KATEDRA SYSTEMÓW MULTIMEDIALNYCH. Inteligentne systemy decyzyjne. Ćwiczenie nr 12:
|
|
- Zdzisław Zakrzewski
- 6 lat temu
- Przeglądów:
Transkrypt
1 KATEDRA SYSTEMÓW MULTIMEDIALNYCH Inteligentne systemy decyzyjne Ćwiczenie nr 12: Rozpoznawanie mowy z wykorzystaniem ukrytych modeli Markowa i pakietu HTK Opracowanie: mgr inż. Kuba Łopatka 1. Wprowadzenie Ukryty model Markowa (lub łańcuch Markowa) modeluje pewne zjawisko za pomocą sekwencji stanów. Model rozpoczyna się stanem początkowym. Następnie dla każdego stanu opisany jest rozkład prawdopodobieństwa wartości parametrów w tym stanie oraz prawdopodobieństwa przejść do innych stanów. Stany początkowy i końcowe są zwane nieemitującymi, tj. nie przechodzą do innych stanów. Rys. 1 Przykład grafu przejść modelu HMM [1]
2 Wykorzystanie modeli Markowa do klasyfikacji sygnałów, a zwłaszcza sygnałów mowy, polega na wytrenowaniu modeli z wykorzystaniem dostępnych obserwacji treningowych, a następnie sprawdzenie prawdopodobieństwa, z jakim nieznana sekwencja jest opisywana danym modelem (tzw. prawdopodobieństwo a posteriori). W praktyce dla celów rozpoznawania mowy trenuje się osobne modele dla rozpoznawanych słów i sprawdza się, które słowo było najbardziej prawdopodobne. Prawdopodobieństwo tego, że badana sekwencja pasuje do wzorca, oblicza się iteracyjnie zgodnie ze wzorem: gdzie α t+1 (j) = [ i=1 N α t (i)a ij ] b j (O t+1 ) b i (O j ) prawdopodobieństwo pojawienia się j-tej obserwacji w stanie i a ij prawdopodobieństwo przejścia ze stanu i do stanu j. 2. Podstawy rozpoznawania mowy W przypadku rozpoznawania mowy z wykorzystaniem ukrytych modeli Markowa rolę obserwacji pełnią wektory parametrów sygnału mowy obliczonych w kolejnych punktach czasu. W tym ćwiczeniu wykorzystywane są parametry mel-cepstralne tj. powstałe w wyniku obliczenia cepstrum sygnału dla zmodyfikowanej skali częstotliwości. Schemat obliczania parametrów mel-cepstralnych przedstawiono na rys. 2. Rys. 2 Schemat koncepcyjny obliczania mel-cepstralnych parametrów sygnału mowy W celu rozpoznania fragmentu mowy z wykorzystaniem HMM należy porównać sekwencję obserwacji ze wszystkimi znanymi modelami (dotyczącymi np. różnych słów, zdań). Decyzja jest podejmowana na zasadzie największego prawdopodobieństwa a posteriori. Schemat podejmowania decyzji przy rozpoznawaniu wyrazów z wykorzystaniem HMM przedstawiono na rys. 3. Rys. 3 Schemat rozpoznawania wyrazów z wykorzystaniem ukrytych modeli Markowa [2].
3 3. Pakiet Hidden Markov Toolkit (HTK) Hidden Markov Toolkit jest narzędziem zawierającym funkcje związane z modelami Markowa. Jest on zoptymalizowany pod kątem sygnału mowy, ale może też być wykorzystany do rozpoznawania danych innego pochodzenia. HTK jest napisany w języku C i wykorzystuje interfejs wiersza poleceń. Do wykorzystania jego funkcji w czasie rzeczywistym służy pokrewny pakiet ATK. Pakiet HTK cieszy się szczególną popularnością wśród badaczy zajmujących sie rozpoznawaniem mowy. Poszczególne elementy biblioteki HTK odpowiadają za różne funkcje, takie jak wczytywanie plików, trenowanie modeli, tworzenie słownika, modeli językowych, a nawet wysokopoziomowy interfejs graficzny. Architektura pakietu została przedstawiona na rys. 4. Wykorzystywane narzędzia: Rys. 4 Architektura pakietu HTK [1] HInit dokonuje inicjalizacji modelu. Dzieli obserwacje treningowe równomiernie pomiędzy wszystkie stany, a następnie przypisuje im początkowe wartości średnich i wariancji rozkładów Gaussowskich opisujących dane stany. Proces powtarzany jest kilkakrotnie, aż osiągnięte zostaną rozkłady maksymalizujące przynależność danych obserwacji do konkretnych stanów. HRest dokonuje reestymacji wag modelu, tj. dopasowuje rozkłady i prawdopodobieństwa przejść do obserwacji treningowych. Model HMM składa się z: rozkładu prawdopodobieństwa parametrów sygnału dla danego stanu opisanego za pomocą mieszanego modelu Gaussowskiego (tj. p gaussoid, gdzie p to liczba parametrów sygnału). prawdopodobieństw przejść pomiędzy stanami.
4 HERest dokonuje zagnieżdżonej reestymacji wag dla wszystkich głosek i modeli występujących w danych treningowych. HVite dokonuje dekodowania Viterbi ego w celu określenia prawdopodobieństwa, z jakimi posiadany model opisuje znane sekwencje treningowe lub testowe. HResults dokonuje interepretacji wyników rozpoznawania danych łańcuchem HMM. 4. Zadania do wykonania UWAGA: Wszelkie skrypty.bat w ćwiczeniu należy uruchamiać z wiersza poleceń (cmd). 1. Otwórz plik model/proto/5state. Jest to prototyp modelu Markowa, na podstawie którego trenowany będzie klasyfikator. Jakie informacje zawarte są w pliku modelu? Na podstawie zawartej w nim macierzy prawdopodobieństw przejść pomiędzy stanami narysuj graf modelu Markowa podobny do tego na rys Dokonaj inicjalizacji i treningu modelu HMM dla fonemu C wykorzystując skrypt trenuj_hmm.bat. Porównaj trening modelu o 3,5,7 i 10 stanach. Po ilu iteracjach model jest zbieżny? Zanotuj i zinterpretuj wyniki. W celu zmiany modelu zmodyfikuj następującą linię w skrypcie: set model = 3state zmieniając wyróżnioną pogrubioną czcionką nazwę modelu na 5state, 7state i 10state. Korzystając z danych zwracanych przez funkcję HRest, wykreśl krzywe uczenia (learning curve) modelu o 3,5,7 i 10 stanach. Krzywa uczenia przedstawia zmianę optymalizowanego parametru (w tym przypadku LogProb) w zależności od kolejnych iteracji. Porównaj uzyskane krzywe i zinterpretuj wyniki. 3. Wytrenuj model rozpoznawania mowy oparty o pojedyncze głoski (monophone). Wykorzystaj do tego skrypt trenuj_model.bat. Wykonany zostanie trening modeli dla 5 fonemów występujących w dostępnych danych treningowych i testowych: C,L,N,S,V. W tym przypadku dla każdej z głosek tworzony jest osobny model Markowa. 4. Przetestuj wytrenowany model na zbiorze treningowym, wykorzystując skrypt testuj_hmm_treningowy.bat oraz na zbiorze testowym (testuj_hmm_testowy.bat). Zanotuj procent poprawnie rozpoznanych słów (WORD) i zdań (SENT). Porównaj wyniki dla modeli o 3,5,7,10 stanach. Aby zmienić liczbę stanów w modelu, zmień zawartość skryptu trenuj_model, modyfikując linię: set model = 3state PAMIĘTAJ: Po zmianie zawartości skryptu trenuj_model.bat uruchom go ponownie aby stworzyć nowe modele HMM. Dokonaj zestawienia i interpretacji wyników. 5. Wytrenuj model oparty na trifonach (zbitkach trzech fonemów). W tym celu zmodyfikuj następującą linię w skrypcie trenuj_model: set level = mon
5 zmieniając mon na tri. Następnie przetestuj rozpoznawanie, używając skryptów testuj_model_treningowy i testuj_model_testowy. Analogicznie jak w zadaniu 3 sprawdź skuteczność dla 3,5,7,10 stanów. Zestaw i zinterpretuj wyniki. Zadanie dodatkowe Wyniki zwracane przez funkcję HResults są w następującej postaci: SENT: %Correct=0.00 [H=0, S=3, N=3] WORD: %Corr=66.92, Acc=63.16 [H=89, D=36, S=8, I=5, N=133] Co oznaczają symbole H,S,N,D,I? Czym różni się miara Corr(Correct) od Acc? Podpowiedź: Word Error Rate Literatura: [1] Young, S., Woodland, P., Htk, T., & Version, H. T. K. (2000). The HTK Book. (M. Corporation, Ed.)Network (Vol. 2). Cambridge University Press. [2] Zweig, G., & Picheny, M. (2004). Advances in Large Vocabulary Continuous Speech Recognition. Signal Processing, 60, Elsevier
AKUSTYKA MOWY. Podstawy rozpoznawania mowy część I
AKUSTYKA MOWY Podstawy rozpoznawania mowy część I PLAN WYKŁADU Część I Podstawowe pojęcia z dziedziny rozpoznawania mowy Algorytmy, parametry i podejścia do rozpoznawania mowy Przykłady istniejących bibliotek
Automatyczne rozpoznawanie mowy. Autor: mgr inż. Piotr Bratoszewski
Automatyczne rozpoznawanie mowy Autor: mgr inż. Piotr Bratoszewski Rys historyczny 1930-1950 pierwsze systemy Automatycznego rozpoznawania mowy (ang. Automatic Speech Recognition ASR), metody holistyczne;
PRACA DYPLOMOWA Inżynierska
AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE Wydział Informatyki, Elektroniki i Telekomunikacji Katedra Elektroniki PRACA DYPLOMOWA Inżynierska Temat: Narzędzie programowe do optymalizacji
Podstawy automatycznego rozpoznawania mowy. Autor: mgr inż. Piotr Bratoszewski
Podstawy automatycznego rozpoznawania mowy Autor: mgr inż. Piotr Bratoszewski Rys historyczny 1930-1950 pierwsze systemy Automatycznego rozpoznawania mowy (ang. Automatic Speech Recognition ASR), metody
Opisy efektów kształcenia dla modułu
Karta modułu - Technologia mowy 1 / 5 Nazwa modułu: Technologia mowy Rocznik: 2012/2013 Kod: RIA-1-504-s Punkty ECTS: 7 Wydział: Inżynierii Mechanicznej i Robotyki Poziom studiów: Studia I stopnia Specjalność:
ROZPOZNAWANIE SYGNAŁÓW FONICZNYCH
Przetwarzanie dźwięków i obrazów ROZPOZNAWANIE SYGNAŁÓW FONICZNYCH mgr inż. Kuba Łopatka, p. 628 klopatka@sound.eti.pg.gda.pl Plan wykładu 1. Wprowadzenie 2. Zasada rozpoznawania sygnałów 3. Parametryzacja
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium JAVA Zadanie nr 2 Rozpoznawanie liter autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z problemem klasyfikacji
Rozpoznawanie mowy za pomocą HTK
Kinga Frydrych Wydział Inżynierii Mechanicznej i Robotyki Inżynieria Akustyczna, rok III, 2013/2014 Sprawozdanie z ćwiczeń laboratoryjnych z Technologii mowy Rozpoznawanie mowy za pomocą HTK 1. Opis gramatyki
Automatyczne rozpoznawanie mowy - wybrane zagadnienia / Ryszard Makowski. Wrocław, Spis treści
Automatyczne rozpoznawanie mowy - wybrane zagadnienia / Ryszard Makowski. Wrocław, 2011 Spis treści Przedmowa 11 Rozdział 1. WPROWADZENIE 13 1.1. Czym jest automatyczne rozpoznawanie mowy 13 1.2. Poziomy
Czym jest HTK HMMs ASR
HTK 138 Czym jest HTK Zbiór programów implementujących Niejawne Łańcuchy Markowa - Hidden Markov Models (HMMs) ASR, synteza mowa, rozpoznawanie liter, badania nad sekwencjami DNA Analiza mowy, wyćwiczenie
PRAKTYCZNE ASPEKTY WYKORZYSTYWANIA SYSTEMÓW ROZPOZNAWANIA MOWY OPARTYCH NA HMM
MODELOWANIE INŻYNIERSKIE ISSN 896-77X 40, s. 7-78, Gliwice 200 PRAKTYCZNE ASPEKTY WYKORZYSTYWANIA SYSTEMÓW ROZPOZNAWANIA MOWY OPARTYCH NA HMM AGNIESZKA MIETŁA, MAREK IWANIEC Katedra Automatyzacji Procesów,
Bioinformatyka. Ocena wiarygodności dopasowania sekwencji.
Bioinformatyka Ocena wiarygodności dopasowania sekwencji www.michalbereta.pl Załóżmy, że mamy dwie sekwencje, które chcemy dopasować i dodatkowo ocenić wiarygodność tego dopasowania. Interesujące nas pytanie
Sprawozdanie z laboratoriów HTK!
Inżynieria akustyczna - Technologia mowy 2013 Błażej Chwiećko Sprawozdanie z laboratoriów HTK! 1. Przeznaczenie tworzonego systemu! Celem było stworzenie systemu służącego do sterowania samochodem. Zaimplementowane
Klasyfikator liniowy Wstęp Klasyfikator liniowy jest najprostszym możliwym klasyfikatorem. Zakłada on liniową separację liniowy podział dwóch klas między sobą. Przedstawia to poniższy rysunek: 5 4 3 2
S O M SELF-ORGANIZING MAPS. Przemysław Szczepańczyk Łukasz Myszor
S O M SELF-ORGANIZING MAPS Przemysław Szczepańczyk Łukasz Myszor Podstawy teoretyczne Map Samoorganizujących się stworzył prof. Teuvo Kohonen (1982 r.). SOM wywodzi się ze sztucznych sieci neuronowych.
Elementy modelowania matematycznego
Elementy modelowania matematycznego Modelowanie algorytmów klasyfikujących. Podejście probabilistyczne. Naiwny klasyfikator bayesowski. Modelowanie danych metodą najbliższych sąsiadów. Jakub Wróblewski
P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H
W O J S K O W A A K A D E M I A T E C H N I C Z N A W Y D Z I A Ł E L E K T R O N I K I Drukować dwustronnie P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H Grupa... Data wykonania
Poradnik HTK. Adrian Sekuła
Poradnik HTK Adrian Sekuła Wstęp Poradnik wykonano do przedmiotu Technologia Mowy, prowadzonego przez dr inż. Bartosza Ziółko i dr inż. Jakuba Gałkę na studiach Inżynieria Akustyczna na AGH w Krakowie.
Praca dyplomowa inżynierska
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI, INFORMATYKI I INŻYNIERII BIOMEDYCZNEJ Praca dyplomowa inżynierska Biometryczny system weryfikacji głosu w trybie ze zmiennym hasłem Text-prompted biometric voice verification
Sztuczna Inteligencja Tematy projektów Sieci Neuronowe
PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia
9. Praktyczna ocena jakości klasyfikacji
Algorytmy rozpoznawania obrazów 9. Praktyczna ocena jakości klasyfikacji dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Zbiór uczacy i zbiór testowy 1. Zbiór uczacy służy do konstrukcji (treningu)
dr inż. Jacek Naruniec
dr inż. Jacek Naruniec Przetwarzanie wstępne Wyznaczenie obszarów zainteresowania Ekstrakcja cech - dźwięk Klasyfikacja detekcja mowy okno analizy spektrogram filtr preemfazy wokodery (formantów, kanałowe,
ANALIZA SEMANTYCZNA OBRAZU I DŹWIĘKU
ANALIZA SEMANTYCZNA OBRAZU I DŹWIĘKU i klasyfikacja sygnału audio dr inż. Jacek Naruniec Sygnał mowy mózg (układ sterujący) głośnia (źródło dźwięku) rezonator akustyczny (filtr) sygnał mowy 2 Sygnał mowy
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny
Omówienie różnych metod rozpoznawania mowy
Omówienie różnych metod rozpoznawania mowy Na podstawie artykułu: Comparative study of automatic speech recognition techniques Beniamin Sawicki Wydział Inżynierii Mechanicznej i Robotyki Inżynieria Akustyczna
BADANIE MODULATORÓW I DEMODULATORÓW AMPLITUDY (AM)
Zespół Szkół Technicznych w Suwałkach Pracownia Sieci Teleinformatycznych Ćwiczenie Nr 1 BADANIE MODULATORÓW I DEMODULATORÓW AMPLITUDY (AM) Opracował Sławomir Zieliński Suwałki 2010 Cel ćwiczenia Pomiar
Statystyczna analiza danych
Statystyczna analiza danych ukryte modele Markowa, zastosowania Anna Gambin Instytut Informatyki Uniwersytet Warszawski plan na dziś Ukryte modele Markowa w praktyce modelowania rodzin białek multiuliniowienia
Spacery losowe generowanie realizacji procesu losowego
Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z
Programowanie i techniki algorytmiczne
Temat 2. Programowanie i techniki algorytmiczne Realizacja podstawy programowej 1) wyjaśnia pojęcie algorytmu, podaje odpowiednie przykłady algorytmów rozwiązywania różnych 2) formułuje ścisły opis prostej
Algorytm grupowania danych typu kwantyzacji wektorów
Algorytm grupowania danych typu kwantyzacji wektorów Wstęp Definicja problemu: Typowe, rozważane dotychczas problemy koncentrowały się na nauczeniu na podstawie zbioru treningowego i zbioru etykiet klasyfikacji
Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa
Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa M. Czoków, J. Piersa 2012-01-10 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego 3 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego
Priorytetyzacja przypadków testowych za pomocą macierzy
Priorytetyzacja przypadków testowych za pomocą macierzy W niniejszym artykule przedstawiony został problem przyporządkowania priorytetów do przypadków testowych przed rozpoczęciem testów oprogramowania.
Rozpoznawanie obrazów
Rozpoznawanie obrazów Ćwiczenia lista zadań nr 7 autorzy: A. Gonczarek, J.M. Tomczak Przykładowe problemy Klasyfikacja binarna Dla obrazu x zaproponowano dwie cechy φ(x) = (φ 1 (x) φ 2 (x)) T. Na obrazie
Sztuczna Inteligencja w medycynie projekt (instrukcja) Bożena Kostek
Sztuczna Inteligencja w medycynie projekt (instrukcja) Bożena Kostek Cel projektu Celem projektu jest przygotowanie systemu wnioskowania, wykorzystującego wybrane algorytmy sztucznej inteligencji; Nabycie
ALGORYTM RANDOM FOREST
SKRYPT PRZYGOTOWANY NA ZAJĘCIA INDUKOWANYCH REGUŁ DECYZYJNYCH PROWADZONYCH PRZEZ PANA PAWŁA WOJTKIEWICZA ALGORYTM RANDOM FOREST Katarzyna Graboś 56397 Aleksandra Mańko 56699 2015-01-26, Warszawa ALGORYTM
AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 1 AUTOMATYZACJA I ROBOTYZACJA PROCESÓW PRODUKCYJNYCH
AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT Instrukcja do zajęc laboratoryjnych nr 1 AUTOMATYZACJA I ROBOTYZACJA PROCESÓW PRODUKCYJNYCH II rok Kierunek Logistyka Temat: Zajęcia wprowadzające. BHP stanowisk
Sposoby opisu i modelowania zakłóceń kanałowych
INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Podstawy Telekomunikacji Sposoby opisu i modelowania zakłóceń kanałowych Warszawa 2010r. 1. Cel ćwiczeń: Celem ćwiczeń
1.Wprowadzenie do projektowania układów sekwencyjnych synchronicznych
.Wprowadzenie do projektowania układów sekwencyjnych synchronicznych.. Przerzutniki synchroniczne Istota działania przerzutników synchronicznych polega na tym, że zmiana stanu wewnętrznego powinna nastąpić
Stan dotychczasowy. OCENA KLASYFIKACJI w diagnostyce. Metody 6/10/2013. Weryfikacja. Testowanie skuteczności metody uczenia Weryfikacja prosta
Stan dotychczasowy OCENA KLASYFIKACJI w diagnostyce Wybraliśmy metodę uczenia maszynowego (np. sieć neuronowa lub drzewo decyzyjne), która będzie klasyfikować nieznane przypadki Na podzbiorze dostępnych
LABORATORIUM PODSTAW TELEKOMUNIKACJI
WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego w Warszawie Wydział Elektroniki LABORATORIUM PODSTAW TELEKOMUNIKACJI Grupa Podgrupa Data wykonania ćwiczenia Ćwiczenie prowadził... Skład podgrupy:
Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład III 2016/2017
Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład III bogumil.konopka@pwr.edu.pl 2016/2017 Wykład III - plan Regresja logistyczna Ocena skuteczności klasyfikacji Macierze pomyłek Krzywe
Rozpoznawanie obrazów
Rozpoznawanie obrazów Laboratorium Python Zadanie nr 2 κ-nn i Naive Bayes autorzy: M. Zięba, J.M. Tomczak, A. Gonczarek, S. Zaręba, J. Kaczmar Cel zadania Celem zadania jest implementacja klasyfikatorów
P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H
W O J S K O W A A K A D E M I A T E C H N I C Z N A W Y D Z I A Ł E L E K T R O N I K I Drukować dwustronnie P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H Grupa... Data wykonania
Klasyfikacja LDA + walidacja
Klasyfikacja LDA + walidacja Dr hab. Izabela Rejer Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Plan wykładu 1. Klasyfikator 2. LDA 3. Klasyfikacja wieloklasowa 4. Walidacja
Sprawozdanie z laboratoriów HTK
Inżynieria Akustyczna Technologia Mowy, rok 2012 Aleksandra Januszko, Marcin Witkowski Sprawozdanie z laboratoriów HTK 1. Opis gramatyki System był projektowany jako automat sprzedający bilety na koncerty.
Sieć przesyłająca żetony CP (counter propagation)
Sieci neuropodobne IX, specyficzne architektury 1 Sieć przesyłająca żetony CP (counter propagation) warstwa Kohonena: wektory wejściowe są unormowane jednostki mają unormowane wektory wag jednostki są
Podstawowe operacje graficzne.
Podstawowe operacje graficzne. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z możliwościami graficznymi środowiska GNU octave, w tym celu: narzędziami graficznymi, sposobami konstruowania wykresów
Modelowanie języka polskiego z wykorzystaniem gramatyki struktur frazowych
Modelowanie języka polskiego z wykorzystaniem gramatyki struktur frazowych Naszym celem jest modelowanie języka. Model językowy odgrywa ważną rolę w systemach automatycznego rozpoznawania mowy dużego słownika.
Dodawanie i modyfikacja atrybutów zbioru
Dodawanie i modyfikacja atrybutów zbioru Program Moje kolekcje wyposażony został w narzędzia pozwalające na dodawanie, edycję oraz usuwanie atrybutów przypisanych do zbioru kolekcji. Dzięki takiemu rozwiązaniu
Uczenie sieci radialnych (RBF)
Uczenie sieci radialnych (RBF) Budowa sieci radialnej Lokalne odwzorowanie przestrzeni wokół neuronu MLP RBF Budowa sieci radialnych Zawsze jedna warstwa ukryta Budowa neuronu Neuron radialny powinien
WPROWADZENIE DO SZTUCZNEJ INTELIGENCJI
POLITECHNIKA WARSZAWSKA WYDZIAŁ MECHANICZNY ENERGETYKI I LOTNICTWA MEL WPROWADZENIE DO SZTUCZNEJ INTELIGENCJI NS 586 Dr inż. Franciszek Dul 15. WNIOSKOWANIE PROBABILISTYCZNE EWOLUCYJNE Wnioskowanie probabilistyczne
2.2 Opis części programowej
2.2 Opis części programowej Rysunek 1: Panel frontowy aplikacji. System pomiarowy został w całości zintegrowany w środowisku LabVIEW. Aplikacja uruchamiana na komputerze zarządza przebiegiem pomiarów poprzez
BOC INFORMATION TECHNOLOGIES CONSULTING. Zadania. Przykład bankowy
ADONIS - Szkolenie Zadania Przykład bankowy BOC Information Technologies Consulting Sp. z o.o. Al. Jerozolimskie 109/26 02-011 Warszawa Tel: +48-22-628 00 15 Fax: +48-22-621 66 88 e-mail: boc@boc-pl.com
SPRAWOZDANIE Z LABORATORIÓW HTK SYLWIA BAŁAZY AKADEMIA GÓRNICZO-HUTNICZA IM. S. STASZICA W KRAKOWIE
AKADEMIA GÓRNICZO-HUTNICZA IM. S. STASZICA W KRAKOWIE WYDZIAŁ INŻYNIERII MECHANICZNEJ I ROBOTYKI INŻYNIERIA AKUSTYCZNA SYLWIA BAŁAZY TECHNOLOGIA MOWY SPRAWOZDANIE Z LABORATORIÓW HTK 2 S t r o n a 1. OPIS
Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I
Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje:
Widzenie komputerowe (computer vision)
Widzenie komputerowe (computer vision) dr inż. Marcin Wilczewski 2018/2019 Organizacja zajęć Tematyka wykładu Cele Python jako narzędzie uczenia maszynowego i widzenia komputerowego. Binaryzacja i segmentacja
Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym
Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym Jan Karwowski Wydział Matematyki i Nauk Informacyjnych PW 17 XII 2013 Jan Karwowski
Papyrus. Papyrus. Katedra Cybernetyki i Robotyki Politechnika Wrocławska
Katedra Cybernetyki i Robotyki Politechnika Wrocławska Kurs: Zaawansowane metody programowania Copyright c 2014 Bogdan Kreczmer Niniejszy dokument zawiera materiały do wykładu dotyczącego programowania
Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova
Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova M. Czoków, J. Piersa 2010-12-21 1 Definicja Własności Losowanie z rozkładu dyskretnego 2 3 Łańcuch Markova Definicja Własności Losowanie z rozkładu
Ćwiczenia nr 4. Arkusz kalkulacyjny i programy do obliczeń statystycznych
Ćwiczenia nr 4 Arkusz kalkulacyjny i programy do obliczeń statystycznych Arkusz kalkulacyjny składa się z komórek powstałych z przecięcia wierszy, oznaczających zwykle przypadki, z kolumnami, oznaczającymi
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Trening jednokierunkowych sieci neuronowych wykład 2. dr inż. PawełŻwan Katedra Systemów Multimedialnych Politechnika Gdańska
W klasie II i III rozwijane są intensywnie wszystkie cztery sprawności językowe.
Wymagania edukacyjne z języka angielskiego w klasach I - III Podczas trwania procesu nauczania języka angielskiego na I etapie edukacyjnym (nauczanie zintegrowane w klasach I, II, III) nauczyciel stopniowo
Zastosowania sieci neuronowych
Zastosowania sieci neuronowych klasyfikacja LABORKA Piotr Ciskowski zadanie 1. klasyfikacja zwierząt sieć jednowarstwowa żródło: Tadeusiewicz. Odkrywanie własności sieci neuronowych, str. 159 Przykład
Architektura Systemu. Architektura systemu umożliwia kontrolowanie iteracyjnego i przyrostowego procesu tworzenia systemu.
Architektura Systemu Architektura systemu umożliwia kontrolowanie iteracyjnego i przyrostowego procesu tworzenia systemu. Architektura jest zbiorem decyzji dotyczących: organizacji systemu komputerowego,
Tematy lekcji informatyki klasa 4a styczeń 2013
Tematy lekcji informatyki klasa 4a styczeń 2013 temat 7. z podręcznika (str. 70-72); sztuczki 4. i 5. (str. 78); Narysuj ikony narzędzi do zaznaczania i opisz je. 19 Zaznaczamy fragment rysunku i przenosimy
Python : podstawy nauki o danych / Alberto Boschetti, Luca Massaron. Gliwice, cop Spis treści
Python : podstawy nauki o danych / Alberto Boschetti, Luca Massaron. Gliwice, cop. 2017 Spis treści O autorach 9 0 recenzencie 10 Wprowadzenie 11 Rozdział 1. Pierwsze kroki 15 Wprowadzenie do nauki o danych
Problem eliminacji nieprzystających elementów w zadaniu rozpoznania wzorca Marcin Luckner
Problem eliminacji nieprzystających elementów w zadaniu rozpoznania wzorca Marcin Luckner Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska Elementy nieprzystające Definicja odrzucania Klasyfikacja
Eksploracja Danych. wykład 4. Sebastian Zając. 10 maja 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja / 18
Eksploracja Danych wykład 4 Sebastian Zając WMP.SNŚ UKSW 10 maja 2017 Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja 2017 1 / 18 Klasyfikacja danych Klasyfikacja Najczęściej stosowana (najstarsza)
Zad. 3: Rotacje 2D. Demonstracja przykładu problemu skończonej reprezentacji binarnej liczb
Zad. 3: Rotacje 2D 1 Cel ćwiczenia Wykształcenie umiejętności modelowania kluczowych dla danego problemu pojęć. Definiowanie właściwego interfejsu klasy. Zwrócenie uwagi na dobór odpowiednich struktur
Algorytm grupowania danych typu kwantyzacji wektorów
Algorytm grupowania danych typu kwantyzacji wektorów Wstęp Definicja problemu: Typowe, problemem często spotykanym w zagadnieniach eksploracji danych (ang. data mining) jest zagadnienie grupowania danych
Cyfrowe Przetwarzanie Obrazów i Sygnałów
Cyfrowe Przetwarzanie Obrazów i Sygnałów Laboratorium EX Lokalne transformacje obrazów Joanna Ratajczak, Wrocław, 28 Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się z własnościami lokalnych
Metody Sztucznej Inteligencji II
17 marca 2013 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką, która jest w stanie odbierać i przekazywać sygnały elektryczne. Neuron działanie Jeżeli wartość sygnału
UONET+ moduł Dziennik
UONET+ moduł Dziennik Sporządzanie ocen opisowych i diagnostycznych uczniów z wykorzystaniem schematów oceniania Przewodnik System UONET+ umożliwia sporządzanie ocen opisowych uczniów w oparciu o przygotowany
Sieci Komputerowe 2 / Ćwiczenia 2
Tematyka Sieci Komputerowe 2 / Ćwiczenia 2 Opracował: Konrad Kawecki na podstawie materiałów: http://www.isi.edu/nsnam/ns/tutorial/index.html Na ćwiczeniach zapoznamy się z symulatorem
TWORZENIE MODELU AKUSTYCZNEGO NA POTRZEBY WERYFIKACJI MÓWCY PRZY UŻYCIU UKRYTYCH MODELI MARKOWA
MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 40, s. 249-256, Gliwice 2010 TWORZENIE MODELU AKUSTYCZNEGO NA POTRZEBY WERYFIKACJI MÓWCY PRZY UŻYCIU UKRYTYCH MODELI MARKOWA IWONA WANAT MAREK IWANIEC Katedra Automatyzacji
Teraz bajty. Informatyka dla szkoły podstawowej. Klasa VI
1 Teraz bajty. Informatyka dla szkoły podstawowej. Klasa VI 1. Obliczenia w arkuszu kalkulacyjnym Rozwiązywanie problemów z wykorzystaniem aplikacji komputerowych obliczenia w arkuszu kalkulacyjnym wykonuje
Klasyfikacja metodą Bayesa
Klasyfikacja metodą Bayesa Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski warunkowe i bezwarunkowe 1. Klasyfikacja Bayesowska jest klasyfikacją statystyczną. Pozwala przewidzieć prawdopodobieństwo
7. Formularze master-detail
7. Formularze master-detail 1. Utworzymy teraz jeden z bardziej złożonych formularzy dostępnych z kreatora formularz master-detail. Będzie on swoją strukturą przypominał utworzony wcześniej formularz dotyczący
Praca dyplomowa inżynierska
AKADEMIA GÓRNICZO-HUTNICZA im. Stanisława Staszica w Krakowie WYDZIAŁ INŻYNIERII MECHANICZNEJ I ROBOTYKI Praca dyplomowa inżynierska Zbigniew Łatka Imię i nazwisko Inżynieria Akustyczna Kierunek studiów
Rozpoznawanie mowy dla języków semickich. HMM - HTK, CMU SPHINX-4, Simon
Rozpoznawanie mowy dla języków semickich HMM - HTK, CMU SPHINX-4, Simon Charakterystyka języków semickich Przykłady: arabski, hebrajski, amharski, tigrinia, maltański (280 mln użytkowników). Budowa spółgłoskowo
Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu
Data Mining Wykład 9 Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster Plan wykładu Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Sformułowanie problemu
Dokumentacja Końcowa
Metody Sztucznej Inteligencji 2 Projekt Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych. Dokumentacja Końcowa Autorzy: Robert Wojciechowski Michał Denkiewicz Wstęp Celem
Process Automation Toolkit (PAT)
Process Automation Toolkit (PAT) Wprowadzenie Process Automation Tool Kit (PAT) zapewnia innowacyjną metodę automatyzacji procedur testowych dla testerów radiokomunikacyjnych Freedom. Przez wiele lat
CZYSZCZENIE DANYCH: Automatyczny podział tekstu na rekordy o określonej strukturze
CZYSZCZENIE DANYCH: Automatyczny podział tekstu na rekordy o określonej strukturze (na podstawie pracy: Automatic segmentation of text into structured records, Borkar, Deshmukh, Sarawagi, SIGMOD 200) Wojtek
Ćwiczenia rozwijające umiejętności językowe. Raport Dyrektoriatu Generalnego Edukacji i Kultury Komisji Europejskiej
Ćwiczenia rozwijające umiejętności językowe Raport Dyrektoriatu Generalnego Edukacji i Kultury Komisji Europejskiej Nauczanie języków obcych wsród najmłodszych obywateli WNIOSEK Nauczyciele nie powinni
ANALIZA SEMANTYCZNA OBRAZU I DŹWIĘKU
ANALIZA SEMANTYCZNA OBRAZU I DŹWIĘKU i klasyfikacja sygnału audio dr inż. Jacek Naruniec Sygnał mowy mózg (układ sterujący) głośnia (źródło dźwięku) rezonator akustyczny (filtr) sygnał mowy 2 Sygnał mowy
11. Blok ten jest blokiem: a. decyzyjnym b. końcowym c. operacyjnym
1. Instrukcja warunkowa a. słuŝy do wprowadzania danych oraz wprowadzania wyników b. to instrukcja decyzyjna c. to sposób przedstawienia algorytmu 2. Instrukcja, która opisuje wykonanie róŝnych czynności
Uczenie się pojedynczego neuronu. Jeśli zastosowana zostanie funkcja bipolarna s y: y=-1 gdy z<0 y=1 gdy z>=0. Wówczas: W 1 x 1 + w 2 x 2 + = 0
Uczenie się pojedynczego neuronu W0 X0=1 W1 x1 W2 s f y x2 Wp xp p x i w i=x w+wo i=0 Jeśli zastosowana zostanie funkcja bipolarna s y: y=-1 gdy z=0 Wówczas: W 1 x 1 + w 2 x 2 + = 0 Algorytm
Formularze w programie Word
Formularze w programie Word Formularz to dokument o określonej strukturze, zawierający puste pola do wypełnienia, czyli pola formularza, w których wprowadza się informacje. Uzyskane informacje można następnie
Optymalizacja ciągła
Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej
Obliczenia iteracyjne
Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej
WYKŁAD 7. Testowanie jakości modeli klasyfikacyjnych metodyka i kryteria
Wrocław University of Technology WYKŁAD 7 Testowanie jakości modeli klasyfikacyjnych metodyka i kryteria autor: Maciej Zięba Politechnika Wrocławska Testowanie modeli klasyfikacyjnych Dobór odpowiedniego
Wymagania na poszczególne oceny szkolne dla klasy VI. (na podstawie Grażyny Koba, Teraz bajty. Informatyka dla szkoły podstawowej.
1 Wymagania na poszczególne oceny szkolne dla klasy VI (na podstawie Grażyny Koba, Teraz bajty. Informatyka dla szkoły podstawowej. Klasa VI ) 2 1. Obliczenia w arkuszu kalkulacyjnym słucha poleceń nauczyciela
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRODROCZNYCH I ROCZNYCH OCEN Z ZAJĘĆ KOMPUTEROWYCH W KLASIE IV
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRODROCZNYCH I ROCZNYCH OCEN Z ZAJĘĆ KOMPUTEROWYCH W KLASIE IV dopuszczający dostateczny dobry bardzo dobry celujący Potrafi wymienić Samodzielnie
Zapisywanie algorytmów w języku programowania
Temat C5 Zapisywanie algorytmów w języku programowania Cele edukacyjne Zrozumienie, na czym polega programowanie. Poznanie sposobu zapisu algorytmu w postaci programu komputerowego. Zrozumienie, na czym
SPIS ILUSTRACJI, BIBLIOGRAFIA
SPIS ILUSTRACJI, BIBLIOGRAFIA Ćwiczenie 1 Automatyczne tworzenie spisu ilustracji 1. Wstaw do tekstu roboczego kilka rysunków (WSTAWIANIE OBRAZ z pliku). 2. Ustaw kursor w wersie pod zdjęciem i kliknij
Machine learning Lecture 5
Machine learning Lecture 5 Marcin Wolter IFJ PAN 21 kwietnia 2017 Uczenie -sprawdzanie krzyżowe (cross-validation). Optymalizacja parametrów metod uczenia maszynowego. Deep learning 1 Uczenie z nauczycielem
Teraz bajty. Informatyka dla szkoły podstawowej. Klasa VI
1 Teraz bajty. Informatyka dla szkoły podstawowej. Klasa VI Opis założonych osiągnięć ucznia przykłady wymagań na poszczególne oceny szkolne dla klasy VI Grażyna Koba Spis treści 1. Obliczenia w arkuszu
METODY SZTUCZNEJ INTELIGENCJI 2 Opis projektu
Kamil Figura Krzysztof Kaliński Bartek Kutera METODY SZTUCZNEJ INTELIGENCJI 2 Opis projektu Porównanie metod uczenia z rodziny TD z algorytmem Layered Learning na przykładzie gry w warcaby i gry w anty-warcaby
Ćwiczenie 6. Transformacje skali szarości obrazów
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 6. Transformacje skali szarości obrazów 1. Obraz cyfrowy Obraz w postaci cyfrowej