Kryteria selekcji modelu w eksperymentalnym rozpoznawaniu sygnałów zdekomponowanych w bazach falkowych
|
|
- Dominik Lipiński
- 5 lat temu
- Przeglądów:
Transkrypt
1 Kryteria selekcji modelu w eksperymentalnym rozpoznawaniu sygnałów zdekomponowanych w bazach falkowych Urszula Libal 1 Streszczenie: Artykuł przedstawia wyniki eksperymentalnego badania zależności między wielkościa modelu a wartościa ryzyka błędnego rozpoznawania sygnałów. Eksperyment został przeprowadzony dla zaszumionych sygnałów sinusoidalnego i trójkatnego, zdekomponowanych w bazach falkowych Haara. Falkowa reprezentacja sygnału w postaci współczynników falkowych stanowi pełny model. Do selekcji współczynników zredukowanego modelu użyto algorytmu LASSO (Least Absolute Shrinkage and Selection Operator). Zredukowane modele zostały poddane automatycznej klasyfikacji za pomoca algorytmu 5NN (5 Nearest Neighbours). Celem eksperymentu było wyznaczenie optymalnej wielkości modelu wyselekcjonowanej za pomoca algorytmu LASSO, dla której eksperymentalne ryzyko błędnej klasyfikacji osiagnie minimum. Otrzymany rozmiar modelu dla zaproponowanego kryterium (MIN) porównano z modelami opartymi o kryteria Akaike (AIC) i Bayesa (BIC) dla kilku poziomów zaszumienia sygnałów. Słowa kluczowe: klasyfikacja, falki, selekcja modelu, dekompozycja sygnału 1. Wprowadzenie Wybór modelu ma kluczowe znaczenie w wielu zagadnieniach opartych o empiryczne dane. Odpowiednio dobrany model nie powinien być ani zbyt uproszczony, ani zbyt skomplikowany (redundantny). W niniejszym artykule zbadano wpływ zmniejszenia modelu sygnału dzięki zastosowaniu nowego kryterium MIN na jakość rozpoznawania mierzoną ryzykiem błędnej klasyfikacji Zaszumiony sygnał Rozważano problem rozpoznawania sygnałów pochodzących z dwóch klas. W każdej klasie sygnały zawierają zaszumiony wzorzec f(t): s(t i ) = f(t i ) + cu i + ɛz i, (1) gdzie t i = i p 0, i = 0, 1,..., p 0 1, a zmienne losowe {Z i } i {U i } są i.i.d. z rozkładu normalnego Z i N (0; 1) oraz jednostajnego U i U( 1; 1). 1 Instytut Informatyki, Automatyki i Robotyki, Politechnika Wrocławska, ul. Janiszewskiego 11/17, Wrocław, urszula.libal@pwr.wroc.pl
2 W eksperymencie użyto następujących wzorców: fala sinusoidalna f 1 (t) w klasie 1 oraz fala trójkątna f 2 (t) w klasie 2, co zostało pokazane na rysunku Rys. 1. Poziom szumu gaussowskiego ustalono na ɛ = 0.05, natomiast dla szumu jednostajnego przyjęto wartości między c = 0.7 a c = 1.6. Rys. 1. Deterministyczne wzorce klas: sygnał sinusoidalny f 1 (t) i trójkątny f 2 (t) oraz sygnały zaszumione s(t i ) = f(t i ) + cu i + ɛz i dla ɛ = 0.05, c = 0.7 i c = 1.6, co odpowiada stosunkowi sygnału do łącznego szumu na poziomach SNR=7.8 [db] i 0.7 [db] Falkowa reprezentacja sygnału W dziedzinie czasowo-częstotliwościowej, po dekompozycji w bazach falkowych, sygnał (1) jest reprezentowany przez ciągi współczynników falkowych W (s(t)) = (c j0, d j0, d j0 +1,..., d j1 1) = x, (2) gdzie c j0 = (c j0 k) k - ciąg falkowych współczynników aproksymacji dla zgrubnej skali j 0, a d j = (d jk ) k - ciągi falkowych współczynników detali dla skal j = j 0, j 0 + 1,..., j 1 1. Szczegółowy opis dekompozycji sygnału w bazach falkowych można znaleźć w książkach Daubechies [2] oraz Hasiewicza i Śliwińskiego [4]. Falkowa aproksymacja sygnału ma następującą postać: s (t) k c j0 kφ j0 k (t) + j 1 1 j=j 0 d jk ψ jk (t) (3) k gdzie φ jk i ψ jk to odpowiednio przeskalowana i przesunięta w czasie funkcja skalujaca i falka-matka Selektor LASSO ( Least Absolute Shrinkage and Selection Operator) Algorytm LASSO wyznacza estymator ˆβ = ( ˆβ 1, ˆβ 2,..., ˆβ p ) falkowej reprezentacji sygnału β dla pewnego progu λ > 0 według następującego schematu: ˆβ = argmin y Xβ 2 = argmin ( n y i i=1 ) 2 p β j x ij, (4) j=1 przy β 1 = p β j λ, (5) j=1
3 gdzie macierz obserwacji X nxp (n-liczba sygnałów w ciągu uczącym, p-liczba cech) oraz wektor odpowiedzi y są dane. Techniczne szczegóły realizacji algorytmu LASSO można znaleźć we wspólnej pracy Efrona, Hastiego, Johnstone a i Tibshirani ego [3], natomiast metoda progowania cech dzięki regularyzacji w normie l1 została omówiona przez Tibshiraniego w pracy [7]. Dzięki regularyzacji w l1 wyselecjonowany model ˆβ składa się jedynie z df(λ) niezerowych współczynników falkowych. Rozmiar modelu df(λ) zależy od wyboru progu λ. W następnym punkcie zaprezentowano dwa znane kryteria wyboru λ oraz propozycję nowego kryterium. 2. Kryteria selekcji modelu Często stosowane kryteria wyboru λ, także dla selektora LASSO [8] zostały podane poniżej: 1. Kryterium AIC (Akaike Information Criterion) [1] 2. Kryterium BIC (Bayesian Information Criterion) [6] AIC(λ) = RSS p σ + 2 df(λ), (6) 2 p BIC(λ) = RSS p σ 2 + ln(n) df(λ), (7) p gdzie: RSS = y X ˆβ 2 = y ŷ 2 (błąd estymacji modelu), p - liczba współczynników falkowej reprezentacji sygnału (cech), n - liczba sygnałów w ciągu uczącym, df(λ) - rozmiar modelu dla ustalonego λ (liczba współćzynników w zbiorze aktywnym, tzn. liczba niezerowych współrzędnych ˆβ). Kryteria AIC i BIC minimalizują błąd RSS między rzeczywistym modelem y a estymowanym obciętym modelem ŷ oraz liczbę niezerowych współczynników df. Kryteria te nie są dedykowane zadaniom rozpoznawania sygmałów, a raczej mają zastosowanie w odszumianiu sygnałów. W eksperymentalnej części pracy pokażemy, że liczba niewyzerowanych współczynników przy użyciu kryteriów AIC i BIC jest relatywnie duża. Dlatego proponujemy nowe kryterium oparte o wyznaczone eksperymentalnie ryzyko dla ciągu uczącego: 3. Kryterium MIN MIN(λ) = RISK + g(df(λ)), (8) gdzie: RISK = R( ˆβ) - eksperymentalne ryzyko błędnej klasyfikacji modelu ˆβ o df(λ) niezerowych współczynnikach falkowych (odpowiedających niezerowym współrzędnym ˆβ), g( ) - niemalejąca funkcja, df(λ) - rozmiar modelu dla ustalonego λ. Na potrzeby eksperymentu przyjęliśmy, że g jest funkcją identycznościową, tj. g(x) = x.
4 3. Wyniki eksperymentu Eksperyment jest kontynuacją badań zaprezentowanych w pracy Libal [5]. W niniejszym artykule przyjęto nowe kryterium wyboru progu λ MIN dane wzorem (8). Wygenerowano n = 100 zaszumionych sygnałów (po 50 w każdej klasie) dla szumu gaussowskiego na poziomie ɛ = 0.05 oraz jednorodnego na czterech poziomach c = 0.7, 1.0, 1.3 i 1.6. Każdy sygnał zawierał 2 10 = 1024 próbek z przedziału czasu [0, 1]. W pracy [5] pokazano, że dekompozycja sygnału na większą liczbę poziomów (np. 5, 6 i więcej) skutkuje zmniejszeniem ryzyka. Dlatego zaszumione sygnały zostały zdekomponowane w bazach Haara tylko na dwa ciągi współczynników falkowych W (s(t)) = (c j0, d j0 ), aby ułatwić porównanie jakości progowania dzięki wyższym wartościom ryzyka. Otrzymane w ten sposób współczynniki falkowe stanowiły reprezentacje sygnałów. Następnie falkowe współczynniki zostały sprogowane za pomocą techniki LASSO dla wszystkich możliwych wartości progu λ, dla sygnałów z ciągu uczącego. Dla wszystkich sprogowanych modeli ˆβ oraz wszystkich sygnałów z ciągu testowego przeprowadzono rozpoznawanie za pomocą algorytmu 5NN (5 najbliższych sąsiadów). W kolejnym kroku wyznaczono minimalne wartości kryteriów MIN, BIC i AIC oraz obliczono odpowiadające im progi λ MIN, λ BIC and λ AIC. Rys. 2. Wykres współrzędnych estymatora LASSO modelu ˆβ = ( ˆβ 1, ˆβ 2,..., ˆβ p ) z zaznaczonymi wartościami progowymi λ = β i dla kryteriów AIC, BIC i MIN, dla sygnału o parametrach ɛ = 0.05 i c=1.0. Wraz ze wzrostem wariancji sygnału V ar [s(t i )] = c 2 /3 + ɛ 2 (tzn. spadkiem SNR), średnia wartość progów λ MIN, λ BIC i λ AIC również rośnie. Tym samym im wyższe zakłócenie sygnału, tym więcej współczynników pozostaje niewyzerowanych. Tabela 1 zawiera średnie wartości λ natomiast Tabela 2 - wartości eksperymentalnego ryzyka dla tych λ. W przeprowadzonych eksperymentach średnie wartości β i dla kryteriów MIN, BIC i AIC wykazują zależność λ MIN λ BIC λ AIC. Na Rys.3 przedstawiono mediany warości progów wraz z przedziałem (pudełkiem) między 1 i 3 kwantylem. Przedział ten dla λ MIN jest szerszy niż dla λ BIC i λ AIC, zwłaszcza dla wyższych poziomów szumów. Średnia wartość ryzyka dla λ MIN nie przekroczyła w przeprowadzonym eksperymencie 3.6%.
5 Skutkiem użycia nowego kryterium MIN jest: SNR [db] c λ MIN λ BIC λ AIC Tab. 1. Średnia wartość progu λ. SNR [db] c R MIN R BIC R AIC Tab. 2. Eksperymentalne ryzyko [%] dla uśrednionych λ. - niski poziom ryzyka (tylko dla wysokiego poziomu szumu, tzn. dla SNR=0.7 [db] ryzyko było wyższe niż 1%), - mniejszy rozmiar modelu (zawierający około współczynników) w porównaniu do pozostałych dwóch kryteriów (dla BIC około pozostawionych cech, a dla AIC około cech) - i szybsze obliczenia (potrzeba mniejszej liczby kroków w algorytmie LASSO do wyznaczenia Literatura modelu, po przekroczeniu λ MIN procedurę można przerwać). [1] H. Akaike, Information theory and an extension of maximum likelihood principle, Proc. 2nd International Symposium on Information Theory, Eds. B.N. Petrov and F. Csaki, , SciTePress, Budapest, [2] I. Daubechies, Ten Lectures on Wavelets, SIAM Edition, Philadelphia, [3] B. Efron, T. Hastie, I. Johnstone, R. Tibshirani, Least Angle Regression, Annals of Statistics, 32(2), , [4] Z. Hasiewicz, P. Sliwinski, Orthogonal wavelets with compact support. Application to nonparametric identification systems (in Polish), Exit, Warsaw, [5] U. Libal, Feature Selection for Pattern Recognition by LASSO and Thresholding Methods a Comparison, Proc. 16th IEEE International Conference on Methods and Models in Automation and Robotics - MMAR 2011, Aug., , [6] G. Schwarz, Estimating the dimention of a model, Annals of Statistics, 6, , [7] R. Tibshirani, Regression Shrinkage and Selection via the Lasso, Journal of the Royal Statistical Society. Series B, 58(1), , 1996.
6 [8] H. Zou, T. Hastie, R. Tibshirani, On the degrees of freedom of the lasso, Annals of Statistics, 35(5), , λ AIC = λ AIC = λ BIC = λ BIC = R(β) 10 8 R(β) 15 6 λ MIN = λ MIN = Σ β j Σ β j Rys. 3. Eksperymentalne ryzyko R [%] błędnej klasyfikacji z zaznaczonymi przykładowymi wartościami progowymi λ = β i dla kryteriów AIC, BIC i MIN. Po lewej dla c = 0.7, po prawej c = 1.3. Rys. 4. Wykresy pudełkowe progów λ MIN, λ BIC i λ AIC. Po lewej dla c = 0.7, po prawej c = 1.3. MODEL SELECTION CRITERIA FOR EXPERIMENTAL PATTERN RECOGNITION OF SIGNAL DECOMPOSED IN WAVELET BASES There is searched the balance between an increase of pattern recognition risk and a decrease of a model size. The experiments are performed for noisy signals decomposed in Haar wavelet bases. Wavelet representation of signals, by wavelet coefficients called signal features, constitutes the full model. The presented feature selection method is based on the Lasso algorithm (Least Absolute Shrinkage and Selection Operator). The aim of the experiments is to find an optimal model size and investigate the relations between the risk, the number of signal features and the noise level. We propose a new model selection criterion MIN that minimizes both the risk and the number of signal features. We compare the experimental risk of 5NN classification rule for all possible reduced models and for several values of noise variance. Experiments shows that the new criterion MIN allows to reduce the size of model simultaneously with a small increase of misclassification risk in comparison to AIC and BIC criteria.
Własności estymatorów regresji porządkowej z karą LASSO
Własności estymatorów regresji porządkowej z karą LASSO Uniwersytet Mikołaja Kopernika w Toruniu Uniwersytet Warszawski Badania sfinansowane ze środków Narodowego Centrum Nauki przyznanych w ramach finansowania
Estymatory regresji rangowej oparte na metodzie LASSO
Estymatory regresji rangowej oparte na metodzie LASSO Wojciech Rejchel UMK Toruń Wisła 2013 Z = (X, Y ), Z = (X, Y ) - niezależne wektory losowe o tym samym rozkładzie P X, X X R m, Y, Y R Z = (X, Y ),
10. Redukcja wymiaru - metoda PCA
Algorytmy rozpoznawania obrazów 10. Redukcja wymiaru - metoda PCA dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. PCA Analiza składowych głównych: w skrócie nazywana PCA (od ang. Principle Component
2. Empiryczna wersja klasyfikatora bayesowskiego
Algorytmy rozpoznawania obrazów 2. Empiryczna wersja klasyfikatora bayesowskiego dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Brak pełnej informacji probabilistycznej Klasyfikator bayesowski
5. Analiza dyskryminacyjna: FLD, LDA, QDA
Algorytmy rozpoznawania obrazów 5. Analiza dyskryminacyjna: FLD, LDA, QDA dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Liniowe funkcje dyskryminacyjne Liniowe funkcje dyskryminacyjne mają ogólną
Wykład 4 Wybór najlepszej procedury. Estymacja parametrów re
Wykład 4 Wybór najlepszej procedury. Estymacja parametrów regresji z wykorzystaniem metody bootstrap. Wrocław, 22.03.2017r Wybór najlepszej procedury - podsumowanie Co nas interesuje przed przeprowadzeniem
7. Maszyny wektorów podpierajacych SVMs
Algorytmy rozpoznawania obrazów 7. Maszyny wektorów podpierajacych SVMs dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Maszyny wektorów podpierajacych - SVMs Maszyny wektorów podpierających (ang.
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium JAVA Zadanie nr 2 Rozpoznawanie liter autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z problemem klasyfikacji
Rozpoznawanie obrazów
Rozpoznawanie obrazów Laboratorium Python Zadanie nr 1 Regresja liniowa autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, M. Zięba, J. Kaczmar Cel zadania Celem zadania jest implementacja liniowego zadania
Stosowana Analiza Regresji
Stosowana Analiza Regresji Wykład VIII 30 Listopada 2011 1 / 18 gdzie: X : n p Q : n n R : n p Zał.: n p. X = QR, - macierz eksperymentu, - ortogonalna, - ma zera poniżej głównej diagonali. [ R1 X = Q
TRANSFORMATA FALKOWA WYBRANYCH SYGNAŁÓW SYMULACYJNYCH
1-2013 PROBLEMY EKSPLOATACJI 27 Izabela JÓZEFCZYK, Romuald MAŁECKI Politechnika Warszawska, Płock TRANSFORMATA FALKOWA WYBRANYCH SYGNAŁÓW SYMULACYJNYCH Słowa kluczowe Sygnał, dyskretna transformacja falkowa,
Sposoby opisu i modelowania zakłóceń kanałowych
INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Podstawy Telekomunikacji Sposoby opisu i modelowania zakłóceń kanałowych Warszawa 2010r. 1. Cel ćwiczeń: Celem ćwiczeń
PRZYKŁAD ZASTOSOWANIA DOKŁADNEGO NIEPARAMETRYCZNEGO PRZEDZIAŁU UFNOŚCI DLA VaR. Wojciech Zieliński
PRZYKŁAD ZASTOSOWANIA DOKŁADNEGO NIEPARAMETRYCZNEGO PRZEDZIAŁU UFNOŚCI DLA VaR Wojciech Zieliński Katedra Ekonometrii i Statystyki SGGW Nowoursynowska 159, PL-02-767 Warszawa wojtek.zielinski@statystyka.info
PROGRAMOWANIE DYNAMICZNE W ROZMYTYM OTOCZENIU DO STEROWANIA STATKIEM
Mostefa Mohamed-Seghir Akademia Morska w Gdyni PROGRAMOWANIE DYNAMICZNE W ROZMYTYM OTOCZENIU DO STEROWANIA STATKIEM W artykule przedstawiono propozycję zastosowania programowania dynamicznego do rozwiązywania
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 1 Regresja liniowa autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z liniowym zadaniem najmniejszych
Regresja liniowa w R Piotr J. Sobczyk
Regresja liniowa w R Piotr J. Sobczyk Uwaga Poniższe notatki mają charakter roboczy. Mogą zawierać błędy. Za przesłanie mi informacji zwrotnej o zauważonych usterkach serdecznie dziękuję. Weźmy dane dotyczące
Stosowana Analiza Regresji
Stosowana Analiza Regresji Wykład VI... 16 Listopada 2011 1 / 24 Jest to rozkład zmiennej losowej rozkład chi-kwadrat Z = n i=1 X 2 i, gdzie X i N(µ i, 1) - niezależne. Oznaczenie: Z χ 2 (n, λ), gdzie:
LABORATORIUM PODSTAW TELEKOMUNIKACJI
WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego w Warszawie Wydział Elektroniki LABORATORIUM PODSTAW TELEKOMUNIKACJI Grupa Podgrupa Data wykonania ćwiczenia Ćwiczenie prowadził... Skład podgrupy:
Spis treści Wstęp Estymacja Testowanie. Efekty losowe. Bogumiła Koprowska, Elżbieta Kukla
Bogumiła Koprowska Elżbieta Kukla 1 Wstęp Czym są efekty losowe? Przykłady Model mieszany 2 Estymacja Jednokierunkowa klasyfikacja (ANOVA) Metoda największej wiarogodności (ML) Metoda największej wiarogodności
Problem eliminacji nieprzystających elementów w zadaniu rozpoznania wzorca Marcin Luckner
Problem eliminacji nieprzystających elementów w zadaniu rozpoznania wzorca Marcin Luckner Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska Elementy nieprzystające Definicja odrzucania Klasyfikacja
Wykład 5 Teoria eksperymentu
Wykład 5 Teoria eksperymentu Wrocław, 22.03.2017r Co to jest teoria eksperymentu? eksperyment - badanie jakiegoś zjawiska polegające na celowym wywołaniu tego zjawiska lub jego zmian oraz obserwacji i
LABORATORIUM AKUSTYKI MUZYCZNEJ. Ćw. nr 12. Analiza falkowa dźwięków instrumentów muzycznych. 1. PODSTAWY TEORETYCZNE ANALIZY FALKOWEJ.
LABORATORIUM AKUSTYKI MUZYCZNEJ. Ćw. nr 1. Analiza falkowa dźwięków instrumentów muzycznych. 1. PODSTAWY TEORETYCZNE ANALIZY FALKOWEJ. Transformacja falkowa (ang. wavelet falka) przeznaczona jest do analizy
Model regresji wielokrotnej Wykład 14 ( ) Przykład ceny domów w Chicago
Model regresji wielokrotnej Wykład 14 (4.06.2007) Przykład ceny domów w Chicago Poniżej są przedstawione dane dotyczące cen domów w Chicago (źródło: Sen, A., Srivastava, M., Regression Analysis, Springer,
O ŚREDNIEJ STATYSTYCZNEJ
Od średniej w modelu gaussowskim do kwantyli w podstawowym modelu nieparametrycznym IMPAN 1.X.2009 Rozszerzona wersja wykładu: O ŚREDNIEJ STATYSTYCZNEJ Ryszard Zieliński XII Międzynarodowe Warsztaty dla
Laboratorium Przetwarzania Sygnałów
PTS - laboratorium Laboratorium Przetwarzania Sygnałów Ćwiczenie 4 Transformacja falkowa Opracował: - prof. dr hab. inż. Krzysztof Kałużyński Zakład Inżynierii Biomedycznej Instytut Metrologii i Inżynierii
Przetwarzanie Sygnałów. Zastosowanie Transformaty Falkowej w nadzorowaniu
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka Zastosowanie Transformaty Falkowej
Porównanie modeli regresji. klasycznymi modelami regresji liniowej i logistycznej
Porównanie modeli logicznej regresji z klasycznymi modelami regresji liniowej i logistycznej Instytut Matematyczny, Uniwersytet Wrocławski Małgorzata Bogdan Instytut Matematyki i Informatyki, Politechnika
Porównanie błędu predykcji dla różnych metod estymacji współczynników w modelu liniowym, scenariusz p bliskie lub większe od n
Porównanie błędu predykcji dla różnych metod estymacji współczynników w modelu iowym, scenariusz p bliskie lub większe od n Przemyslaw.Biecek@gmail.com, MIM Uniwersytet Warszawski Plan prezentacji: 1 Motywacja;
Wybór modelu i ocena jakości klasyfikatora
Wybór modelu i ocena jakości klasyfikatora Błąd uczenia i błąd testowania Obciążenie, wariancja i złożoność modelu (klasyfikatora) Dekompozycja błędu testowania Optymizm Estymacja błędu testowania AIC,
Szacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE. Joanna Sawicka
Szacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE Joanna Sawicka Plan prezentacji Model Poissona-Gamma ze składnikiem regresyjnym Konstrukcja optymalnego systemu Bonus- Malus Estymacja
Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład II 2017/2018
Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład II bogumil.konopka@pwr.edu.pl 2017/2018 Określenie rzeczywistej dokładności modelu Zbiór treningowym vs zbiór testowy Zbiór treningowy
Metody Ekonometryczne
Metody Ekonometryczne Goodness of fit i wprowadzenie do wnioskowania statystycznego Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Metody Ekonometyczne Wykład 2 Goodness of fit i wprowadzenie do wnioskowania
Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów
Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,
Wstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak
Wstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak 1 Wprowadzenie. Zmienne losowe Podczas kursu interesować nas będzie wnioskowanie o rozpatrywanym zjawisku. Poprzez wnioskowanie rozumiemy
WSTĘP DO REGRESJI LOGISTYCZNEJ. Dr Wioleta Drobik-Czwarno
WSTĘP DO REGRESJI LOGISTYCZNEJ Dr Wioleta Drobik-Czwarno REGRESJA LOGISTYCZNA Zmienna zależna jest zmienną dychotomiczną (dwustanową) przyjmuje dwie wartości, najczęściej 0 i 1 Zmienną zależną może być:
CYFROWE PRZETWARZANIE SYGNAŁÓW
POLITECHNIKA RZESZOWSKA im. I. Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI Katedra Metrologii i Systemów Diagnostycznych CYFROWE PRZETWARZANIE SYGNAŁÓW Sygnały stochastyczne, parametry w dziedzinie
Algorytmy rozpoznawania obrazów. 11. Analiza skupień. dr inż. Urszula Libal. Politechnika Wrocławska
Algorytmy rozpoznawania obrazów 11. Analiza skupień dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Analiza skupień Określenia: analiza skupień (cluster analysis), klasteryzacja (clustering), klasyfikacja
KORELACJA 1. Wykres rozrzutu ocena związku między zmiennymi X i Y. 2. Współczynnik korelacji Pearsona
KORELACJA 1. Wykres rozrzutu ocena związku między zmiennymi X i Y 2. Współczynnik korelacji Pearsona 3. Siła i kierunek związku między zmiennymi 4. Korelacja ma sens, tylko wtedy, gdy związek między zmiennymi
Eksploracja Danych. wykład 4. Sebastian Zając. 10 maja 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja / 18
Eksploracja Danych wykład 4 Sebastian Zając WMP.SNŚ UKSW 10 maja 2017 Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja 2017 1 / 18 Klasyfikacja danych Klasyfikacja Najczęściej stosowana (najstarsza)
Komputerowa Analiza Danych Doświadczalnych
Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 konsultacje: poniedziałek, 10-11, środa: 11-12 www: http://www.if.pw.edu.pl/~gos/students/kadd
ESTYMACJA BŁĘDU PREDYKCJI I JEJ ZASTOSOWANIA
ESTYMACJA BŁĘDU PREDYKCJI I JEJ ZASTOSOWANIA Jan Mielniczuk Wisła, grudzień 2009 PLAN Błędy predykcji i ich podstawowe estymatory Estymacja błędu predykcji w modelu liniowym. Funkcje kryterialne Własności
Statystyka opisowa. Wykład V. Regresja liniowa wieloraka
Statystyka opisowa. Wykład V. e-mail:e.kozlovski@pollub.pl Spis treści 1 Prosta regresji cechy Y względem cech X 1,..., X k. 2 3 Wyznaczamy zależność cechy Y od cech X 1, X 2,..., X k postaci Y = α 0 +
Kombinacja jądrowych estymatorów gęstości w klasyfikacji - zastosowanie na sztucznym zbiorze danych
Kombinacja jądrowych estymatorów gęstości w klasyfikacji - zastosowanie na sztucznym zbiorze danych Mateusz Kobos, 07.04.2010 Seminarium Metody Inteligencji Obliczeniowej Spis treści Opis algorytmu i zbioru
SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.
SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska INFORMACJE WSTĘPNE Hipotezy do uczenia się lub tworzenia
Wprowadzenie. { 1, jeżeli ˆr(x) > 0, pozatym. Regresja liniowa Regresja logistyczne Jądrowe estymatory gęstości. Metody regresyjne
Wprowadzenie Prostym podejściem do klasyfikacji jest estymacja funkcji regresji r(x) =E(Y X =x)zpominięciemestymacjigęstościf k. Zacznijmyodprzypadkudwóchgrup,tj.gdy Y = {1,0}. Wówczasr(x) =P(Y =1 X =x)ipouzyskaniuestymatora
Adrian Horzyk
Metody Inteligencji Obliczeniowej Metoda K Najbliższych Sąsiadów (KNN) Adrian Horzyk horzyk@agh.edu.pl AGH Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej
Wojciech Skwirz
1 Regularyzacja jako metoda doboru zmiennych objaśniających do modelu statystycznego. 2 Plan prezentacji 1. Wstęp 2. Część teoretyczna - Algorytm podziału i ograniczeń - Regularyzacja 3. Opis wyników badania
Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.
Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ
I jest narzędziem służącym do porównywania rozproszenia dwóch zmiennych. Używamy go tylko, gdy pomiędzy zmiennymi istnieje logiczny związek
ZADANIA statystyka opisowa i CTG 1. Dokonano pomiaru stężenia jonów azotanowych w wodzie μg/ml 1 0.51 0.51 0.51 0.50 0.51 0.49 0.52 0.53 0.50 0.47 0.51 0.52 0.53 0.48 0.59 0.50 0.52 0.49 0.49 0.50 0.49
Konferencja Statystyka Matematyczna Wisła 2013
Konferencja Statystyka Matematyczna Wisła 2013 Wykorzystanie metod losowych podprzestrzeni do predykcji i selekcji zmiennych Paweł Teisseyre Instytut Podstaw Informatyki, Polska Akademia Nauk Paweł Teisseyre
DRZEWA REGRESYJNE I LASY LOSOWE JAKO
DRZEWA REGRESYJNE I LASY LOSOWE JAKO NARZĘDZIA PREDYKCJI SZEREGÓW CZASOWYCH Z WAHANIAMI SEZONOWYMI Grzegorz Dudek Instytut Informatyki Wydział Elektryczny Politechnika Częstochowska www.gdudek.el.pcz.pl
Ważne rozkłady i twierdzenia c.d.
Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby
WYKŁAD 6. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki
WYKŁAD 6 Witold Bednorz, Paweł Wolff 1 Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Własności Wariancji Przypomnijmy, że VarX = E(X EX) 2 = EX 2 (EX) 2. Własności
8. Drzewa decyzyjne, bagging, boosting i lasy losowe
Algorytmy rozpoznawania obrazów 8. Drzewa decyzyjne, bagging, boosting i lasy losowe dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Drzewa decyzyjne Drzewa decyzyjne (ang. decision trees), zwane
Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
Inteligentna analiza danych
Numer indeksu 150946 Michał Moroz Imię i nazwisko Numer indeksu 150875 Grzegorz Graczyk Imię i nazwisko kierunek: Informatyka rok akademicki: 2010/2011 Inteligentna analiza danych Ćwiczenie I Wskaźniki
Ekonometria. Wprowadzenie do modelowania ekonometrycznego Estymator KMNK. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Wprowadzenie do modelowania ekonometrycznego Estymator Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 1 Estymator 1 / 16 Agenda 1 Literatura Zaliczenie przedmiotu 2 Model
Selekcja modelu liniowego i predykcja metodami losowych podprzestrzeni
Selekcja modelu liniowego i predykcja metodami losowych podprzestrzeni Paweł Teisseyre Instytut Podstaw Informatyki, Polska Akademia Nauk Paweł Teisseyre Selekcja modelu liniowego i predykcja 1 / 29 Plan
Funkcje charakterystyczne zmiennych losowych, linie regresji 1-go i 2-go rodzaju
Funkcje charakterystyczne zmiennych losowych, linie regresji -go i 2-go rodzaju Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
9. Praktyczna ocena jakości klasyfikacji
Algorytmy rozpoznawania obrazów 9. Praktyczna ocena jakości klasyfikacji dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Zbiór uczacy i zbiór testowy 1. Zbiór uczacy służy do konstrukcji (treningu)
Propensity score matching (PSM)
Propensity score matching (PSM) Jerzy Mycielski Uniwersytet Warszawski Maj 2010 Jerzy Mycielski (Uniwersytet Warszawski) Propensity score matching (PSM) Maj 2010 1 / 18 Badania ewaluacyjne Ocena wpływu
Stacjonarność Integracja. Integracja. Integracja
Biały szum AR(1) Słaba stacjonarność Szereg czasowy nazywamy słabo (wariancyjnie) stacjonarnym jeżeli: Biały szum AR(1) Słaba stacjonarność Szereg czasowy nazywamy słabo (wariancyjnie) stacjonarnym jeżeli:
Zastosowania sieci neuronowych
Zastosowania sieci neuronowych aproksymacja LABORKA Piotr Ciskowski zadanie 1. aproksymacja funkcji odległość punktów źródło: Żurada i in. Sztuczne sieci neuronowe, przykład 4.4, str. 137 Naucz sieć taką
Ekonometria. Weryfikacja liniowego modelu jednorównaniowego. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Weryfikacja liniowego modelu jednorównaniowego Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 2 Weryfikacja liniowego modelu jednorównaniowego 1 / 28 Agenda 1 Estymator
Detekcja punktów zainteresowania
Informatyka, S2 sem. Letni, 2013/2014, wykład#8 Detekcja punktów zainteresowania dr inż. Paweł Forczmański Katedra Systemów Multimedialnych, Wydział Informatyki ZUT 1 / 61 Proces przetwarzania obrazów
Monte Carlo, bootstrap, jacknife
Monte Carlo, bootstrap, jacknife Literatura Bruce Hansen (2012 +) Econometrics, ze strony internetowej: http://www.ssc.wisc.edu/~bhansen/econometrics/ Monte Carlo: rozdział 8.8, 8.9 Bootstrap: rozdział
Laboratorium Przetwarzania Sygnałów Biomedycznych
Laboratorium Przetwarzania Sygnałów Biomedycznych Ćwiczenie 1 Wydobywanie sygnałów z szumu z wykorzystaniem uśredniania Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - mgr inż. Tomasz Kubik
Automatyczne rozpoznawanie mowy - wybrane zagadnienia / Ryszard Makowski. Wrocław, Spis treści
Automatyczne rozpoznawanie mowy - wybrane zagadnienia / Ryszard Makowski. Wrocław, 2011 Spis treści Przedmowa 11 Rozdział 1. WPROWADZENIE 13 1.1. Czym jest automatyczne rozpoznawanie mowy 13 1.2. Poziomy
Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311
Sztuczne sieci neuronowe Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311 PLAN: Wykład 5 - Metody doboru współczynnika uczenia - Problem inicjalizacji wag - Problem doboru architektury
Cyfrowe przetwarzanie obrazów i sygnałów Wykład 8 AiR III
1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może
Maszyny wektorów podpierajacych w regresji rangowej
Maszyny wektorów podpierajacych w regresji rangowej Uniwersytet Mikołaja Kopernika Z = (X, Y ), Z = (X, Y ) - niezależne wektory losowe o tym samym rozkładzie X X R d, Y R Z = (X, Y ), Z = (X, Y ) - niezależne
Analiza szeregów czasowych: 6. Liniowe modele niestacjonarne
Analiza szeregów czasowych: 6. Liniowe modele niestacjonarne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Warunki stacjonarności modelu AR(p) y n = β 1 y n 1 + β 2 y n 2 + + β
Testowanie hipotez statystycznych
Część 2 Hipoteza złożona Testowanie hipotez łącznych Zapis matematyczny Rozkład statystyki testowej Hipoteza łączna H 0 : Rβ = q Hipoteza złożona Testowanie hipotez łącznych Zapis matematyczny Rozkład
Prawdopodobieństwo i rozkład normalny cd.
# # Prawdopodobieństwo i rozkład normalny cd. Michał Daszykowski, Ivana Stanimirova Instytut Chemii Uniwersytet Śląski w Katowicach Ul. Szkolna 9 40-006 Katowice E-mail: www: mdaszyk@us.edu.pl istanimi@us.edu.pl
Badania eksperymentalne
Badania eksperymentalne Pomiar na skali porządkowej mgr Agnieszka Zięba Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa Najpopularniejsze sposoby oceny wyników eksperymentu
Klasyfikacja naiwny Bayes
Klasyfikacja naiwny Bayes LABORKA Piotr Ciskowski NAIWNY KLASYFIKATOR BAYESA wyjaśnienie Naiwny klasyfikator Bayesa żródło: Internetowy Podręcznik Statystyki Statsoft dane uczące 2 klasy - prawdopodobieństwo
Statystyczna analiza danych 1
Statystyczna analiza danych 1 Regresja liniowa 1 Ewa Szczurek szczurek@mimuw.edu.pl Instytut Informatyki Uniwersytet Warszawski Ewa Szczurek Regresja liniowa 1 1 / 41 Dane: wpływ reklam produktu na sprzedaż
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny
estymacja wskaźnika bardzo niskiej intensywności pracy z wykorzystaniem modelu faya-herriota i jego rozszerzeń
estymacja wskaźnika bardzo niskiej intensywności pracy z wykorzystaniem modelu faya-herriota i jego rozszerzeń Łukasz Wawrowski, Maciej Beręsewicz 12.06.2015 Urząd Statystyczny w Poznaniu, Uniwersytet
Opis wykonanych badań naukowych oraz uzyskanych wyników
Opis wykonanych badań naukowych oraz uzyskanych wyników 1. Analiza danych (krok 2 = uwzględnienie epistazy w modelu): detekcja QTL przy wykorzystaniu modeli dwuwymiarowych z uwzględnieniem różnych modeli
Regresja wielokrotna. PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com
Regresja wielokrotna Model dla zależności liniowej: Y=a+b 1 X 1 +b 2 X 2 +...+b n X n Cząstkowe współczynniki regresji wielokrotnej: b 1,..., b n Zmienne niezależne (przyczynowe): X 1,..., X n Zmienna
Rozkład Gaussa i test χ2
Rozkład Gaussa jest scharakteryzowany dwoma parametramiwartością oczekiwaną rozkładu μ oraz dyspersją σ: METODA 2 (dokładna) polega na zmianie zmiennych i na obliczeniu pk jako różnicy całek ze standaryzowanego
Wykład 7 Teoria eksperymentu
Wykład 7 Teoria eksperymentu Wrocław, 19.04.2017r Układ niekompletnych bloków losowych Zrównoważone niekompletne bloki: Gdy wszystkie porównania wyników są jednakowo ważne należy tak wybrać kombinacje
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 17. ALGORYTMY EWOLUCYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska KODOWANIE BINARNE Problem różnych struktur przestrzeni
Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU
Analiza danych Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Różne aspekty analizy danych Reprezentacja graficzna danych Metody statystyczne: estymacja parametrów
Zrównoleglona optymalizacja stochastyczna na dużych zbiorach danych
Zrównoleglona optymalizacja stochastyczna na dużych zbiorach danych mgr inż. C. Dendek prof. nzw. dr hab. J. Mańdziuk Politechnika Warszawska, Wydział Matematyki i Nauk Informacyjnych Outline 1 Uczenie
Techniki Optymalizacji: Metody regresji
Techniki Optymalizacji: Metody regresji Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: piątek 15:10-16:40
Najprostsze modele sieci z rekurencją. sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga;
Sieci Hopfielda Najprostsze modele sieci z rekurencją sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga; Modele bardziej złoŝone: RTRN (Real Time Recurrent Network), przetwarzająca sygnały w czasie
Zmiany fazy/okresu oscylacji Chandlera i rocznej we współrzędnych bieguna ziemskiego.
Strona 1 z 27 Zmiany fazy/okresu oscylacji Chandlera i rocznej we współrzędnych bieguna ziemskiego. Alicja Rzeszótko Wiesław Kosek Waldemar Popiński Seminarium Sekcji Dynamiki Ziemi Komitetu Geodezji PAN
ZASTOSOWANIE SPLOTU FUNKCJI DO OPISU WŁASNOŚCI NIEZAWODNOŚCIOWYCH UKŁADÓW Z REZERWOWANIEM
1-2011 PROBLEMY EKSPLOATACJI 205 Zbigniew ZDZIENNICKI, Andrzej MACIEJCZYK Politechnika Łódzka, Łódź ZASTOSOWANIE SPLOTU FUNKCJI DO OPISU WŁASNOŚCI NIEZAWODNOŚCIOWYCH UKŁADÓW Z REZERWOWANIEM Słowa kluczowe
Estymacja parametrów w modelu normalnym
Estymacja parametrów w modelu normalnym dr Mariusz Grządziel 6 kwietnia 2009 Model normalny Przez model normalny będziemy rozumieć rodzine rozkładów normalnych N(µ, σ), µ R, σ > 0. Z Centralnego Twierdzenia
Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap
Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap Magdalena Frąszczak Wrocław, 21.02.2018r Tematyka Wykładów: Próba i populacja. Estymacja parametrów z wykorzystaniem metody
(LMP-Liniowy model prawdopodobieństwa)
OGÓLNY MODEL REGRESJI BINARNEJ (LMP-Liniowy model prawdopodobieństwa) Dla k3 y α α α α + x + x + x 2 2 3 3 + α x x α x x + α x x + α x x + ε + x 4 2 5 3 6 2 3 7 2 3 Zał.: Wszystkie zmienne interakcyjne
Implementacja filtru Canny ego
ANALIZA I PRZETWARZANIE OBRAZÓW Implementacja filtru Canny ego Autor: Katarzyna Piotrowicz Kraków,2015-06-11 Spis treści 1. Wstęp... 1 2. Implementacja... 2 3. Przykłady... 3 Porównanie wykrytych krawędzi
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 7 i 8 1 / 9 EFEKTYWNOŚĆ ESTYMATORÓW, próba
Kombinacja jądrowych estymatorów gęstości w klasyfikacji - testy na sztucznych danych
Kombinacja jądrowych estymatorów gęstości w klasyfikacji - testy na sztucznych danych Mateusz Kobos, 25.11.2009 Seminarium Metody Inteligencji Obliczeniowej 1/25 Spis treści Dolne ograniczenie na wsp.
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka. Wstęp teoretyczny Zmienne losowe Zmienne losowe
O ŚREDNIEJ STATYSTYCZNEJ
O ŚREDNIEJ STATYSTYCZNEJ Ryszard Zieliński XII Międzynarodowe Warsztaty dla Młodych Matematyków Rachunek Prawdopodobieństwa i Statystyka Kraków, 20 26 IX 2009 r. WYNIKI OBSERWACJI X 1, X 2,..., X n WYNIKI
Metoda najmniejszych kwadratów
Własności algebraiczne Model liniowy Zapis modelu zarobki = β 0 + β 1 plec + β 2 wiek + ε Oszacowania wartości współczynników zarobki = b 0 + b 1 plec + b 2 wiek + e Model liniowy Tabela: Oszacowania współczynników