Adaptacyjne Przetwarzanie Sygnałów. Filtracja adaptacyjna w dziedzinie częstotliwości
|
|
- Wanda Skiba
- 6 lat temu
- Przeglądów:
Transkrypt
1 W Filtracja adaptacyjna w dziedzinie częstotliwości Blokowy algorytm LMS (BLMS) N f n+n = f n + α x n+i e(n + i), i= N L Slide e(n + i) =d(n + i) f T n x n+i (i =,,N ) Wprowadźmy nowy indeks: n = kn ( ) N f k+ = f k + αn x kn+i e(kn + i) = f N k + α N g k, i= g k = ˆ N J k - uśredniona estymata gradientu funkcji kosztu J n = e (n) α N = αn - efektywny krok adaptacji algorytmu BLMS Algorytm BLMS w porównaniu z algorytmem LMS taka sama złożoność obliczeniowa potencjalnie wolniejsza zbieżność dla silnie skorelowanych sygnałów wejściowych (mocniejsze ograniczenie na α N ) Slide gorsza zdolność śledzenia niestacjonarności (rzadziej aktualizowane współczynniki filtru) gładsza krzywa zbieżności (smoother convergence) Algorytm BLMS stanowi punkt wyjścia do konstrukcji bardzo szybkich odmian algorytmu LMS, wykorzystujących do obliczeń efektywną obliczeniowo procedurę FFT Jacek Falkiewicz /
2 W Szybki algorytm LMS N =L - overlap-save method Współczynniki filtru adaptacyjnego w dziedzinie częstotliwości: F k = FFT f k, dim(f k )=dim() =L Slide 3 Diagonalna macierz danych wejściowych w dziedzinie częstotliwości: X k =diag{fft[x(kl L),,x(kL ),x(kl),,x(kl + L )]} L-elementowy wektor próbek sygnału wyjściowego otrzymujemy przez wykonanie operacji: y k =[y(kl),,y(kl + L )] T = {IFFT[X k F k ]} lastl {x} lastl oznacza wektor złożony z L ostatnich elementów wektora x Wektor błędu estymacji i jego transformata Fouriera po uprzednim uzupełnieniu zerami: e k =[d(kl) y(kl),,d(kl + L ) y(kl + L )] T = d k y k E k = FFT e k Slide 4 Wektor uśrednionej estymaty gradientu w dziedzinie częstotliwości: { } g k = IFFT[D k X H k E k ] firstl D k =diag[p (k),p (k),,p L (k)] - macierz zmiennych kroków adaptacji P i (k) =γp i (k ) + ( γ) X i (k), i =,,,L - odwrotności estymat średniej mocy sygnału wejściowego przypadającej na daną próbkę częstotliwości, <γ< Jacek Falkiewicz /
3 W Ostatecznie główna rekursja aktualizacji współczynników filtru w dziedzinie częstotliwości ma postać: F k+ = F k + αfft g k Właściwości: Slide 5 większa szybkość zbieżności niż algorytmu BLMS znacznie mniejsza złożoność obliczeniowa w stosunku do klasycznego algorytmu LMS; Complexity Ratio CR = 5log (L)+3 L (dla L = 4 CR= 6) opóźnienie sygnału wejściowego y(n) 3 Algorytmy TDAF (Transform Domain Adaptive Filter) Grupa algorytmów wykorzystujących właściwość ortogonalności przekształcenia DFT lub innych transformat dyskretnych w celu zwiększenia szybkości zbieżności algorytmu LMS X ( n) Slide 6 z - X ( n) dn ( ) z - L - punktowa transformata T X ( n) yn ( ) - z - FL- ( n) X L- ( n) Y L- ( n) Jacek Falkiewicz 3/
4 W Algorytm sliding DFT Slide 7 X k =diag{fft[x(n),,x(n L +)]} Y n = X n F n e(n) =d(n) T Y n E n = e(n) P i (n) =γp i (n ) + ( γ) X i (n) i =,,,L D n =diag[p (n),p (n),,p L (n)] F n+ = F n + αd n X H n E n Uzyskujemy poprawę szybkości zbieżności za cenę niewielkiego wzrostu złożoności obliczeniowej Stopień poprawy szybkości zbieżności algorytmu TDAF w stosunku do klasycznego algorytmu LMS zależy od wyboru transformaty Wybór transformaty Slide 8 Optymalną transformatą, zapewniającą taką kompensację rozrzutu wartości własnych macierzy autokorelacji R sygnału wejściowego, aby szybkość zbieżności wszystkich współczynników filtru była jednakowa, jest transformata Karhunena-Loève a (KLT) Umożliwia ona dekompozycję sygnału wejściowego x(n) na ciągi ortogonalne skojarzone z wektorami i wartościami własnymi macierzy autokorelacji tego sygnału: X i (n) =q T i x n, i =,,,L q i - i-ty wektor własny macierzy R skojarzony z wartością własną λ i Deterministyczna aproksymacja - dyskretna transformata kosinusowa DCT Zmniejszenie narzutu obliczeniowego - transformata WHT Walsh-Hadamard Transform (brak zbieżności do optymalnego rozwiązania wienerowskiego Jacek Falkiewicz 4/
5 W Algorytm TDAF-FS (TDAF Frequency Sampling) Bank filtrów NOI A () z X ( n) A () z X ( n) dn ( ) Slide 9 A () z X ( n) yn ( ) - A L-() z XL- ( n) F L- ( n) L- A i (z) = X i(z) X(z) = z L exp( jπi L )z Algorytm GSDAF (General Subband Decomposition Adaptive Filter) X ( n) F ( z N ) z - X ( n) F ( z N ) dn ( ) z - M - punktowa Slide transformata T X ( n) F ( z N ) yn ( ) - z - FM-( z N ) X M- ( n) Y M- ( n) Wymiar M transformaty T spełnia warunek M L Liczba współczynników filtrów adaptacyjnych wynosi L/M Jacek Falkiewicz 5/
6 W Wieloszybkościowa filtracja adaptacyjna w podpasmach (SAF - Subband Adaptive Filtering) BFA Slide F () z n DEC F () z n M- F n () z H n () z B F S I N T e ( n) e ( n) D E C B F A yn ( ) dn ( ) + + sn ( ) e M- ( n) - + B F A-bank filtrów analizy B F S-bank filtrów syntezy DEC-decymacja I N T - interpolacja Zalety filtrów SAF: zmniejszenie złożoności obliczeniowej w stosunku do algorytmu pracującego w pełnym pasmie potencjalny wzrost szybkości zbieżności w porównaniu z algorytmem LMS pracującym w pełnym pasmie Slide Wady filtrów SAF: wprowadzanie opóźnienia sygnału zjawisko aliasingu niweczące wzrost szybkości zbieżności Metody łagodzenia efektów aliasingu: skrośne filtry adaptacyjne filtry analizy i syntezy o dobrych parametrach (duże tłumienie i wąskie pasmo przejściowe) 3 nadpróbkowanie sygnałów w podpasmach Jacek Falkiewicz 6/
[d(i) y(i)] 2. Do wyprowadzenia algorytmu RLS posłuży kryterium autokorelacyjne: J n = e 2 (i) i=1. λ n i [d(i) y(i)] 2 λ (0, 1]
Algorytm RLS Recursive Least Squares Ogólna postać kryterium LS: J = i e 2 (i) = i [d(i) y(i)] 2 Do wyprowadzenia algorytmu RLS posłuży kryterium autokorelacyjne: J n = e 2 (i) Zmodyfikowane kryterium
Bardziej szczegółowo9. Dyskretna transformata Fouriera algorytm FFT
Transformata Fouriera ma szerokie zastosowanie w analizie i syntezie układów i systemów elektronicznych, gdyż pozwala na połączenie dwóch sposobów przedstawiania sygnałów reprezentacji w dziedzinie czasu
Bardziej szczegółowoPraca dyplomowa magisterska
Praca dyplomowa magisterska Implementacja algorytmów filtracji adaptacyjnej o strukturze transwersalnej na platformie CUDA Dyplomant: Jakub Kołakowski Opiekun pracy: dr inż. Michał Meller Plan prezentacji
Bardziej szczegółowoADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM. Ćwiczenie 2. Badanie algorytmów adaptacyjnych LMS i RLS
ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM Ćwiczenie 2 Badanie algorytmów adaptacyjnych LMS i RLS 1. CEL ĆWICZENIA Celem ćwiczenia jest samodzielna implementacja przez studentów dwóch podstawowych
Bardziej szczegółowoTransformaty. Kodowanie transformujace
Transformaty. Kodowanie transformujace Kodowanie i kompresja informacji - Wykład 10 10 maja 2009 Szeregi Fouriera Każda funkcję okresowa f (t) o okresie T można zapisać jako f (t) = a 0 + a n cos nω 0
Bardziej szczegółowoFFT i dyskretny splot. Aplikacje w DSP
i dyskretny splot. Aplikacje w DSP Marcin Jenczmyk m.jenczmyk@knm.katowice.pl Wydział Matematyki, Fizyki i Chemii 10 maja 2014 M. Jenczmyk Sesja wiosenna KNM 2014 i dyskretny splot 1 / 17 Transformata
Bardziej szczegółowoADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM. Ćwiczenie 2. Badanie algorytmów adaptacyjnych LMS i RLS
ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM Ćwiczenie 2 Badanie algorytmów adaptacyjnych LMS i RLS 1. CEL ĆWICZENIA Celem ćwiczenia jest samodzielna implementacja przez studentów dwóch podstawowych
Bardziej szczegółowoPrzetwarzanie i transmisja danych multimedialnych. Wykład 8 Transformaty i kodowanie cz. 2. Przemysław Sękalski.
Przetwarzanie i transmisja danych multimedialnych Wykład 8 Transformaty i kodowanie cz. 2 Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS
Bardziej szczegółowoTechnika audio część 2
Technika audio część 2 Wykład 12 Projektowanie cyfrowych układów elektronicznych Mgr inż. Łukasz Kirchner lukasz.kirchner@cs.put.poznan.pl http://www.cs.put.poznan.pl/lkirchner Wprowadzenie do filtracji
Bardziej szczegółowoPrzekształcenie Fouriera i splot
Zastosowania Procesorów Sygnałowych dr inż. Grzegorz Szwoch greg@multimed.org p. 732 - Katedra Systemów Multimedialnych Przekształcenie Fouriera i splot Wstęp Na tym wykładzie: przekształcenie Fouriera
Bardziej szczegółowoPrzedmowa Wykaz oznaczeń Wykaz skrótów 1. Sygnały i ich parametry 1 1.1. Pojęcia podstawowe 1 1.2. Klasyfikacja sygnałów 2 1.3.
Przedmowa Wykaz oznaczeń Wykaz skrótów 1. Sygnały i ich parametry 1 1.1. Pojęcia podstawowe 1 1.2. Klasyfikacja sygnałów 2 1.3. Sygnały deterministyczne 4 1.3.1. Parametry 4 1.3.2. Przykłady 7 1.3.3. Sygnały
Bardziej szczegółowoPrzetwarzanie i transmisja danych multimedialnych. Wykład 7 Transformaty i kodowanie. Przemysław Sękalski.
Przetwarzanie i transmisja danych multimedialnych Wykład 7 Transformaty i kodowanie Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS Wykład
Bardziej szczegółowoADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM. Ćwiczenie 5 - suplement
ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM Ćwiczenie 5 - suplement Realizacja na procesorze sygnałowym adaptacyjnego usuwania echa w łączu telefonicznym 1. SYMULACJA ECHA W ŁĄCZU TELEFONICZNYM I JEGO
Bardziej szczegółowoKompresja dźwięku w standardzie MPEG-1
mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 7, strona 1. Kompresja dźwięku w standardzie MPEG-1 Ogólne założenia kompresji stratnej Zjawisko maskowania psychoakustycznego Schemat blokowy
Bardziej szczegółowoTransformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem:
PPS 2 kartkówka 1 RÓWNANIE RÓŻNICOWE Jest to dyskretny odpowiednik równania różniczkowego. Równania różnicowe to pewne związki rekurencyjne określające w sposób niebezpośredni wartość danego wyrazu ciągu.
Bardziej szczegółowoZaawansowane algorytmy DSP
Zastosowania Procesorów Sygnałowych dr inż. Grzegorz Szwoch greg@multimed.org p. 732 - Katedra Systemów Multimedialnych Zaawansowane algorytmy DSP Wstęp Cztery algorytmy wybrane spośród bardziej zaawansowanych
Bardziej szczegółowoImplementacja algorytmów filtracji adaptacyjnej o strukturze transwersalnej na platformie CUDA.
Politechnika Gdańska Wydział Elektroniki, Telekomunikacji i Informatyki Automatyka i Robotyka Praca magisterska Implementacja algorytmów filtracji adaptacyjnej o strukturze transwersalnej na platformie
Bardziej szczegółowo2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20).
SPIS TREŚCI ROZDZIAŁ I SYGNAŁY CYFROWE 9 1. Pojęcia wstępne Wiadomości, informacje, dane, sygnały (9). Sygnał jako nośnik informacji (11). Sygnał jako funkcja (12). Sygnał analogowy (13). Sygnał cyfrowy
Bardziej szczegółowoLaboratorium Przetwarzania Sygnałów Biomedycznych
Laboratorium Przetwarzania Sygnałów Biomedycznych Ćwiczenie 1 Wydobywanie sygnałów z szumu z wykorzystaniem uśredniania Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - mgr inż. Tomasz Kubik
Bardziej szczegółowoTransformata Fouriera. Sylwia Kołoda Magdalena Pacek Krzysztof Kolago
Transformata Fouriera Sylwia Kołoda Magdalena Pacek Krzysztof Kolago Transformacja Fouriera rozkłada funkcję okresową na szereg funkcji okresowych tak, że uzyskana transformata podaje w jaki sposób poszczególne
Bardziej szczegółowoTransformacja Fouriera i biblioteka CUFFT 3.0
Transformacja Fouriera i biblioteka CUFFT 3.0 Procesory Graficzne w Zastosowaniach Obliczeniowych Karol Opara Warszawa, 14 kwietnia 2010 Transformacja Fouriera Definicje i Intuicje Transformacja z dziedziny
Bardziej szczegółowoDYSKRETNA TRANSFORMACJA FOURIERA
Laboratorium Teorii Sygnałów - DFT 1 DYSKRETNA TRANSFORMACJA FOURIERA Cel ćwiczenia Celem ćwiczenia jest przeprowadzenie analizy widmowej sygnałów okresowych za pomocą szybkiego przekształcenie Fouriera
Bardziej szczegółowoNarzędzia matematyczne zastosowane w systemie biomonitoringu wody
Narzędzia matematyczne zastosowane w systemie biomonitoringu wody Piotr Przymus Krzysztof Rykaczewski Wydział Matematyki i Informatyki Uniwersytet Mikołaja Kopernika Toruń 1 of 24 18 marca 2009 Cel referatu
Bardziej szczegółowoNIEOPTYMALNA TECHNIKA DEKORELACJI W CYFROWYM PRZETWARZANIU OBRAZU
II Konferencja Naukowa KNWS'05 "Informatyka- sztuka czy rzemios o" 15-18 czerwca 2005, Z otniki Luba skie NIEOPTYMALNA TECHNIKA DEKORELACJI W CYFROWYM PRZETWARZANIU OBRAZU Wojciech Zając Instytut Informatyki
Bardziej szczegółowoTeoria sygnałów Signal Theory. Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Teoria sygnałów Signal Theory A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW
Bardziej szczegółowoTransformata Fouriera i analiza spektralna
Transformata Fouriera i analiza spektralna Z czego składają się sygnały? Sygnały jednowymiarowe, częstotliwość Liczby zespolone Transformata Fouriera Szybka Transformata Fouriera (FFT) FFT w 2D Przykłady
Bardziej szczegółowoLaboratorium Inżynierii akustycznej. Przetwarzanie dźwięku - wprowadzenie do efektów dźwiękowych, realizacja opóźnień
Laboratorium Inżynierii akustycznej Przetwarzanie dźwięku - wprowadzenie do efektów dźwiękowych, realizacja opóźnień STRONA 1 Wstęp teoretyczny: LABORATORIUM NR1 Przetwarzanie sygnału dźwiękowego wiąże
Bardziej szczegółowodr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 311
dr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 311 Politechnika Gdaoska, 2011 r. Publikacja współfinansowana ze środków Unii Europejskiej w
Bardziej szczegółowoSzybka transformacja Fouriera (FFT Fast Fourier Transform)
Szybka transformacja Fouriera (FFT Fast Fourier Transform) Plan wykładu: 1. Transformacja Fouriera, iloczyn skalarny 2. DFT - dyskretna transformacja Fouriera 3. FFT szybka transformacja Fouriera a) algorytm
Bardziej szczegółowoPrzetwarzanie sygnałów
Przetwarzanie sygnałów Ćwiczenie 5 Filtry o nieskończonej odpowiedzi impulsowej (NOI) Spis treści 1 Wprowadzenie 1 1.1 Filtry jednobiegunowe....................... 1 1.2 Filtry wąskopasmowe........................
Bardziej szczegółowoLaboratorium Przetwarzania Sygnałów Biomedycznych
Laboratorium Przetwarzania Sygnałów Biomedycznych Ćwiczenie 3 Analiza sygnału o nieznanej strukturze Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - mgr inż. Tomasz Kubik Politechnika Warszawska,
Bardziej szczegółowoKodowanie transformacyjne. Plan 1. Zasada 2. Rodzaje transformacji 3. Standard JPEG
Kodowanie transformacyjne Plan 1. Zasada 2. Rodzaje transformacji 3. Standard JPEG Zasada Zasada podstawowa: na danych wykonujemy transformacje która: Likwiduje korelacje Skupia energię w kilku komponentach
Bardziej szczegółowoIMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE Z RDZENIEM ARM7
Łukasz Deńca V rok Koło Techniki Cyfrowej dr inż. Wojciech Mysiński opiekun naukowy IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE
Bardziej szczegółowoEgzamin / zaliczenie na ocenę*
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI Zał. nr 4 do ZW 33/01 KARTA PRZEDMIOTU Nazwa w języku polskim CYFROWE PRZETWARZANIE SYGNAŁÓW Nazwa w języku angielskim DIGITAL SIGNAL PROCESSING Kierunek studiów
Bardziej szczegółowoPolitechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe
Bardziej szczegółowoĆwiczenie 3. Właściwości przekształcenia Fouriera
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 3. Właściwości przekształcenia Fouriera 1. Podstawowe właściwości przekształcenia
Bardziej szczegółowoPRZETWARZANIE SYGNAŁÓW
PRZETWARZANIE SYGNAŁÓW SEMESTR V Wykład VIII Podstawy przetwarzania obrazów Filtracja Przetwarzanie obrazu w dziedzinie próbek Przetwarzanie obrazu w dziedzinie częstotliwości (transformacje częstotliwościowe)
Bardziej szczegółowoKartkówka 1 Opracowanie: Próbkowanie częstotliwość próbkowania nie mniejsza niż podwojona szerokość przed spróbkowaniem.
Znowu prosta zasada - zbierzmy wszystkie zagadnienia z tych 3ech kartkówek i opracujmy - może się akurat przyda na dopytkę i uda się zaliczyć labki :) (dodatkowo można opracowania z tych rzeczy z doc ów
Bardziej szczegółowoTransformata Fouriera
Transformata Fouriera Program wykładu 1. Wprowadzenie teoretyczne 2. Algorytm FFT 3. Zastosowanie analizy Fouriera 4. Przykłady programów Wprowadzenie teoretyczne Zespolona transformata Fouriera Jeżeli
Bardziej szczegółowoPrzekształcenie Fouriera obrazów FFT
Przekształcenie ouriera obrazów T 6 P. Strumiłło, M. Strzelecki Przekształcenie ouriera ourier wymyślił sposób rozkładu szerokiej klasy funkcji (sygnałów) okresowych na składowe harmoniczne; taką reprezentację
Bardziej szczegółowoCYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera)
I. Wprowadzenie do ćwiczenia CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera) Ogólnie termin przetwarzanie sygnałów odnosi się do nauki analizowania zmiennych w czasie procesów fizycznych.
Bardziej szczegółowoWstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline.
Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka Adaline. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 211-1-18 1 Pomysł Przykłady Zastosowanie 2
Bardziej szczegółowoKOMPRESJA STRATNA SYGNAŁU MOWY. Metody kompresji stratnej sygnałów multimedialnych: Uproszczone modelowanie źródeł generacji sygnałów LPC, CELP
KOMPRESJA STRATNA SYGNAŁU MOWY Metody kompresji stratnej sygnałów multimedialnych: Uproszczone modelowanie źródeł generacji sygnałów LPC, CELP Śledzenie i upraszczanie zmian dynamicznych sygnałów ADPCM
Bardziej szczegółowoPromotor: dr Marek Pawełczyk. Marcin Picz
Promotor: dr Marek Pawełczyk Marcin Picz Stosowane metody: - Grupa metod odejmowania widm (subtractive( subtractive-typetype algorithms); - Filtracja Wienera; - Neural networks & Fuzzy logic (sieci neuronowe
Bardziej szczegółowoWYKŁAD 9 METODY ZMIENNEJ METRYKI
WYKŁAD 9 METODY ZMIENNEJ METRYKI Kierunki sprzężone. Metoda Newtona Raphsona daje dobre przybliżenie najlepszego kierunku poszukiwań, lecz jest to okupione znacznym kosztem obliczeniowym zwykle postać
Bardziej szczegółowoPrzetwarzanie sygnałów
Przetwarzanie sygnałów Ćwiczenie 3 Filtry o skończonej odpowiedzi impulsowej (SOI) Spis treści 1 Filtracja cyfrowa podstawowe wiadomości 1 1.1 Właściwości filtru w dziedzinie czasu............... 1 1.2
Bardziej szczegółowoPolitechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe
Bardziej szczegółowoPrzedmowa 11 Ważniejsze oznaczenia 14 Spis skrótów i akronimów 15 Wstęp 21 W.1. Obraz naturalny i cyfrowe przetwarzanie obrazów 21 W.2.
Przedmowa 11 Ważniejsze oznaczenia 14 Spis skrótów i akronimów 15 Wstęp 21 W.1. Obraz naturalny i cyfrowe przetwarzanie obrazów 21 W.2. Technika obrazu 24 W.3. Normalizacja w zakresie obrazu cyfrowego
Bardziej szczegółowoMetody rozwiązania równania Schrödingera
Metody rozwiązania równania Schrödingera Równanie Schrödingera jako algebraiczne zagadnienie własne Rozwiązanie analityczne dla skończonej i nieskończonej studni potencjału Problem rozwiązania równania
Bardziej szczegółowoPodstawy Przetwarzania Sygnałów
Adam Szulc 188250 grupa: pon TN 17:05 Podstawy Przetwarzania Sygnałów Sprawozdanie 6: Filtracja sygnałów. Filtry FIT o skończonej odpowiedzi impulsowej. 1. Cel ćwiczenia. 1) Przeprowadzenie filtracji trzech
Bardziej szczegółowo8. Realizacja projektowanie i pomiary filtrów IIR
53 8. Realizacja projektowanie i pomiary filtrów IIR Cele ćwiczenia Realizacja na zestawie TMX320C5515 ezdsp prostych liniowych filtrów cyfrowych. Pomiary charakterystyk amplitudowych zrealizowanych filtrów
Bardziej szczegółowoCYFROWE PRZETWARZANIE SYGNAŁÓW
POLITECHNIKA RZESZOWSKA im. I. Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI Katedra Metrologii i Systemów Diagnostycznych CYFROWE PRZETWARZANIE SYGNAŁÓW Analiza korelacyjna sygnałów dr hab. inż.
Bardziej szczegółowoSzybka transformacja Fouriera
Szybka transformacja Fouriera (Opis i wydruki programów) Instytut Astronomii UMK, Toruń 1976 2 K. Borkowski PROGRAM OBLICZANIA TRANSFORMAT FOURIERA Wstęp Prezentowany tutaj program przeznaczony jest do
Bardziej szczegółowoADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM. Ćwiczenie 3. Adaptacyjne usuwanie szumów i interferencji
ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM Ćwiczenie 3 Adaptacyjne usuwanie szumów i interferencji 1. CEL ĆWICZENIA Usuwanie szumów i interferencji to jeden z pierwszych obszarów, można rzec klasyczny,
Bardziej szczegółowoOpis efektów kształcenia dla modułu zajęć
Nazwa modułu: Teoria i przetwarzanie sygnałów Rok akademicki: 2013/2014 Kod: EEL-1-524-s Punkty ECTS: 6 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Elektrotechnika
Bardziej szczegółowoLaboratorium Przetwarzania Sygnałów Biomedycznych
Laboratorium Przetwarzania Sygnałów Biomedycznych Ćwiczenie 2 Analiza sygnału EKG przy użyciu transformacji falkowej Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - inż. Tomasz Kubik Politechnika
Bardziej szczegółowo5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
Bardziej szczegółowoZygmunt Wróbel i Robert Koprowski. Praktyka przetwarzania obrazów w programie Matlab
Zygmunt Wróbel i Robert Koprowski Praktyka przetwarzania obrazów w programie Matlab EXIT 2004 Wstęp 7 CZĘŚĆ I 9 OBRAZ ORAZ JEGO DYSKRETNA STRUKTURA 9 1. Obraz w programie Matlab 11 1.1. Reprezentacja obrazu
Bardziej szczegółowoADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM. Ćwiczenie 1. Modelowanie i analiza widmowa dyskretnych sygnałów losowych
ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM Ćwiczenie 1 Modelowanie i analiza widmowa dyskretnych sygnałów losowych 1. CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie studentów z wybranymi algorytmami
Bardziej szczegółowoĆwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI)
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe
Bardziej szczegółowojako analizatory częstotliwości
jako analiatory cęstotliwości Widmo fourierowskie: y = cos p f t Widmo sygnału spróbkowanego Problem rodielcości Transformaty cyfrowe: analia wycinka sygnału xt wt próbek, T sekund Widmo wycinka: f*wf
Bardziej szczegółowoAlgorytmy detekcji częstotliwości podstawowej
Algorytmy detekcji częstotliwości podstawowej Plan Definicja częstotliwości podstawowej Wybór ramki sygnału do analizy Błędy oktawowe i dokładnej estymacji Metody detekcji częstotliwości podstawowej czasowe
Bardziej szczegółowoCyfrowe przetwarzanie sygnałów Jacek Rezmer -1-
Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Filtry cyfrowe cz. Zastosowanie funkcji okien do projektowania filtrów SOI Nierównomierności charakterystyki amplitudowej filtru cyfrowego typu SOI można
Bardziej szczegółowoAnaliza szeregów czasowych: 2. Splot. Widmo mocy.
Analiza szeregów czasowych: 2. Splot. Widmo mocy. P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2006/07 Splot Jedna z najważniejszych własności transformaty Fouriera jest to, że transformata
Bardziej szczegółowoZjawisko aliasingu. Filtr antyaliasingowy. Przecieki widma - okna czasowe.
Katedra Mechaniki i Podstaw Konstrukcji Maszyn POLITECHNIKA OPOLSKA Komputerowe wspomaganie eksperymentu Zjawisko aliasingu.. Przecieki widma - okna czasowe. dr inż. Roland PAWLICZEK Zjawisko aliasingu
Bardziej szczegółowoKwantowanie sygnałów analogowych na przykładzie sygnału mowy
Kwantowanie sygnałów analogowych na przykładzie sygnału mowy Treść wykładu: Sygnał mowy i jego właściwości Kwantowanie skalarne: kwantyzator równomierny, nierównomierny, adaptacyjny Zastosowanie w koderze
Bardziej szczegółowoZastowowanie transformacji Fouriera w cyfrowym przetwarzaniu sygnałów
31.01.2008 Zastowowanie transformacji Fouriera w cyfrowym przetwarzaniu sygnałów Paweł Tkocz inf. sem. 5 gr 1 1. Dźwięk cyfrowy Fala akustyczna jest jednym ze zjawisk fizycznych mających charakter okresowy.
Bardziej szczegółowoAnaliza obrazów - sprawozdanie nr 2
Analiza obrazów - sprawozdanie nr 2 Filtracja obrazów Filtracja obrazu polega na obliczeniu wartości każdego z punktów obrazu na podstawie punktów z jego otoczenia. Każdy sąsiedni piksel ma wagę, która
Bardziej szczegółowoADAPTACYJNA METODA REDUKCJI SZUMU W SYGNALE DRGAŃ MASZYN WIRUJĄCYCH
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 62 Politechniki Wrocławskiej Nr 62 Studia i Materiały Nr 28 2008 Piotr PIETRZAK*, Andrzej NAPIERALSKI* analiza drgań, diagnostyka wibracyjna,
Bardziej szczegółowoPolitechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 3. Właściwości przekształcenia Fouriera 1. Podstawowe właściwości przekształcenia
Bardziej szczegółowoKARTA MODUŁU / KARTA PRZEDMIOTU
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Cyfrowe przetwarzanie sygnałów pomiarowych_e2s
Bardziej szczegółowoOmówienie różnych metod rozpoznawania mowy
Omówienie różnych metod rozpoznawania mowy Na podstawie artykułu: Comparative study of automatic speech recognition techniques Beniamin Sawicki Wydział Inżynierii Mechanicznej i Robotyki Inżynieria Akustyczna
Bardziej szczegółowoWstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka ADALINE.
Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka ADALINE. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 218-1-15/22 Projekt pn.
Bardziej szczegółowoAnaliza ruchu. Marek Wnuk < > ZPCiR I-6 PWr. MW: SyWizE p.1/22
Analiza ruchu Marek Wnuk < marek.wnuk@pwr.wroc.pl > ZPCiR I-6 PWr MW: SyWizE p.1/22 Ruch w sekwencji obrazów Podstawowe problemy: złożoność obliczeniowa nadmiar informacji niejednoznaczność MW: SyWizE
Bardziej szczegółowoZAJĘCIA II. Zmienne losowe, sygnały stochastyczne, zakłócenia pomiarowe
ZAJĘCIA II Zmienne losowe, sygnały stochastyczne, zakłócenia pomiarowe Po co statystyka w identyfikacji? Zmienne losowe i ich parametry Korelacja zmiennych losowych Rozkłady wielowymiarowe i sygnały stochastyczne
Bardziej szczegółowoADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM. Ćwiczenie 3. Adaptacyjne usuwanie szumów i interferencji
ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM Ćwiczenie 3 Adaptacyjne usuwanie szumów i interferencji 1. CEL ĆWICZENIA Usuwanie szumów i interferencji to jeden z pierwszych obszarów, można rzec klasyczny,
Bardziej szczegółowoANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH
ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH Generowanie podstawowych przebiegów okresowych sawtooth() przebieg trójkątny (wierzhołki +/-1, okres 2 ) square() przebieg kwadratowy (okres 2 ) gauspuls()przebieg sinusoidalny
Bardziej szczegółowoPrzetwarzanie i transmisja danych multimedialnych. Wykład 9 Kodowanie podpasmowe. Przemysław Sękalski.
Przetwarzanie i transmisja danych multimedialnych Wykład 9 Kodowanie podpasmowe Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS Wykład opracowano
Bardziej szczegółowoInformatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Bardziej szczegółowoZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ
ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ Maciej Patan Uniwersytet Zielonogórski WSTEP Zadanie minimalizacji bez ograniczeń f(ˆx) = min x R nf(x) f : R n R funkcja ograniczona z dołu Algorytm rozwiazywania Rekurencyjny
Bardziej szczegółowoOptymalizacja ciągła
Optymalizacja ciągła 5. Metody kierunków poparwy (metoda Newtona-Raphsona, metoda gradientów sprzężonych) Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 28.03.2019 1
Bardziej szczegółowoPRZETWARZANIE MOWY W CZASIE RZECZYWISTYM
PRZETWARZANIE MOWY W CZASIE RZECZYWISTYM Akustyka mowy opracowanie: M. Kaniewska, A. Kupryjanow, K. Łopatka PLAN WYKŁADU Zasada przetwarzania sygnału w czasie rzeczywistym Algorytmy zmiany czasu trwania
Bardziej szczegółowoFiltr Kalmana. Struktury i Algorytmy Sterowania Wykład 1-2. prof. dr hab. inż. Mieczysław A. Brdyś mgr inż. Tomasz Zubowicz
Filtr Kalmana Struktury i Algorytmy Sterowania Wykład 1-2 prof. dr hab. inż. Mieczysław A. Brdyś mgr inż. Tomasz Zubowicz Politechnika Gdańska, Wydział Elektortechniki i Automatyki 2013-10-09, Gdańsk Założenia
Bardziej szczegółowox x 1. Przedmiot identyfikacji System x (1) x (2) : x (s) a 1 a 2 : a s mierzone, a = zestaw współczynników konkretyzujacych F ()
. Przedmiot identyfikacji System () x (2) x * a z y ( s ) x y = F (x,z)=f(x,z,a ),gdziex = F () znane, a nieznane x () x (2) x (s) mierzone, a = a a 2 a s zestaw współczynników konkretyzujacych F () informacja
Bardziej szczegółowoWojciech Skwirz
1 Regularyzacja jako metoda doboru zmiennych objaśniających do modelu statystycznego. 2 Plan prezentacji 1. Wstęp 2. Część teoretyczna - Algorytm podziału i ograniczeń - Regularyzacja 3. Opis wyników badania
Bardziej szczegółowoKompresja Danych. Streszczenie Studia Dzienne Wykład 13, f(t) = c n e inω0t, T f(t)e inω 0t dt.
1 Kodowanie podpasmowe Kompresja Danych Streszczenie Studia Dzienne Wykład 13, 18.05.2006 1.1 Transformaty, próbkowanie i filtry Korzystamy z faktów: Każdą funkcję okresową można reprezentować w postaci
Bardziej szczegółowoProjektowanie algorytmów równoległych. Zbigniew Koza Wrocław 2012
Projektowanie algorytmów równoległych Zbigniew Koza Wrocław 2012 Spis reści Zadniowo-kanałowy (task-channel) model algorytmów równoległych Projektowanie algorytmów równoległych metodą PACM Task-channel
Bardziej szczegółowo13. Wybrane algorytmy cyfrowego przetwarzania sygnałów
13. Wybrane algorytmy cyfrowego przetwarzania sygnałów Dyskretna transformata Fouriera algorytm FFT (ang. fast Fourier transform) Wykrywanie tonów DTMF (ang. Dual Tone Multi Frequency) Filtracja cyfrowa
Bardziej szczegółowoAndrzej Leśnicki Laboratorium CPS Ćwiczenie 6 1/8 ĆWICZENIE 6. Dyskretne przekształcenie Fouriera DFT
Andrzej Leśnicki Laboratorium CPS Ćwiczenie 6 1/8 ĆWICZEIE 6 Dyskretne przekształcenie Fouriera DFT 1. Cel ćwiczenia Dyskretne przekształcenie Fouriera ( w skrócie oznaczane jako DFT z ang. Discrete Fourier
Bardziej szczegółowoCyfrowe przetwarzanie sygnałów. Wykład 10. Transformata cosinusowa. Falki. Transformata falkowa. dr inż. Robert Kazała
Cyfrowe przetwarzanie sygnałów Wykład 10 Transformata cosinusowa. Falki. Transformata falkowa. dr inż. Robert Kazała 1 Transformata cosinusowa Dyskretna transformacja kosinusowa, (DCT ang. discrete cosine
Bardziej szczegółowoPrzetwarzanie i transmisja danych multimedialnych. Wykład 6 Metody predykcyjne. Przemysław Sękalski.
Przetwarzanie i transmisja danych multimedialnych Wykład 6 Metody predykcyjne Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS Wykład opracowano
Bardziej szczegółowo8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT)
8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT) Ćwiczenie polega na wykonaniu analizy widmowej zadanych sygnałów metodą FFT, a następnie określeniu amplitud i częstotliwości głównych składowych
Bardziej szczegółowoXI Konferencja Sieci i Systemy Informatyczne Łódź, październik 2003 APLIKACJA DO TESTOWANIA ALGORYTMÓW PRZETWARZANIA SYGNAŁÓW
Łódź, październik 003 Marcin Cegielski Instytut Informatyki Politechniki Łódzkiej APLIKACJA DO TESTOWANIA ALGORYTMÓW PRZETWARZANIA SYGNAŁÓW Streszczenie Celem pracy jest prezentacja aplikacji służącej
Bardziej szczegółowo10. Redukcja wymiaru - metoda PCA
Algorytmy rozpoznawania obrazów 10. Redukcja wymiaru - metoda PCA dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. PCA Analiza składowych głównych: w skrócie nazywana PCA (od ang. Principle Component
Bardziej szczegółowoCYFROWE PRZETWARZANIE SYGNAŁÓW
Cyfrowe przetwarzanie sygnałów -1-2003 CYFROWE PRZETWARZANIE SYGNAŁÓW tematy wykładowe: ( 28 godz. +2godz. kolokwium, test?) 1. Sygnały i systemy dyskretne (LTI, SLS) 1.1. Systemy LTI ( SLS ) (definicje
Bardziej szczegółowoSystemy. Krzysztof Patan
Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej
Bardziej szczegółowoProblemy implementacji algorytmów FFT w strukturach FPGA 1)
Problemy implementacji algorytmów FFT w strukturach FPGA 1) Robert Kędzierawski Wojskowa Akademia Techniczna, Wydział Elektroniki Streszczenie Omówiono implementacje algorytmów FFT dla przypadku przetwarzania
Bardziej szczegółowoAnaliza szeregów czasowych: 2. Splot. Widmo mocy.
Analiza szeregów czasowych: 2. Splot. Widmo mocy. P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Splot Jedna z najważniejszych własności transformaty Fouriera jest to, że transformata
Bardziej szczegółowoPrzegląd metod optymalizacji wielowymiarowej. Funkcja testowa. Funkcja testowa. Notes. Notes. Notes. Notes. Tomasz M. Gwizdałła
Przegląd metod optymalizacji wielowymiarowej Tomasz M. Gwizdałła 2012.12.06 Funkcja testowa Funkcją testową dla zagadnień rozpatrywanych w ramach tego wykładu będzie funkcja postaci f (x) = (x 1 1) 4 +
Bardziej szczegółowoPL B1. Sposób i układ pomiaru całkowitego współczynnika odkształcenia THD sygnałów elektrycznych w systemach zasilających
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 210969 (13) B1 (21) Numer zgłoszenia: 383047 (51) Int.Cl. G01R 23/16 (2006.01) G01R 23/20 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)
Bardziej szczegółowo