygnale wejściowym. Między innymi wykorzystują fakt, iż zagłębienia (doliny) widma częstotliwościowego leżą na poziomie szumu i mogą być wykorzystane do estymacji widma niepożądanego zakłócenia. Ponadto niektóre metody wyznaczają estymatę widma szumu na podstawie stwierdzenia, że nawet podczas trwania sekcji mowy w sygnale wejściowym nie wszystkie pasma p częstotliwości są zajęte przez mowę i przez większość czasu energia na tych częstotliwościach jest na poziomie szumu.

12 - muzyczny hałas Jest oczywiste, że efektywność procesu usuwania szumu jest zależne od dokładności otrzymanej estymaty tego szumu. Jednakże, ponieważ widmo szumu nie może być uzyskane bezpośrednio jesteśmy zmuszeni do użycia wyznaczonej estymaty.. W związku z tym występują różnice pomiędzy obecnym w sygnale szumem a widmem otrzymanym. Odjęcie tegoż widma prowadzi do otrzymania w sygnale oczyszczonym zakłóceń o nienaturalnym brzmieniu. Zakłócenia te zwane muzycznym hałasem (szumem), niejednokrotnie są bardziej dokuczliwe dla słuchacza aniżeli szum jaki był zawarty w sygnale wejściowym.

13 Spektogram przedstawiający wynik działania metody SS: czysty (góra), z dodanym szumem (po środku), oczyszczony (u dołu)

14 - Ponadto kolejne zakłócenia mają źródło w: S(k) ^2 Y(k) ^2 - D(k) ^2 w związku z możliwością S(k) ^2 < 0 przyjmuje się: S(k) ^2 = S(k) ^2 jeżeli S(k) ^2 > 0 lub 0 jeżeli S(k) ^2 < 0 lub abs( S(k) ^2) - Kolenym źródłem zakłóceń w otrzymanym sygnale jest faza.

15 Filtracja Wienera: Iteracyjna filtracja Wienera konstruuje optymalny (optymalny( w sensie minimalizacji błędu średniokwadratowego pomiędzy estymatą sygnału użytecznego a rzeczywistym sygnałem użytecznym zawartym w zaszumionym sygnale wejściowym ) liniowy filtr używając estymat zarówno widma mowy jak i widma szumu. Widmo szumu jest estymowane w czasie nieaktywności mowy (podobnie jak w SS), natomiast widmo mowy jest estymowane iteracyjnie w każdej ramce, zaczynając od zaszumionego sygnału wejściowego oraz używając wyjścia z filtru Wienera by otrzymać ulepszoną estymate.

16 Algorytm oraz schemat blokowy iteracyjnej metody Wienera:

17 gdzie:

18 Odmiany metody SS algorytm zaproponowany przez Ephraim & Malah: Podobnie jak filtracja Wienera ten algorytm minimalizuje błąd średniokwadratowy. Metoda to wyznacza funkcję wzmocnienia bazującej na znanym a priori oraz a posteriori współczynniku stosunku mocy sygnału użytecznego w zadanym paśmie częstotliwości do mocy szumów w tym paśmie (czyli SNR). Poniższe równania opisują tą metodę:

19 Gdzie jest znanym a priori SNR-em który jest wyznaczany z: gdzie z kolei i jest numerem ramki natomiast P(x)=x jeżeli x>=0 lub P(x)=0 jeżeli x<0. to znany a posteriori SNR. Funkcja F ma następującą postać: gdzie I0 oraz I1 to zerowego i pierwszego rzędu funkcje Bessela.

20 Implementacja metody SS: - Podział danych na ramki, które następnie są kolejno analizowane; potraktowanie danych oknem Hamminga.. Okna zachodzą na siebie w 50%, długość okna jeżeli chodzi o czas to 0.03s; - FFT danych (długość FFT zależna od rozmiaru okna-długości kolumny); - Element decyzyjny, który dzieli ramki danych na zawierające interesujące nas dane oraz na ramki zawierające szum. Elementem decyzyjnym jest VAD (voice( activity detector), który bazuje na modelu statystycznym; - Jeżeli ramka zakwalifikowana do szumu to następuje uaktualnienie estymaty szumu oraz odjecie szumu od ramki danych; - Jeżeli ramka zakwalifikowana do ramek zawierających mowę to następuje odjęcie estymaty szumu. Jakość działania tej metody zależy oczywiście od jakości VADA oraz estymaty szumu.

21 Wyniki działania metody: (próbka nr1 o mniejszym poziomie szumu)

22

23 Wyniki działania metody: (próbka nr2 o większym poziomie szumu):

24

25 Opis metody: Podobnie jak poprzednio sygnał wejściowy składa się z: Szukany sygnał użyteczny można otrzymać z: gdzie: b,e to początek i koniec rozpatrywanego przedziału częstotliwości oraz

26 Alfa liczy się z: oraz SNR:

27 Delta natomiast jest współczynnikiem którego wartość jest zależna a od częstotliwości. W moim przypadku (poniżej przedstawione są wyniki i działania metody dla takich wartości delty): - równa 1 dla częstotliwości poniżej 3kHz; - równa 2.5 dla częstotliwości poniżej fs/2-2khz; - równa 1.5 dla częstotliwości pozostałych. Długość czasowa okna została ustalona jak poprzednio na 0.03s. Długość FFT zależna jest od długości próbki i częstotliwości próbkowania (równa długości kolumny macierzy do jakiej są upakowane dane wejściowe). Dane są potraktowane oknem Hamminga,, które zachodzą na siebie o 50% długości okna.

28 Wyniki działania metody: (próbka nr1 o mniejszym poziomie szumu):

29 Spektogramy:

30 Wyniki działania metody: (próbka nr2 o większym poziomie szumu):

31 Spektogram:

32 Zastosowany VAD (voice( activity detector). VAD ten oparty jest na modelu statystycznym. Tworzy on wartość progową, p za pomocą której określana jest decyzja, czy mowa jest obecna w aktualnie przerabianej ramce danych czy też nie. Opis matematyczny VADa: przy czym eta to wartość progowa wyznaczona na podstawie pierwszego ego okna danych (szumu).

33 Wynik działania zastosowanego VADa (próbka nr1 o mniejszym poziomie szumu):

34 Wynik działania zastosowanego VADa (próbka nr2 o większym poziomie szumu):

35 Zmodyfikowana SS: Metoda ta polega na wyznaczeniu estymaty szumu, lecz bez członu decyzyjnego jakim jest detektor mowy/szumu. Ogólny zarys metody: Wyniki usuwania szumu uzyskane przy pomoce tej metody są jednak dużo gorsze aniżeli oczekiwane.

36 Usprawnienia działania VAD a: - Zastosowanie kilku stopni decyzyjnych zamiast jednego; (slajd 32) - Kolejne stopnie decyzyjne detektora usprawniają decyzje główną podjętą w pierwszym stopniu. Ogólna budowa: - Pierwszy stopień decyzyjny - podejmuje główna decyzję; - Drugi stopień decyzyjny - likwiduje sekwencje niemożliwe. Przykładowo: zastępuję przez gdzie: 1 - szum; 0 - mowa - Trzeci stopień decyzyjny - zapobiega ucinaniu wyrazów (skracaniu).

37 Porównianie wyników po usprawnieniach VAD a: : (próbka o niskim poziomie szumu) Decyzje przed usprawnieniami:

38 Porównianie wyników po usprawnieniach VAD a: : (próbka o niskim poziomie szumu) Decyzje po usprawnieniach:

39 Porównianie wyników po usprawnieniach VAD a: : (próbka o wysokim poziomie szumu) Decyzje przed i po usprawnieniach:

40 Testowane algorytmy: Wyniki działania metody SS zmodyfikowanej: (próbka o niższym m poziomie szumu)

41 Testowane algorytmy: Wyniki działania metody SS zmodyfikowanej: (próbka o niższym m poziomie szumu)

42 Testowane algorytmy: : zmodyfikowanej SS oraz metody Epriahm & Malah (slajd 18). - Dane wejściowe podawane do obróbki przez metodę zmodyfikowaną; - Wyjściowe dane z metody zmodyfikowanej podawane jako wejście dla metody Epriahm & Malah. : zmodyfikowanej SS oraz metody Multiband SS (slajd 24 ). - Dane wejściowe podawane do obróbki przez metodę zmodyfikowaną; - Wyjściowe dane z metody zmodyfikowanej podawane jako wejście dla metody Multiband SS. Obie metody połączone pracują z usprawnionym VAD em.

43 Testowane algorytmy: wyniki metod połączonych:

44 Dalsze plany: Na podstawie stworzonej bazy próbek zanieczyszczonych w różny sposób (za pomocą białego szumu, różowego szumu, szumu pochodzącego z wnętrza jadącego samochodu, szumu z fabryki, szumu samolotu f16), oraz na podstawie przetestowanych algorytmów stworzenie programu edukacyjnego w celu przedstawienia jakości działania różnych metod.

45 To wszystko. Dziękuję za uwagę.

Podstawy Przetwarzania Sygnałów

Podstawy Przetwarzania Sygnałów Adam Szulc 188250 grupa: pon TN 17:05 Podstawy Przetwarzania Sygnałów Sprawozdanie 6: Filtracja sygnałów. Filtry FIT o skończonej odpowiedzi impulsowej. 1. Cel ćwiczenia. 1) Przeprowadzenie filtracji trzech

Bardziej szczegółowo

Automatyczne rozpoznawanie mowy - wybrane zagadnienia / Ryszard Makowski. Wrocław, Spis treści

Automatyczne rozpoznawanie mowy - wybrane zagadnienia / Ryszard Makowski. Wrocław, Spis treści Automatyczne rozpoznawanie mowy - wybrane zagadnienia / Ryszard Makowski. Wrocław, 2011 Spis treści Przedmowa 11 Rozdział 1. WPROWADZENIE 13 1.1. Czym jest automatyczne rozpoznawanie mowy 13 1.2. Poziomy

Bardziej szczegółowo

x(n) x(n-1) x(n-2) D x(n-n+1) h N-1

x(n) x(n-1) x(n-2) D x(n-n+1) h N-1 Laboratorium Układy dyskretne LTI projektowanie filtrów typu FIR Z1. apisać funkcję y = filtruj(x, h), która wyznacza sygnał y będący wynikiem filtracji sygnału x przez filtr FIR o odpowiedzi impulsowej

Bardziej szczegółowo

Zjawisko aliasingu. Filtr antyaliasingowy. Przecieki widma - okna czasowe.

Zjawisko aliasingu. Filtr antyaliasingowy. Przecieki widma - okna czasowe. Katedra Mechaniki i Podstaw Konstrukcji Maszyn POLITECHNIKA OPOLSKA Komputerowe wspomaganie eksperymentu Zjawisko aliasingu.. Przecieki widma - okna czasowe. dr inż. Roland PAWLICZEK Zjawisko aliasingu

Bardziej szczegółowo

Kompresja dźwięku w standardzie MPEG-1

Kompresja dźwięku w standardzie MPEG-1 mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 7, strona 1. Kompresja dźwięku w standardzie MPEG-1 Ogólne założenia kompresji stratnej Zjawisko maskowania psychoakustycznego Schemat blokowy

Bardziej szczegółowo

Algorytmy detekcji częstotliwości podstawowej

Algorytmy detekcji częstotliwości podstawowej Algorytmy detekcji częstotliwości podstawowej Plan Definicja częstotliwości podstawowej Wybór ramki sygnału do analizy Błędy oktawowe i dokładnej estymacji Metody detekcji częstotliwości podstawowej czasowe

Bardziej szczegółowo

CYFROWE PRZETWARZANIE SYGNAŁÓW

CYFROWE PRZETWARZANIE SYGNAŁÓW POLITECHNIKA RZESZOWSKA im. I. Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI Katedra Metrologii i Systemów Diagnostycznych CYFROWE PRZETWARZANIE SYGNAŁÓW Analiza korelacyjna sygnałów dr hab. inż.

Bardziej szczegółowo

Analityczne metody detekcji uszkodzeń

Analityczne metody detekcji uszkodzeń Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 5 Model procesu Rozważmy czasowo-dyskretny model liniowy gdzie: k dyskretny czas, x(k) R n wektor stanu, x(k + 1) = Ax(k)

Bardziej szczegółowo

Zaawansowane algorytmy DSP

Zaawansowane algorytmy DSP Zastosowania Procesorów Sygnałowych dr inż. Grzegorz Szwoch greg@multimed.org p. 732 - Katedra Systemów Multimedialnych Zaawansowane algorytmy DSP Wstęp Cztery algorytmy wybrane spośród bardziej zaawansowanych

Bardziej szczegółowo

Filtr Kalmana. Struktury i Algorytmy Sterowania Wykład 1-2. prof. dr hab. inż. Mieczysław A. Brdyś mgr inż. Tomasz Zubowicz

Filtr Kalmana. Struktury i Algorytmy Sterowania Wykład 1-2. prof. dr hab. inż. Mieczysław A. Brdyś mgr inż. Tomasz Zubowicz Filtr Kalmana Struktury i Algorytmy Sterowania Wykład 1-2 prof. dr hab. inż. Mieczysław A. Brdyś mgr inż. Tomasz Zubowicz Politechnika Gdańska, Wydział Elektortechniki i Automatyki 2013-10-09, Gdańsk Założenia

Bardziej szczegółowo

PL B1. Sposób i układ pomiaru całkowitego współczynnika odkształcenia THD sygnałów elektrycznych w systemach zasilających

PL B1. Sposób i układ pomiaru całkowitego współczynnika odkształcenia THD sygnałów elektrycznych w systemach zasilających RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 210969 (13) B1 (21) Numer zgłoszenia: 383047 (51) Int.Cl. G01R 23/16 (2006.01) G01R 23/20 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)

Bardziej szczegółowo

DYSKRETNA TRANSFORMACJA FOURIERA

DYSKRETNA TRANSFORMACJA FOURIERA Laboratorium Teorii Sygnałów - DFT 1 DYSKRETNA TRANSFORMACJA FOURIERA Cel ćwiczenia Celem ćwiczenia jest przeprowadzenie analizy widmowej sygnałów okresowych za pomocą szybkiego przekształcenie Fouriera

Bardziej szczegółowo

Laboratorium Przetwarzania Sygnałów Biomedycznych

Laboratorium Przetwarzania Sygnałów Biomedycznych Laboratorium Przetwarzania Sygnałów Biomedycznych Ćwiczenie 3 Analiza sygnału o nieznanej strukturze Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - mgr inż. Tomasz Kubik Politechnika Warszawska,

Bardziej szczegółowo

ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM. Ćwiczenie 2. Badanie algorytmów adaptacyjnych LMS i RLS

ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM. Ćwiczenie 2. Badanie algorytmów adaptacyjnych LMS i RLS ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM Ćwiczenie 2 Badanie algorytmów adaptacyjnych LMS i RLS 1. CEL ĆWICZENIA Celem ćwiczenia jest samodzielna implementacja przez studentów dwóch podstawowych

Bardziej szczegółowo

DYSKRETNE PRZEKSZTAŁCENIE FOURIERA C.D.

DYSKRETNE PRZEKSZTAŁCENIE FOURIERA C.D. CPS 6 DYSKRETE PRZEKSZTAŁCEIE FOURIERA C.D. Twierdzenie o przesunięciu Istnieje ważna właściwość DFT, znana jako twierdzenie o przesunięciu. Mówi ono, że: Przesunięcie w czasie okresowego ciągu wejściowego

Bardziej szczegółowo

Adaptacyjne Przetwarzanie Sygnałów. Filtracja adaptacyjna w dziedzinie częstotliwości

Adaptacyjne Przetwarzanie Sygnałów. Filtracja adaptacyjna w dziedzinie częstotliwości W Filtracja adaptacyjna w dziedzinie częstotliwości Blokowy algorytm LMS (BLMS) N f n+n = f n + α x n+i e(n + i), i= N L Slide e(n + i) =d(n + i) f T n x n+i (i =,,N ) Wprowadźmy nowy indeks: n = kn (

Bardziej szczegółowo

Uczenie sieci typu MLP

Uczenie sieci typu MLP Uczenie sieci typu MLP Przypomnienie budowa sieci typu MLP Przypomnienie budowy neuronu Neuron ze skokową funkcją aktywacji jest zły!!! Powszechnie stosuje -> modele z sigmoidalną funkcją aktywacji - współczynnik

Bardziej szczegółowo

1 Dana jest funkcja logiczna f(x 3, x 2, x 1, x 0 )= (1, 3, 5, 7, 12, 13, 15 (4, 6, 9))*.

1 Dana jest funkcja logiczna f(x 3, x 2, x 1, x 0 )= (1, 3, 5, 7, 12, 13, 15 (4, 6, 9))*. EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 0/0 Odpowiedzi do zadań dla grupy elektronicznej na zawody II stopnia (okręgowe) Dana jest funkcja logiczna f(x 3, x,

Bardziej szczegółowo

Narzędzia matematyczne zastosowane w systemie biomonitoringu wody

Narzędzia matematyczne zastosowane w systemie biomonitoringu wody Narzędzia matematyczne zastosowane w systemie biomonitoringu wody Piotr Przymus Krzysztof Rykaczewski Wydział Matematyki i Informatyki Uniwersytet Mikołaja Kopernika Toruń 1 of 24 18 marca 2009 Cel referatu

Bardziej szczegółowo

Przetwarzanie sygnałów

Przetwarzanie sygnałów Przetwarzanie sygnałów Ćwiczenie 3 Filtry o skończonej odpowiedzi impulsowej (SOI) Spis treści 1 Filtracja cyfrowa podstawowe wiadomości 1 1.1 Właściwości filtru w dziedzinie czasu............... 1 1.2

Bardziej szczegółowo

PL B1. Sposób i układ do modyfikacji widma sygnału ultraszerokopasmowego radia impulsowego. POLITECHNIKA GDAŃSKA, Gdańsk, PL

PL B1. Sposób i układ do modyfikacji widma sygnału ultraszerokopasmowego radia impulsowego. POLITECHNIKA GDAŃSKA, Gdańsk, PL PL 219313 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 219313 (13) B1 (21) Numer zgłoszenia: 391153 (51) Int.Cl. H04B 7/00 (2006.01) H04B 7/005 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej

Bardziej szczegółowo

Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI)

Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe

Bardziej szczegółowo

ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM. Ćwiczenie 3. Adaptacyjne usuwanie szumów i interferencji

ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM. Ćwiczenie 3. Adaptacyjne usuwanie szumów i interferencji ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM Ćwiczenie 3 Adaptacyjne usuwanie szumów i interferencji 1. CEL ĆWICZENIA Usuwanie szumów i interferencji to jeden z pierwszych obszarów, można rzec klasyczny,

Bardziej szczegółowo

ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM. Ćwiczenie 2. Badanie algorytmów adaptacyjnych LMS i RLS

ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM. Ćwiczenie 2. Badanie algorytmów adaptacyjnych LMS i RLS ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM Ćwiczenie 2 Badanie algorytmów adaptacyjnych LMS i RLS 1. CEL ĆWICZENIA Celem ćwiczenia jest samodzielna implementacja przez studentów dwóch podstawowych

Bardziej szczegółowo

ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH

ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH Generowanie podstawowych przebiegów okresowych sawtooth() przebieg trójkątny (wierzhołki +/-1, okres 2 ) square() przebieg kwadratowy (okres 2 ) gauspuls()przebieg sinusoidalny

Bardziej szczegółowo

Symulacja sygnału czujnika z wyjściem częstotliwościowym w stanach dynamicznych

Symulacja sygnału czujnika z wyjściem częstotliwościowym w stanach dynamicznych XXXVIII MIĘDZYUCZELNIANIA KONFERENCJA METROLOGÓW MKM 06 Warszawa Białobrzegi, 4-6 września 2006 r. Symulacja sygnału czujnika z wyjściem częstotliwościowym w stanach dynamicznych Eligiusz PAWŁOWSKI Politechnika

Bardziej szczegółowo

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe

Bardziej szczegółowo

ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM. Ćwiczenie 3. Adaptacyjne usuwanie szumów i interferencji

ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM. Ćwiczenie 3. Adaptacyjne usuwanie szumów i interferencji ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM Ćwiczenie 3 Adaptacyjne usuwanie szumów i interferencji 1. CEL ĆWICZENIA Usuwanie szumów i interferencji to jeden z pierwszych obszarów, można rzec klasyczny,

Bardziej szczegółowo

Praca dyplomowa magisterska

Praca dyplomowa magisterska Praca dyplomowa magisterska Implementacja algorytmów filtracji adaptacyjnej o strukturze transwersalnej na platformie CUDA Dyplomant: Jakub Kołakowski Opiekun pracy: dr inż. Michał Meller Plan prezentacji

Bardziej szczegółowo

ĆWICZENIE nr 3. Badanie podstawowych parametrów metrologicznych przetworników analogowo-cyfrowych

ĆWICZENIE nr 3. Badanie podstawowych parametrów metrologicznych przetworników analogowo-cyfrowych Politechnika Łódzka Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych WWW.DSOD.PL LABORATORIUM METROLOGII ELEKTRONICZNEJ ĆWICZENIE nr 3 Badanie podstawowych parametrów metrologicznych przetworników

Bardziej szczegółowo

Ćwiczenie 3. Właściwości przekształcenia Fouriera

Ćwiczenie 3. Właściwości przekształcenia Fouriera Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 3. Właściwości przekształcenia Fouriera 1. Podstawowe właściwości przekształcenia

Bardziej szczegółowo

Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy

Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy Grupa: wtorek 18:3 Tomasz Niedziela I. CZĘŚĆ ĆWICZENIA 1. Cel i przebieg ćwiczenia. Celem ćwiczenia

Bardziej szczegółowo

Przekształcenie Fouriera i splot

Przekształcenie Fouriera i splot Zastosowania Procesorów Sygnałowych dr inż. Grzegorz Szwoch greg@multimed.org p. 732 - Katedra Systemów Multimedialnych Przekształcenie Fouriera i splot Wstęp Na tym wykładzie: przekształcenie Fouriera

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

9. Dyskretna transformata Fouriera algorytm FFT

9. Dyskretna transformata Fouriera algorytm FFT Transformata Fouriera ma szerokie zastosowanie w analizie i syntezie układów i systemów elektronicznych, gdyż pozwala na połączenie dwóch sposobów przedstawiania sygnałów reprezentacji w dziedzinie czasu

Bardziej szczegółowo

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe

Bardziej szczegółowo

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11,

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11, 1 Kwantyzacja skalarna Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11, 10.05.005 Kwantyzacja polega na reprezentowaniu dużego zbioru wartości (być może nieskończonego) za pomocą wartości

Bardziej szczegółowo

Programowanie dynamiczne

Programowanie dynamiczne Programowanie dynamiczne Ciąg Fibonacciego fib(0)=1 fib(1)=1 fib(n)=fib(n-1)+fib(n-2), gdzie n 2 Elementy tego ciągu stanowią liczby naturalne tworzące ciąg o takiej własności, że kolejny wyraz (z wyjątkiem

Bardziej szczegółowo

[d(i) y(i)] 2. Do wyprowadzenia algorytmu RLS posłuży kryterium autokorelacyjne: J n = e 2 (i) i=1. λ n i [d(i) y(i)] 2 λ (0, 1]

[d(i) y(i)] 2. Do wyprowadzenia algorytmu RLS posłuży kryterium autokorelacyjne: J n = e 2 (i) i=1. λ n i [d(i) y(i)] 2 λ (0, 1] Algorytm RLS Recursive Least Squares Ogólna postać kryterium LS: J = i e 2 (i) = i [d(i) y(i)] 2 Do wyprowadzenia algorytmu RLS posłuży kryterium autokorelacyjne: J n = e 2 (i) Zmodyfikowane kryterium

Bardziej szczegółowo

Przedmowa Wykaz oznaczeń Wykaz skrótów 1. Sygnały i ich parametry 1 1.1. Pojęcia podstawowe 1 1.2. Klasyfikacja sygnałów 2 1.3.

Przedmowa Wykaz oznaczeń Wykaz skrótów 1. Sygnały i ich parametry 1 1.1. Pojęcia podstawowe 1 1.2. Klasyfikacja sygnałów 2 1.3. Przedmowa Wykaz oznaczeń Wykaz skrótów 1. Sygnały i ich parametry 1 1.1. Pojęcia podstawowe 1 1.2. Klasyfikacja sygnałów 2 1.3. Sygnały deterministyczne 4 1.3.1. Parametry 4 1.3.2. Przykłady 7 1.3.3. Sygnały

Bardziej szczegółowo

Transpozer czasowy mowy

Transpozer czasowy mowy Transpozer czasowy mowy Politechnika Gdańska ul. Narutowicza 11/12 80-233 Gdańsk www.pg.gda.pl 1. Wprowadzenie Transpozer czasowy mowy został opracowany w celu wspierania rozumienia mowy przez osoby z

Bardziej szczegółowo

ROZPOZNAWANIE GRANIC SŁOWA W SYSTEMIE AUTOMATYCZNEGO ROZPOZNAWANIA IZOLOWANYCH SŁÓW

ROZPOZNAWANIE GRANIC SŁOWA W SYSTEMIE AUTOMATYCZNEGO ROZPOZNAWANIA IZOLOWANYCH SŁÓW ROZPOZNAWANIE GRANIC SŁOWA W SYSTEMIE AUTOMATYCZNEGO ROZPOZNAWANIA IZOLOWANYCH SŁÓW Maciej Piasecki, Szymon Zyśko Wydziałowy Zakład Informatyki Politechnika Wrocławska Wybrzeże Stanisława Wyspiańskiego

Bardziej szczegółowo

Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej

Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej. Filtry FIR o skończonej odpowiedzi impulsowej (SOI) Filtracja FIR polega na tym, że sygnał wyjściowy powstaje

Bardziej szczegółowo

Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman

Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman Porównanie Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman Spektroskopia FT-Raman Spektroskopia FT-Raman jest dostępna od 1987 roku. Systemy

Bardziej szczegółowo

Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem:

Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem: PPS 2 kartkówka 1 RÓWNANIE RÓŻNICOWE Jest to dyskretny odpowiednik równania różniczkowego. Równania różnicowe to pewne związki rekurencyjne określające w sposób niebezpośredni wartość danego wyrazu ciągu.

Bardziej szczegółowo

POMIARY WYBRANYCH PARAMETRÓW TORU FONICZNEGO W PROCESORACH AUDIO

POMIARY WYBRANYCH PARAMETRÓW TORU FONICZNEGO W PROCESORACH AUDIO Politechnika Rzeszowska Katedra Metrologii i Systemów Diagnostycznych Laboratorium Elektroniczne przyrządy i techniki pomiarowe POMIARY WYBRANYCH PARAMETRÓW TORU FONICZNEGO W PROCESORACH AUDIO Grupa Nr

Bardziej szczegółowo

Przekształcenia sygnałów losowych w układach

Przekształcenia sygnałów losowych w układach INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Sygnały i kodowanie Przekształcenia sygnałów losowych w układach Warszawa 010r. 1. Cel ćwiczenia: Ocena wpływu charakterystyk

Bardziej szczegółowo

Przetwarzanie sygnałów

Przetwarzanie sygnałów Przetwarzanie sygnałów Ćwiczenie 5 Filtry o nieskończonej odpowiedzi impulsowej (NOI) Spis treści 1 Wprowadzenie 1 1.1 Filtry jednobiegunowe....................... 1 1.2 Filtry wąskopasmowe........................

Bardziej szczegółowo

Najprostsze modele sieci z rekurencją. sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga;

Najprostsze modele sieci z rekurencją. sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga; Sieci Hopfielda Najprostsze modele sieci z rekurencją sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga; Modele bardziej złoŝone: RTRN (Real Time Recurrent Network), przetwarzająca sygnały w czasie

Bardziej szczegółowo

Rozdział 1 PROGRAMOWANIE LINIOWE

Rozdział 1 PROGRAMOWANIE LINIOWE Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE 1.2 Ćwiczenia komputerowe Ćwiczenie 1.1 Wykorzystując

Bardziej szczegółowo

PL 216396 B1. POLITECHNIKA GDAŃSKA, Gdańsk, PL 14.09.2009 BUP 19/09. ANDRZEJ CZYŻEWSKI, Gdynia, PL GRZEGORZ SZWOCH, Gdańsk, PL 31.03.

PL 216396 B1. POLITECHNIKA GDAŃSKA, Gdańsk, PL 14.09.2009 BUP 19/09. ANDRZEJ CZYŻEWSKI, Gdynia, PL GRZEGORZ SZWOCH, Gdańsk, PL 31.03. PL 216396 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 216396 (13) B1 (21) Numer zgłoszenia: 384616 (51) Int.Cl. H04B 3/23 (2006.01) H04M 9/08 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej

Bardziej szczegółowo

PRZETWARZANIE MOWY W CZASIE RZECZYWISTYM

PRZETWARZANIE MOWY W CZASIE RZECZYWISTYM PRZETWARZANIE MOWY W CZASIE RZECZYWISTYM Akustyka mowy opracowanie: M. Kaniewska, A. Kupryjanow, K. Łopatka PLAN WYKŁADU Zasada przetwarzania sygnału w czasie rzeczywistym Algorytmy zmiany czasu trwania

Bardziej szczegółowo

Analiza obrazów - sprawozdanie nr 2

Analiza obrazów - sprawozdanie nr 2 Analiza obrazów - sprawozdanie nr 2 Filtracja obrazów Filtracja obrazu polega na obliczeniu wartości każdego z punktów obrazu na podstawie punktów z jego otoczenia. Każdy sąsiedni piksel ma wagę, która

Bardziej szczegółowo

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny

Bardziej szczegółowo

Systemy. Krzysztof Patan

Systemy. Krzysztof Patan Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej

Bardziej szczegółowo

Pomiary w technice studyjnej. TESTY PESQ i PEAQ

Pomiary w technice studyjnej. TESTY PESQ i PEAQ Pomiary w technice studyjnej TESTY PESQ i PEAQ Wprowadzenie Problem: ocena jakości sygnału dźwiękowego. Metody obiektywne - np. pomiar SNR czy THD+N - nie dają pełnych informacji o jakości sygnału. Ważne

Bardziej szczegółowo

Metodyka i system dopasowania protez słuchu w oparciu o badanie percepcji sygnału mowy w szumie

Metodyka i system dopasowania protez słuchu w oparciu o badanie percepcji sygnału mowy w szumie Metodyka i system dopasowania protez w oparciu o badanie percepcji sygnału mowy w szumie opracowanie dr inż. Piotr Suchomski Koncepcja metody korekcji ubytku Dopasowanie szerokiej dynamiki odbieranego

Bardziej szczegółowo

PL B1. POLITECHNIKA GDAŃSKA, Gdańsk, PL BUP 02/12

PL B1. POLITECHNIKA GDAŃSKA, Gdańsk, PL BUP 02/12 PL 219314 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 219314 (13) B1 (21) Numer zgłoszenia: 391709 (51) Int.Cl. H04B 1/00 (2006.01) H04B 1/10 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej

Bardziej szczegółowo

Laboratorium Przetwarzania Sygnałów Biomedycznych

Laboratorium Przetwarzania Sygnałów Biomedycznych Laboratorium Przetwarzania Sygnałów Biomedycznych Ćwiczenie 1 Wydobywanie sygnałów z szumu z wykorzystaniem uśredniania Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - mgr inż. Tomasz Kubik

Bardziej szczegółowo

Sztuczna Inteligencja Tematy projektów Sieci Neuronowe

Sztuczna Inteligencja Tematy projektów Sieci Neuronowe PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia

Bardziej szczegółowo

ANALIZA SEMANTYCZNA OBRAZU I DŹWIĘKU

ANALIZA SEMANTYCZNA OBRAZU I DŹWIĘKU ANALIZA SEMANTYCZNA OBRAZU I DŹWIĘKU i klasyfikacja sygnału audio dr inż. Jacek Naruniec Sygnał mowy mózg (układ sterujący) głośnia (źródło dźwięku) rezonator akustyczny (filtr) sygnał mowy 2 Sygnał mowy

Bardziej szczegółowo

Detektor Fazowy. Marcin Polkowski 23 stycznia 2008

Detektor Fazowy. Marcin Polkowski 23 stycznia 2008 Detektor Fazowy Marcin Polkowski marcin@polkowski.eu 23 stycznia 2008 Streszczenie Raport z ćwiczenia, którego celem było zapoznanie się z działaniem detektora fazowego umożliwiającego pomiar słabych i

Bardziej szczegółowo

Sposoby opisu i modelowania zakłóceń kanałowych

Sposoby opisu i modelowania zakłóceń kanałowych INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Podstawy Telekomunikacji Sposoby opisu i modelowania zakłóceń kanałowych Warszawa 2010r. 1. Cel ćwiczeń: Celem ćwiczeń

Bardziej szczegółowo

IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ

IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ Celem ćwiczenia jest zapoznanie się ze sposobem działania sieci neuronowych typu MLP (multi-layer perceptron) uczonych nadzorowaną (z nauczycielem,

Bardziej szczegółowo

LABORATORIUM PODSTAW TELEKOMUNIKACJI

LABORATORIUM PODSTAW TELEKOMUNIKACJI WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego w Warszawie Wydział Elektroniki LABORATORIUM PODSTAW TELEKOMUNIKACJI Grupa Podgrupa Data wykonania ćwiczenia Ćwiczenie prowadził... Skład podgrupy:

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

Przykładowe pytania 1/11

Przykładowe pytania 1/11 Parametry sygnałów Przykładowe pytania /. Dla okresowego przebiegu sinusoidalnego sterowanego fazowo (jak na rys) o kącie przewodzenia θ wyprowadzić zależność wartości skutecznej od kąta przewodzenia θ.

Bardziej szczegółowo

Programowanie celowe #1

Programowanie celowe #1 Programowanie celowe #1 Problem programowania celowego (PC) jest przykładem problemu programowania matematycznego nieliniowego, który można skutecznie zlinearyzować, tzn. zapisać (i rozwiązać) jako problem

Bardziej szczegółowo

Multimedialne Systemy Medyczne

Multimedialne Systemy Medyczne Multimedialne Systemy Medyczne Brain-Computer Interfaces (BCI) mgr inż. Katarzyna Kaszuba Interfejsy BCI Interfejsy BCI Interfejsy mózgkomputer. Zwykle wykorzystują sygnał elektroencefalografu (EEG) do

Bardziej szczegółowo

Metody numeryczne Wykład 4

Metody numeryczne Wykład 4 Metody numeryczne Wykład 4 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Metody skończone rozwiązywania

Bardziej szczegółowo

Automatyka i sterowania

Automatyka i sterowania Automatyka i sterowania Układy regulacji Regulacja i sterowanie Przykłady regulacji i sterowania Funkcje realizowane przez automatykę: regulacja sterowanie zabezpieczenie optymalizacja Automatyka i sterowanie

Bardziej szczegółowo

Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1-

Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Filtry cyfrowe cz. Zastosowanie funkcji okien do projektowania filtrów SOI Nierównomierności charakterystyki amplitudowej filtru cyfrowego typu SOI można

Bardziej szczegółowo

ĆWICZENIE III ANALIZA WIDMOWA SYGNAŁÓW DYSKRETNYCH. ver.3

ĆWICZENIE III ANALIZA WIDMOWA SYGNAŁÓW DYSKRETNYCH. ver.3 1 Zakład Elektrotechniki Teoretycznej ver.3 ĆWICZEIE III AALIZA WIDMOWA SYGAŁÓW DYSKRETYCH (00) Celem ćwiczenia jest przeprowadzenie analizy widmowej dyskretnych sygnałów okresowych przy zastosowaniu szybkiego

Bardziej szczegółowo

Kartkówka 1 Opracowanie: Próbkowanie częstotliwość próbkowania nie mniejsza niż podwojona szerokość przed spróbkowaniem.

Kartkówka 1 Opracowanie: Próbkowanie częstotliwość próbkowania nie mniejsza niż podwojona szerokość przed spróbkowaniem. Znowu prosta zasada - zbierzmy wszystkie zagadnienia z tych 3ech kartkówek i opracujmy - może się akurat przyda na dopytkę i uda się zaliczyć labki :) (dodatkowo można opracowania z tych rzeczy z doc ów

Bardziej szczegółowo

Spośród licznych filtrów nieliniowych najlepszymi właściwościami odznacza się filtr medianowy prosty i skuteczny.

Spośród licznych filtrów nieliniowych najlepszymi właściwościami odznacza się filtr medianowy prosty i skuteczny. Filtracja nieliniowa może być bardzo skuteczną metodą polepszania jakości obrazów Filtry nieliniowe Filtr medianowy Spośród licznych filtrów nieliniowych najlepszymi właściwościami odznacza się filtr medianowy

Bardziej szczegółowo

Wykład z Technologii Informacyjnych. Piotr Mika

Wykład z Technologii Informacyjnych. Piotr Mika Wykład z Technologii Informacyjnych Piotr Mika Uniwersalna forma graficznego zapisu algorytmów Schemat blokowy zbiór bloków, powiązanych ze sobą liniami zorientowanymi. Jest to rodzaj grafu, którego węzły

Bardziej szczegółowo

Rozdział 1 PROGRAMOWANIE LINIOWE

Rozdział 1 PROGRAMOWANIE LINIOWE Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE 1.1 Opis programów Do rozwiązania zadań programowania

Bardziej szczegółowo

Wzmacniacze, wzmacniacze operacyjne

Wzmacniacze, wzmacniacze operacyjne Wzmacniacze, wzmacniacze operacyjne Schemat ideowy wzmacniacza Współczynniki wzmocnienia: - napięciowy - k u =U wy /U we - prądowy - k i = I wy /I we - mocy - k p = P wy /P we >1 Wzmacniacz w układzie

Bardziej szczegółowo

f = 2 śr MODULACJE

f = 2 śr MODULACJE 5. MODULACJE 5.1. Wstęp Modulacja polega na odzwierciedleniu przebiegu sygnału oryginalnego przez zmianę jednego z parametrów fali nośnej. Przyczyny stosowania modulacji: 1. Umożliwienie wydajnego wypromieniowania

Bardziej szczegółowo

SPRZĘTOWA REALIZACJA FILTRÓW CYFROWYCH TYPU SOI

SPRZĘTOWA REALIZACJA FILTRÓW CYFROWYCH TYPU SOI 1 ĆWICZENIE VI SPRZĘTOWA REALIZACJA FILTRÓW CYFROWYCH TYPU SOI (00) Celem pracy jest poznanie sposobu fizycznej realizacji filtrów cyfrowych na procesorze sygnałowym firmy Texas Instruments TMS320C6711

Bardziej szczegółowo

Rozpoznawanie obrazów

Rozpoznawanie obrazów Rozpoznawanie obrazów Laboratorium Python Zadanie nr 1 Regresja liniowa autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, M. Zięba, J. Kaczmar Cel zadania Celem zadania jest implementacja liniowego zadania

Bardziej szczegółowo

Badanie właściwości wysokorozdzielczych przetworników analogowo-cyfrowych w systemie programowalnym FPGA. Autor: Daniel Słowik

Badanie właściwości wysokorozdzielczych przetworników analogowo-cyfrowych w systemie programowalnym FPGA. Autor: Daniel Słowik Badanie właściwości wysokorozdzielczych przetworników analogowo-cyfrowych w systemie programowalnym FPGA Autor: Daniel Słowik Promotor: Dr inż. Daniel Kopiec Wrocław 016 Plan prezentacji Założenia i cel

Bardziej szczegółowo

Cechy karty dzwiękowej

Cechy karty dzwiękowej Karta dzwiękowa System audio Za generowanie sygnału dźwiękowego odpowiada system audio w skład którego wchodzą Karta dźwiękowa Głośniki komputerowe Większość obecnie produkowanych płyt głównych posiada

Bardziej szczegółowo

8. Realizacja projektowanie i pomiary filtrów IIR

8. Realizacja projektowanie i pomiary filtrów IIR 53 8. Realizacja projektowanie i pomiary filtrów IIR Cele ćwiczenia Realizacja na zestawie TMX320C5515 ezdsp prostych liniowych filtrów cyfrowych. Pomiary charakterystyk amplitudowych zrealizowanych filtrów

Bardziej szczegółowo

Technika analogowa. Problematyka ćwiczenia: Temat ćwiczenia:

Technika analogowa. Problematyka ćwiczenia: Temat ćwiczenia: Technika analogowa Problematyka ćwiczenia: Pomiędzy urządzeniem nadawczym oraz odbiorczym przesyłany jest sygnał użyteczny w paśmie 10Hz 50kHz. W trakcie odbioru sygnału po stronie odbiorczej stwierdzono

Bardziej szczegółowo

Układy i Systemy Elektromedyczne

Układy i Systemy Elektromedyczne UiSE - laboratorium Układy i Systemy Elektromedyczne Laboratorium 1 Stetoskop elektroniczny parametry sygnałów rejestrowanych. Opracował: dr inż. Jakub Żmigrodzki Zakład Inżynierii Biomedycznej, Instytut

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA

WOJSKOWA AKADEMIA TECHNICZNA WOJSKOWA AKADEMIA TECHNICZNA LABORATORIUM CYFROWE PRZETWARZANIE SYGNAŁÓW Stopień, imię i nazwisko prowadzącego Imię oraz nazwisko słuchacza Grupa szkoleniowa Data wykonania ćwiczenia dr inż. Andrzej Wiśniewski

Bardziej szczegółowo

Transformata Fouriera

Transformata Fouriera Transformata Fouriera Program wykładu 1. Wprowadzenie teoretyczne 2. Algorytm FFT 3. Zastosowanie analizy Fouriera 4. Przykłady programów Wprowadzenie teoretyczne Zespolona transformata Fouriera Jeżeli

Bardziej szczegółowo

Transformacje i funkcje statystyczne

Transformacje i funkcje statystyczne Generacja okien: win = window(@fwin,n); Generacja okien gui: wintool; Rodzaje niektórych okien: @bartlett - Bartletta. @blackman - Blackmana. @chebwin - Czebyszewa. @gausswin - gausowskie. @hamming - Hamminga.

Bardziej szczegółowo

Metody iteracyjne rozwiązywania układów równań liniowych (5.3) Normy wektorów i macierzy (5.3.1) Niech. x i. i =1

Metody iteracyjne rozwiązywania układów równań liniowych (5.3) Normy wektorów i macierzy (5.3.1) Niech. x i. i =1 Normy wektorów i macierzy (5.3.1) Niech 1 X =[x x Y y =[y1 x n], oznaczają wektory przestrzeni R n, a yn] niech oznacza liczbę rzeczywistą. Wyrażenie x i p 5.3.1.a X p = p n i =1 nosi nazwę p-tej normy

Bardziej szczegółowo

Rozpoznawanie i synteza mowy w systemach multimedialnych. Analiza i synteza mowy - wprowadzenie. Spektrogram wyrażenia: computer speech

Rozpoznawanie i synteza mowy w systemach multimedialnych. Analiza i synteza mowy - wprowadzenie. Spektrogram wyrażenia: computer speech Slajd 1 Analiza i synteza mowy - wprowadzenie Spektrogram wyrażenia: computer speech Slide 1 Slajd 2 Analiza i synteza mowy - wprowadzenie Slide 2 Slajd 3 Analiza i synteza mowy - wprowadzenie Slide 3

Bardziej szczegółowo

Cyfrowe algorytmy sterowania AR S1 semestr 4 Projekt 4

Cyfrowe algorytmy sterowania AR S1 semestr 4 Projekt 4 Cyfrowe algorytmy sterowania AR S1 semestr 4 Projekt 4 MPC Sterowanie predykcyjne Cel: Poznanie podstaw regulacji predykcyjnej i narzędzi do badań symulacyjnych Wykonali: Konrad Słodowicz Patryk Frankowski

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 1 Regresja liniowa autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z liniowym zadaniem najmniejszych

Bardziej szczegółowo

Podstawowe funkcje przetwornika C/A

Podstawowe funkcje przetwornika C/A ELEKTRONIKA CYFROWA PRZETWORNIKI CYFROWO-ANALOGOWE I ANALOGOWO-CYFROWE Literatura: 1. Rudy van de Plassche: Scalone przetworniki analogowo-cyfrowe i cyfrowo-analogowe, WKŁ 1997 2. Marian Łakomy, Jan Zabrodzki:

Bardziej szczegółowo

PRZETWARZANIE SYGNAŁÓW

PRZETWARZANIE SYGNAŁÓW PRZETWARZANIE SYGNAŁÓW SEMESTR V Wykład VIII Podstawy przetwarzania obrazów Filtracja Przetwarzanie obrazu w dziedzinie próbek Przetwarzanie obrazu w dziedzinie częstotliwości (transformacje częstotliwościowe)

Bardziej szczegółowo

A3 : Wzmacniacze operacyjne w układach liniowych

A3 : Wzmacniacze operacyjne w układach liniowych A3 : Wzmacniacze operacyjne w układach liniowych Jacek Grela, Radosław Strzałka 2 kwietnia 29 1 Wstęp 1.1 Wzory Poniżej zamieszczamy podstawowe wzory i definicje, których używaliśmy w obliczeniach: 1.

Bardziej szczegółowo

5 Filtry drugiego rzędu

5 Filtry drugiego rzędu 5 Filtry drugiego rzędu Cel ćwiczenia 1. Zrozumienie zasady działania i charakterystyk filtrów. 2. Poznanie zalet filtrów aktywnych. 3. Zastosowanie filtrów drugiego rzędu z układem całkującym Podstawy

Bardziej szczegółowo

Estymacja częstotliwości podstawowej sieci energetycznej na podstawie scałkowanego sygnału napięcia

Estymacja częstotliwości podstawowej sieci energetycznej na podstawie scałkowanego sygnału napięcia SIWOŃ Cezary 1 Estymacja częstotliwości podstawowej sieci energetycznej na podstawie scałkowanego sygnału napięcia WSTĘP Utrzymanie stałej częstotliwości napięcia w sieci energetycznej jest jednym z najważniejszych

Bardziej szczegółowo

Inteligencja obliczeniowa

Inteligencja obliczeniowa Ćwiczenie nr 3 Zbiory rozmyte logika rozmyta Sterowniki wielowejściowe i wielowyjściowe, relacje rozmyte, sposoby zapisu reguł, aproksymacja funkcji przy użyciu reguł rozmytych, charakterystyki przejściowe

Bardziej szczegółowo

Dr hab. inż. Przemysław Dymarski Warszawa, r. Instytut Telekomunikacji Politechnika Warszawska

Dr hab. inż. Przemysław Dymarski Warszawa, r. Instytut Telekomunikacji Politechnika Warszawska Dr hab. inż. Przemysław Dymarski Warszawa, 13.09.2016 r. Instytut Telekomunikacji Politechnika Warszawska Recenzja rozprawy doktorskiej pt. Wykorzystanie metod nierównomiernego próbkowania i inteligentnych

Bardziej szczegółowo