7. Maszyny wektorów podpierajacych SVMs
|
|
- Wiktoria Wojciechowska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Algorytmy rozpoznawania obrazów 7. Maszyny wektorów podpierajacych SVMs dr inż. Urszula Libal Politechnika Wrocławska
2 1. Maszyny wektorów podpierajacych - SVMs Maszyny wektorów podpierających (ang. Support Vector Mashines, SVMs) należą do grupy klasyfikatorów liniowych. Obiekt reprezentowany przez x jest klasyfikowany do jednej z dwóch klas 1 i 1 za pomocą liniowej funkcji dyskryminacyjna δ(x) = w T x + w 0 w następujący sposób: 1, jeżeli w T x + w 0 > 0 Ψ SV M (x) = 1, jeżeli w T x + w 0 < 0. (1) Wektor w = (w 1, w 2,..., w D ) oraz wyraz wolny w 0 są tak dobierane, aby jak najszerzej liniowo separować klasy, jeżeli jest to możliwe. 2
3 8 7.5 Makroklasa 1 Makroklasa 2 Wektory podpierajace Rysunek 1. Wektory podpierające dla liniowego klasyfikatora SVMs. Źródło: opracowanie własne 3
4 Do treningu używamy ciągu uczącego {(x 1,c 1 ), (x 2,c 2 ),...,, (x N,c N )}, gdzie x k to D-wymiarowy wektor cech, a c k to jego klasa pochodzenia. Dane muszą zostać unormowane, co oznacza, że indeksy klas przyjmą wartości 1 i 1. Klasyfikator SVM dany wzorem (1) klasyfikuje zgodnie ze znakiem funkcji dyskryminacyjnej δ(x) = w T x + w 0. Wyznaczenie na podstawie ciągu uczącego parametrów w i, i = 0, 1, 2,...,D stanowi zadanie optymalizacyjne. 4
5 2. Maksymalizacja marginesu Rysunek 2. Hiperpłaszczyzna rozdzielająca o maksymalnym marginesie. Źródło: [5] 5
6 Maksymalizacja marginesu polega na maksymalizacji odległości między wektorami podpierającymi a hiperpłaszczyzną rozdzielającą. Odległość między hiperpłaszczyzną δ(x) = w T x + w 0 = 0 a pewnym wektorem x n z ciągu uczącego (n {1, 2...,N}) wynosi δ(x n ). (2) w Maksymalizację wyrażenia (2) można sprowadzić do minimalizacji w, lub równoważnie minimalizacji 1 2 w 2. (3) 6
7 Bez zmniejszenia ogólności rozważań zakładamy, że marginesy będą postaci w T x + w 0 = 1 i w T x + w 0 = 1. (4) Wszystkie punkty z ciągu uczącego muszą się znaleźć poza pasem między marginesami, ale tak aby wszystkie punkty z klasy 1 były po odpowiedniej stronie marginesu w T x + w 0 = 1, a wszystkie punkty z klasy 1 po odpowiedniej stronie marginesu w T x + w 0 = 1 (patrz rys. 2). Sprowadzamy ten warunek do nierówności c n ( w T x n + w 0 ) 1 (5) dla każdego wektora x n z ciągu uczącego (n {1, 2...,N}), gdzie c n to jego klasa pochodzenia. 7
8 Problem optymalizacyjny poszukiwania maksymalnego marginesu sprowadza się do min w,w0 1 2 w 2 przy c n ( w T x n + w 0 ) 1. (6) Metoda mnożników Lagrange a polega na minimalizacji funkcji L L(w, w 0, λ) = 1 2 w 2 N n=1 λ n { cn ( w T x n + w 0 ) 1 }. (7) Każdy mnożnik λ n 0 odpowiada jednemu wektorowi x n z ciągu uczącego (n {1, 2...,N}). 8
9 W celu minimalizacji funkcji L wyznaczamy jej pochodne i przyrównujemy je do zera L(w,w 0,λ) w = 0, L(w,w 0,λ) w 0 = 0, L(w,w 0,λ) λ = 0. (8) [przykład numeryczny dla D2] 9
10 3. Nieliniowe SVMs Niestety nie zawsze klasyfikacja za pomocą maszyn wektorów podpierających SVMs (1) jest możliwa do przeprowadzenia. Może się zdarzyć, że klasy nie są liniowo separowalne. Rysunek 3. Liniowo separowalne oraz nieseparowalne klasy. Źródło: opracowanie własne 10
11 W przypadku nierozdzielnych liniowo klas stosujemy trik z zastosowaniem funkcji jądrowych φ (kernel trick). Inną postać przyjmuje funkcja dyskryminacyjna δ(x) = w T φ (x) + w 0. Rysunek 4. Wektory podpierające dla nieliniowego klasyfikatora SVMs. Źródło: [2] 11
12 Funkcja L w metodzie mnożników Lagrange a również ulega zmianie L(w, w 0, λ) = 1 2 w 2 N n=1 Minimalizację L sprowadzamy do problemu dualnego. λ n { cn ( w T φ (x n ) + w 0 ) 1 }. (9) Maksymalizujemy teraz L przy ograniczeniach N L(λ) = n n=1λ 1 2 N n=1 N m=1 λ n λ m c n c m κ (x n,x m ) (10) λ n 0, n = 1,2,...,N, (11) N λ n c n = 0, (12) n=1 12
13 gdzie jądro κ przyjmuje postać κ (x n,x m ) = φ (x n ) T φ (x m ). (13) Funkcja jądrowa wielomianowa p-tego rzędu Matematyczna forma κ (x,y) κ (x,y) = ( x T y + r ) p gaussowska (Radial Basis Function) κ (x,y) = exp( x y 2 2σ 2 ) sigmoidalna κ (x,y) = tanh(x T y + r) 13
14 Jądrowa (nieliniowa) wersja klasyfikatora SVM to wtedy 1, jeżeli N n=1 Ψ kernel SV M (x) = λ nc n κ (x n,x) + w 0 > 0, 1, jeżeli N n=1 λ nc n κ (x n,x) + w 0 < 0. (14) 14
15 a) b) Rysunek 5. (a) Zbiór punktów nierozdzielny liniowo. (b) Ten sam zestaw danych przekształcony przez transformację [x 1,x 2 ] [x 1,x 2,x x2 2 ]. Źródło: [6] 15
16 a) b) Rysunek 6. Hiperpłaszczyzna rozdzielająca: (a) liniowa w R 3, (b) nieliniowa w R 2. Źródło: [6] 16
17 Literatura [1] A.R. Webb, K.D. Copsey, Statistical Pattern Recognition, 3rd ed., Wiley, (2011) [2] C.M. Bishop, Pattern Recognition and Machine Learning, Springer Series: Information Science and Statistics (2006) [3] M. Krzyśko, W. Wołyński, T. Górecki, M. Skorzybut, Systemy uczace się. Rozpoznawanie wzorców, analiza skupień i redukcja wymiarowości. WNT, Warszawa (2008) [4] R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, 2nd ed., Wiley, (2000) [5] [6] 17
5. Analiza dyskryminacyjna: FLD, LDA, QDA
Algorytmy rozpoznawania obrazów 5. Analiza dyskryminacyjna: FLD, LDA, QDA dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Liniowe funkcje dyskryminacyjne Liniowe funkcje dyskryminacyjne mają ogólną
10. Redukcja wymiaru - metoda PCA
Algorytmy rozpoznawania obrazów 10. Redukcja wymiaru - metoda PCA dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. PCA Analiza składowych głównych: w skrócie nazywana PCA (od ang. Principle Component
Algorytmy rozpoznawania obrazów. 11. Analiza skupień. dr inż. Urszula Libal. Politechnika Wrocławska
Algorytmy rozpoznawania obrazów 11. Analiza skupień dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Analiza skupień Określenia: analiza skupień (cluster analysis), klasteryzacja (clustering), klasyfikacja
8. Drzewa decyzyjne, bagging, boosting i lasy losowe
Algorytmy rozpoznawania obrazów 8. Drzewa decyzyjne, bagging, boosting i lasy losowe dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Drzewa decyzyjne Drzewa decyzyjne (ang. decision trees), zwane
9. Praktyczna ocena jakości klasyfikacji
Algorytmy rozpoznawania obrazów 9. Praktyczna ocena jakości klasyfikacji dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Zbiór uczacy i zbiór testowy 1. Zbiór uczacy służy do konstrukcji (treningu)
UCZENIE MASZYNOWE III - SVM. mgr inż. Adam Kupryjanow
UCZENIE MASZYNOWE III - SVM mgr inż. Adam Kupryjanow Plan wykładu Wprowadzenie LSVM dane separowalne liniowo SVM dane nieseparowalne liniowo Nieliniowy SVM Kernel trick Przykłady zastosowań Historia 1992
2. Empiryczna wersja klasyfikatora bayesowskiego
Algorytmy rozpoznawania obrazów 2. Empiryczna wersja klasyfikatora bayesowskiego dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Brak pełnej informacji probabilistycznej Klasyfikator bayesowski
Popularne klasyfikatory w pakietach komputerowych
Popularne klasyfikatory w pakietach komputerowych Klasyfikator liniowy Uogólniony klasyfikator liniowy SVM aiwny klasyfikator bayesowski Ocena klasyfikatora ROC Lista popularnych pakietów Klasyfikator
SVM: Maszyny Wektorów Podpieraja cych
SVM 1 / 24 SVM: Maszyny Wektorów Podpieraja cych Nguyen Hung Son Outline SVM 2 / 24 1 Wprowadzenie 2 Brak liniowej separowalności danych Nieznaczna nieseparowalność Zmiana przetrzeń atrybutów 3 Implementacja
Data Mining Wykład 6. Naiwny klasyfikator Bayes a Maszyna wektorów nośnych (SVM) Naiwny klasyfikator Bayesa.
GLM (Generalized Linear Models) Data Mining Wykład 6 Naiwny klasyfikator Bayes a Maszyna wektorów nośnych (SVM) Naiwny klasyfikator Bayesa Naiwny klasyfikator Bayesa jest klasyfikatorem statystycznym -
WYKŁAD: Perceptron Rosenblatta. Maszyny wektorów podpierających (SVM). Empiryczne reguły bayesowskie. Zaawansowane Metody Uczenia Maszynowego
WYKŁAD: Perceptron Rosenblatta. Maszyny wektorów podpierających (SVM). Empiryczne reguły bayesowskie Zaawansowane Metody Uczenia Maszynowego Perceptron Rosenblatta Szukamy hiperpłaszczyzny β 0 + β 1 najlepiej
KLASYFIKACJA TEKSTUR ZA POMOCĄ SVM MASZYNY WEKTORÓW WSPIERAJĄCYCH
Inżynieria Rolnicza 13/2006 Jacek Goszczyński Instytut Inżynierii Rolniczej Akademia Rolnicza w Poznaniu KLASYFIKACJA TEKSTUR ZA POMOCĄ SVM MASZYNY WEKTORÓW WSPIERAJĄCYCH Streszczenie Motywacją do badań
W ostatnim wykładzie doszliśmy do tego, że problem znalezienia klasyfikatora optymalnego pod względem marginesów można wyrazić w następujący sposób:
Spis treści 1 Maszyny Wektorów Wspierających 2 1.1 SVM w formaliźmie Lagranga 1.2 Przejście do pstaci dualnej 1.2.1 Wyznaczenie parametrów modelu: 1.2.2 Klasyfikacja: 2 Funkcje jądrowe 2.1 Mapowanie do
Pattern Classification
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley & Sons, 2000 with the permission of the authors
ŁĄCZENIE RÓWNOLEGŁE MODELI KLASYFIKACJI OTRZYMANYCH METODĄ WEKTORÓW NOŚNYCH
Michał Trzęsiok ŁĄCZENIE RÓWNOLEGŁE MODELI KLASYFIKACJI OTRZYMANYCH METODĄ WEKTORÓW NOŚNYCH Wprowadzenie Konstruowanie funkcji klasyfikujących przez łączenie wielu modeli składowych stanowi główny nurt
Programowanie matematyczne
dr Adam Sojda Badania Operacyjne Wykład Politechnika Śląska Programowanie matematyczne Programowanie matematyczne, to problem optymalizacyjny w postaci: f ( x) max przy warunkach g( x) 0 h( x) = 0 x X
Klasyfikatory SVM. Przemysław Klęsk. 1 Wiadomości ogólne 1. 2 Margines separacji Wzór na odległość punktu od płaszczyzny...
Klasyfikatory SVM Przemysław Klęsk Spis treści 1 Wiadomości ogólne 1 Margines separacji 3.1 Wzór na odległość punktu od płaszczyzny... 3 3 Przypadek liniowej separowalności danych znajdowanie płaszczyzny
Zastosowania funkcji jądrowych do rozpoznawania ręcznie pisanych cyfr.
Zastosowania funkcji jądrowych do rozpoznawania ręcznie pisanych cyfr. Warszawa, 10 Marca 2016 Plan prezentacji. Definicja funkcji jądrowej. Plan prezentacji. Definicja funkcji jądrowej. Opis problemu
Jądrowe klasyfikatory liniowe
Jądrowe klasyfikatory liniowe Waldemar Wołyński Wydział Matematyki i Informatyki UAM Poznań Wisła, 9 grudnia 2009 Waldemar Wołyński () Jądrowe klasyfikatory liniowe Wisła, 9 grudnia 2009 1 / 19 Zagadnienie
Maszyny wektorów podpierajacych w regresji rangowej
Maszyny wektorów podpierajacych w regresji rangowej Uniwersytet Mikołaja Kopernika Z = (X, Y ), Z = (X, Y ) - niezależne wektory losowe o tym samym rozkładzie X X R d, Y R Z = (X, Y ), Z = (X, Y ) - niezależne
Problem eliminacji nieprzystających elementów w zadaniu rozpoznania wzorca Marcin Luckner
Problem eliminacji nieprzystających elementów w zadaniu rozpoznania wzorca Marcin Luckner Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska Elementy nieprzystające Definicja odrzucania Klasyfikacja
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium JAVA Zadanie nr 2 Rozpoznawanie liter autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z problemem klasyfikacji
1 Klasyfikator bayesowski
Klasyfikator bayesowski Załóżmy, że dane są prawdopodobieństwa przynależności do klasp( ),P( 2 ),...,P( L ) przykładów z pewnego zadania klasyfikacji, jak również gęstości rozkładów prawdopodobieństw wystąpienia
Konstrukcja biortogonalnych baz dyskryminacyjnych dla problemu klasyfikacji sygnałów. Wit Jakuczun
Konstrukcja biortogonalnych baz dyskryminacyjnych dla problemu klasyfikacji sygnałów Politechnika Warszawska Strona 1 Podstawowe definicje Politechnika Warszawska Strona 2 Podstawowe definicje Zbiór treningowy
FILTROWANIE SPAMU Z UŻYCIEM MASZYNY WEKTORÓW WSPIERAJĄCYCH
FILTROWANIE SPAMU Z UŻYCIEM MASZYNY WEKTORÓW WSPIERAJĄCYCH Plan referatu: 1. Wstęp. 2. Maszyny uczące. 3. Ogólnie o SVM. 4. Online SVM. 5. Mapowanie tekstu na wektory wspierające. 6. Historia. 7. Podsumowanie.
Regresyjne metody łączenia klasyfikatorów
Regresyjne metody łączenia klasyfikatorów Tomasz Górecki, Mirosław Krzyśko Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza XXXV Konferencja Statystyka Matematyczna Wisła 7-11.12.2009
SPOTKANIE 7: Redukcja wymiarów: PCA, Probabilistic PCA
Wrocław University of Technology SPOTKANIE 7: Redukcja wymiarów: PCA, Probabilistic PCA Maciej Zięba Studenckie Koło Naukowe Estymator jakub.tomczak@pwr.wroc.pl 18.01.2013 Redukcja wymiarów Zmienne wejściowe
Programowanie liniowe
Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.
SPOTKANIE 9: Metody redukcji wymiarów
Wrocław University of Technology SPOTKANIE 9: Metody redukcji wymiarów Piotr Klukowski* Studenckie Koło Naukowe Estymator piotr.klukowski@pwr.wroc.pl 08.12.2015 *Część slajdów pochodzi z prezentacji dr
Klasyfikacja LDA + walidacja
Klasyfikacja LDA + walidacja Dr hab. Izabela Rejer Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Plan wykładu 1. Klasyfikator 2. LDA 3. Klasyfikacja wieloklasowa 4. Walidacja
Elementy Modelowania Matematycznego
Elementy Modelowania Matematycznego Wykład 8 Programowanie nieliniowe Spis treści Programowanie nieliniowe Zadanie programowania nieliniowego Zadanie programowania nieliniowego jest identyczne jak dla
4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74
3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15
Elementy Modelowania Matematycznego Wykład 7 Programowanie nieliniowe i całkowitoliczbowe
Spis treści Elementy Modelowania Matematycznego Wykład 7 i całkowitoliczbowe Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp 2 3 Spis treści Spis treści 1 Wstęp
Wstęp do przetwarzania języka naturalnego. Wykład 11 Maszyna Wektorów Nośnych
Wstęp do przetwarzania języka naturalnego Wykład 11 Wojciech Czarnecki 8 stycznia 2014 Section 1 Przypomnienie Wektoryzacja tfidf Przypomnienie document x y z Antony and Cleopatra 5.25 1.21 1.51 Julius
Oracle Data Mining 10g
Oracle Data Mining 10g Zastosowanie algorytmu Support Vector Machines do problemów biznesowych Piotr Hajkowski Oracle Consulting Agenda Podstawy teoretyczne algorytmu SVM SVM w bazie danych Klasyfikacja
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 2 Detekcja twarzy autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się algorytmem gradientu prostego
Metody sztucznej inteligencji Zadanie 1: Perceptron Rosenblatt a w wersji nieliniowej
Metody sztucznej inteligencji Zadanie : Perceptron Rosenblatt a w wersji nieliniowej dr inż. Przemysław Klęsk Zbiór danych dla zadania do wykonania w domu Zgodnie z tym, co zostało podane na laboratoriach,
Estymatory regresji rangowej oparte na metodzie LASSO
Estymatory regresji rangowej oparte na metodzie LASSO Wojciech Rejchel UMK Toruń Wisła 2013 Z = (X, Y ), Z = (X, Y ) - niezależne wektory losowe o tym samym rozkładzie P X, X X R m, Y, Y R Z = (X, Y ),
WYKŁAD 4. Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie. autor: Maciej Zięba. Politechnika Wrocławska
Wrocław University of Technology WYKŁAD 4 Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie autor: Maciej Zięba Politechnika Wrocławska Klasyfikacja Klasyfikacja (ang. Classification):
Metody tworzenia efektywnych komitetów klasyfikatorów jednoklasowych Bartosz Krawczyk Katedra Systemów i Sieci Komputerowych Politechnika Wrocławska
Metody tworzenia efektywnych komitetów klasyfikatorów jednoklasowych Bartosz Krawczyk Katedra Systemów i Sieci Komputerowych Politechnika Wrocławska e-mail: bartosz.krawczyk@pwr.wroc.pl Czym jest klasyfikacja
Entropia Renyi ego, estymacja gęstości i klasyfikacja
Entropia Renyi ego, estymacja gęstości i klasyfikacja Wojciech Czarnecki Jacek Tabor 6 lutego 2014 1 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 1/36 36 2 / Wojciech Czarnecki,
Własności estymatorów regresji porządkowej z karą LASSO
Własności estymatorów regresji porządkowej z karą LASSO Uniwersytet Mikołaja Kopernika w Toruniu Uniwersytet Warszawski Badania sfinansowane ze środków Narodowego Centrum Nauki przyznanych w ramach finansowania
Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe.
Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. zajecia.jakubw.pl/nai Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. PODSTAWOWE ZAGADNIENIA TECHNICZNE AI
Uczenie się pojedynczego neuronu. Jeśli zastosowana zostanie funkcja bipolarna s y: y=-1 gdy z<0 y=1 gdy z>=0. Wówczas: W 1 x 1 + w 2 x 2 + = 0
Uczenie się pojedynczego neuronu W0 X0=1 W1 x1 W2 s f y x2 Wp xp p x i w i=x w+wo i=0 Jeśli zastosowana zostanie funkcja bipolarna s y: y=-1 gdy z=0 Wówczas: W 1 x 1 + w 2 x 2 + = 0 Algorytm
Ontogeniczne sieci neuronowe. O sieciach zmieniających swoją strukturę
Norbert Jankowski Ontogeniczne sieci neuronowe O sieciach zmieniających swoją strukturę Warszawa 2003 Opracowanie książki było wspierane stypendium Uniwersytetu Mikołaja Kopernika Spis treści Wprowadzenie
Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV
Klasyfikatory: k-nn oraz naiwny Bayesa Agnieszka Nowak Brzezińska Wykład IV Naiwny klasyfikator Bayesa Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną
Widzenie komputerowe (computer vision)
Widzenie komputerowe (computer vision) dr inż. Marcin Wilczewski 2018/2019 Organizacja zajęć Tematyka wykładu Cele Python jako narzędzie uczenia maszynowego i widzenia komputerowego. Binaryzacja i segmentacja
Metody eksploracji danych 2. Metody regresji. Piotr Szwed Katedra Informatyki Stosowanej AGH 2017
Metody eksploracji danych 2. Metody regresji Piotr Szwed Katedra Informatyki Stosowanej AGH 2017 Zagadnienie regresji Dane: Zbiór uczący: D = {(x i, y i )} i=1,m Obserwacje: (x i, y i ), wektor cech x
Lokalne klasyfikatory jako narzędzie analizy i
Lokalne klasyfikatory jako narzędzie analizy i klasyfikacji sygnałów 25 listopada 2005 Lokalne klasyfikatory... 2 Część I Hierarchiczne biortogonalne bazy dyskryminacyjne Lokalne klasyfikatory... 3 Sformułowanie
SYSTEMY UCZĄCE SIĘ WYKŁAD 1. INFORMACJE WSTĘPNE. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.
SYSTEMY UCZĄCE SIĘ WYKŁAD 1. INFORMACJE WSTĘPNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska PLAN WYKŁADU WSTĘP W 1 Uczenie się w ujęciu algorytmicznym. W
Rozpoznawanie wzorców. Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki
Rozpoznawanie wzorców Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki mbereta@pk.edu.pl beretam@torus.uck.pk.edu.pl www.michalbereta.pl Twierzdzenie: Prawdopodobieostwo, że n obserwacji wybranych
Metody klasyfikacji Danych wielowymiarowych by mgr inz. Marcin Kurdziel and mgr inz. Tomasz Arodz
Metody klasyfikacji Danych wielowymiarowych by mgr inz. and mgr inz. Tomasz Arodz supervised by Professor Dr W.Dzwinel Agenda Klasyfikacja liniowa podstawowe pojecia Algorytm perceptronu Fisher Linear
Agnieszka Nowak Brzezińska
Agnieszka Nowak Brzezińska jeden z algorytmów regresji nieparametrycznej używanych w statystyce do prognozowania wartości pewnej zmiennej losowej. Może również byd używany do klasyfikacji. - Założenia
A Zadanie
where a, b, and c are binary (boolean) attributes. A Zadanie 1 2 3 4 5 6 7 8 9 10 Punkty a (maks) (2) (2) (2) (2) (4) F(6) (8) T (8) (12) (12) (40) Nazwisko i Imiȩ: c Uwaga: ta część zostanie wypełniona
Równania różniczkowe cząstkowe drugiego rzędu
Równania różniczkowe cząstkowe drugiego rzędu Marcin Orchel Spis treści 1 Wstęp 1 1.1 Metoda faktoryzacji (rozdzielania zmiennych)................ 5 1.2 Metoda funkcji Greena.............................
Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU
Analiza danych Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Różne aspekty analizy danych Reprezentacja graficzna danych Metody statystyczne: estymacja parametrów
Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.
Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. pytania teoretyczne:. Co to znaczy, że wektory v, v 2 i v 3
Rozpoznawanie obrazów
Rozpoznawanie obrazów Laboratorium Python Zadanie nr 1 Regresja liniowa autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, M. Zięba, J. Kaczmar Cel zadania Celem zadania jest implementacja liniowego zadania
ROZPRAWA DOKTORSKA MARCIN KMIEĆ
Akademia Górniczo Hutnicza im. Stanisława Staszica w Krakowie Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej ROZPRAWA DOKTORSKA MARCIN KMIEĆ WYKRYWANIE NIEBEZPIECZNYCH PRZEDMIOTÓW
RBF sieci neuronowe o radialnych funkcjach bazowych
RBF sieci neuronowe o radialnych funkcjach bazowych Jerzy Stefanowski Zakład Inteligentnych Systemów Wspomagania Decyzji Instytut Informatyki Politechnika Poznańska Wykład Uczenie maszynowe edycja 2010
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki PRACA MAGISTERSKA ŁUKASZ DZIEDZIA PORÓWNANIE JAKOŚCI UOGÓLNIENIA I EFEKTYWNOŚCI
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 8 Interpolacja Interpolacja polega na budowaniu tzw. funkcji interpolujących ϕ(x) na podstawie zadanych
KARTA PRZEDMIOTU. 17. Efekty kształcenia:
Z1-PU7 WYDANIE N1 Strona 1 z 4 (pieczęć wydziału) KARTA PRZEDMIOTU 1. Nazwa przedmiotu: CYBERNETYKA 2. Kod przedmiotu: CYB 3. Karta przedmiotu ważna od roku akademickiego: 2012/2013 4. Forma kształcenia:
Elementy inteligencji obliczeniowej
Elementy inteligencji obliczeniowej Paweł Liskowski Institute of Computing Science, Poznań University of Technology 9 October 2018 1 / 19 Perceptron Perceptron (Rosenblatt, 1957) to najprostsza forma sztucznego
Klasyfikacja danych wielowymiarowych algorytmami SVM
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Praca magisterska Klasyfikacja danych wielowymiarowych algorytmami SVM Marcin Orchel Kierunek: Informatyka Specjalność: Systemy komputerowe
Metody klasyfikacji danych - część 2 p.1/55
Metody klasyfikacji danych - część 2 Inteligentne Usługi Informacyjne Jerzy Dembski Metody klasyfikacji danych - część 2 p.1/55 Plan wykładu - AdaBoost - Klasyfikacja metoda wektorów wspierajacych (SVM)
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 1 Regresja liniowa autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z liniowym zadaniem najmniejszych
Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład I dr inż. 2015/2016
Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład I dr inż. Bogumil.Konopka@pwr.edu.pl 2015/2016 1 Wykład I - plan Sprawy organizacyjne Uczenie maszynowe podstawowe pojęcia Proces modelowania
Eksploracja Danych. wykład 4. Sebastian Zając. 10 maja 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja / 18
Eksploracja Danych wykład 4 Sebastian Zając WMP.SNŚ UKSW 10 maja 2017 Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja 2017 1 / 18 Klasyfikacja danych Klasyfikacja Najczęściej stosowana (najstarsza)
ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA
ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA DYNAMICZNYCH LOKAT KAPITAŁOWYCH Krzysztof Gąsior Uniwersytet Rzeszowski Streszczenie Celem referatu jest zaprezentowanie praktycznego zastosowania
Optymalizacja systemów
Optymalizacja systemów Laboratorium - problem detekcji twarzy autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, P. Klukowski Cel zadania Celem zadania jest zapoznanie się z gradientowymi algorytmami optymalizacji
1 Relacje i odwzorowania
Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X
Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona) f(x) = 0, gdzie. dla n=2 np.
Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona f(x 0, f ( f, f,..., f n gdzie 2 x ( x, x 2,..., x n dla n2 np. f ( x, y 0 g( x, y 0 dla każdej wielowymiarowej rozwinięcie w szereg Taylora
Biometria WYKŁAD 7: ROZPOZNAWANIE I KLASYFIKACJA OBIEKTÓW
Biometria WYKŁAD 7: ROZPOZNAWANIE I KLASYFIKACJA OBIEKTÓW http://ryszardtadeusiewicz.natemat.pl/151007,klasyka-sztucznej-inteligencji-rozpoznawanie-obrazow Cechy i przestrzenie cech Każda z właściwości
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING Maszyna Wektorów Nośnych Suort Vector Machine SVM Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 3. SYSTEMY UCZĄCE SIĘ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska LITERATURA [Cic] * Cichosz P.: Systemy uczące się. WNT, 2003
Document: Exercise*02*-*manual /11/ :31---page1of8 INSTRUKCJA DO ĆWICZENIA NR 2
Document: Exercise*02*-*manual ---2014/11/12 ---8:31---page1of8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 2 Wybrane zagadnienia z
VI. Równania różniczkowe liniowe wyższych rzędów
VI. 1. Równanie różniczkowe liniowe n-tego rzędu o zmiennych współczynnikach Niech podobnie jak w poprzednim paragrafie K = C lub K = R. Podobnie jak w dziedzinie rzeczywistej wprowadzamy pochodne wyższych
Klasyfikacja wyników wyszukiwania zasobów internetowych
Politechnika Warszawska Wydział Elektroniki i Technik Informacyjnych Instytut Informatyki Rok akademicki 2012/2013 PRACA DYPLOMOWA INŻYNIERSKA Edward Miedziński Klasyfikacja wyników wyszukiwania zasobów
Maciej Grzesiak. Optymalizacja
Maciej Grzesiak Optymalizacja Oznaczenia. Część pojęć i twierdzeń jest formułowana dla ogólnej przestrzeni liniowej V. Jeśli jest ona skończenie wymiarowa, tzn. V = R n dla pewnego n, to wektory traktujemy
Postać Jordana macierzy
Rozdział 8 Postać Jordana macierzy Niech F = R lub F = C Macierz J r λ) F r r postaci λ 1 0 0 0 λ 1 J r λ) = 0 λ 1 0 0 λ gdzie λ F nazywamy klatką Jordana stopnia r Oczywiście J 1 λ) = [λ Definicja 81
Regresja nieparametryczna series estimator
Regresja nieparametryczna series estimator 1 Literatura Bruce Hansen (2018) Econometrics, rozdział 18 2 Regresja nieparametryczna Dwie główne metody estymacji Estymatory jądrowe Series estimators (estymatory
Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 335
Sztuczne sieci neuronowe Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 335 Wykład 10 Mapa cech Kohonena i jej modyfikacje - uczenie sieci samoorganizujących się - kwantowanie wektorowe
Wprowadzenie. { 1, jeżeli ˆr(x) > 0, pozatym. Regresja liniowa Regresja logistyczne Jądrowe estymatory gęstości. Metody regresyjne
Wprowadzenie Prostym podejściem do klasyfikacji jest estymacja funkcji regresji r(x) =E(Y X =x)zpominięciemestymacjigęstościf k. Zacznijmyodprzypadkudwóchgrup,tj.gdy Y = {1,0}. Wówczasr(x) =P(Y =1 X =x)ipouzyskaniuestymatora
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 3 autorzy: A. Gonczarek, J.M. Tomczak Zbiory i funkcje wypukłe Zad. 1 Pokazać, że następujące zbiory są wypukłe: a) płaszczyzna S = {x
Agnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
Laboratorium 11. Regresja SVM.
Laboratorium 11 Regresja SVM. 1. Uruchom narzędzie Oracle Data Miner i połącz się z serwerem bazy danych. 2. Z menu głównego wybierz Activity Build. Na ekranie powitalnym kliknij przycisk Dalej>. 3. Z
Estymacja w regresji nieparametrycznej
Estymacja w regresji nieparametrycznej Jakub Kolecki Politechnika Gdańska 28 listopada 2011 1 Wstęp Co to jest regresja? Przykład regresji 2 Regresja nieparametryczna Założenia modelu Estymacja i jej charakterystyki
Rok akademicki: 2017/2018 Kod: JIS AD-s Punkty ECTS: 5. Kierunek: Informatyka Stosowana Specjalność: Modelowanie i analiza danych
Nazwa modułu: Eksploracja danych Rok akademicki: 2017/2018 Kod: JIS-2-202-AD-s Punkty ECTS: 5 Wydział: Fizyki i Informatyki Stosowanej Kierunek: Informatyka Stosowana Specjalność: Modelowanie i analiza
WYKŁAD 3. Klasyfikacja: modele probabilistyczne
Wrocław University of Technology WYKŁAD 3 Klasyfikacja: modele probabilistyczne Maciej Zięba Politechnika Wrocławska Klasyfikacja Klasyfikacja (ang. Classification): Dysponujemy obserwacjami z etykietami
Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra
Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele
Modele i narzędzia optymalizacji w systemach informatycznych zarządzania
Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5
Sztuczne Sieci Neuronowe
Sztuczne Sieci Neuronowe Wykład 7 Sieci neuronowe o radialnych funkcjach bazowych wykład przygotowany na podstawie. S. Osowski, Sieci Neuronowe w ujęciu algorytmicznym, Rozdz. 5, PWNT, Warszawa 1996. 26/11/08
Prof. Stanisław Jankowski
Prof. Stanisław Jankowski Zakład Sztucznej Inteligencji Zespół Statystycznych Systemów Uczących się p. 228 sjank@ise.pw.edu.pl Zakres badań: Sztuczne sieci neuronowe Maszyny wektorów nośnych SVM Maszyny
Równanie Schrödingera
Równanie Schrödingera Maciej J. Mrowiński 29 lutego 2012 Zadanie RS1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = 0 ma następującą postać: A(a Ψ(x,0) = 2 x 2 ) gdy x [ a,a] 0 gdy x / [ a,a]
WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU
WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU Nazwa w języku polskim: Eksploracja Danych Nazwa w języku angielskim: Data Mining Kierunek studiów (jeśli dotyczy): MATEMATYKA I STATYSTYKA Stopień studiów i forma:
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium ZALICZENIE Zadanie nr 3 Rozpoznawanie ręcznie pisanych cyfr autorzy: A. Gonczarek, P. Klukowski, J.M. Tomczak, S. Zaręba, M. Zięba Cel zadania Celem
Metody sztucznej inteligencji Zadanie 3: (1) klasteryzacja samoorganizująca się mapa Kohonena, (2) aproksymacja sieć RBF.
Metody sztucznej inteligencji Zadanie 3: ( klasteryzacja samoorganizująca się mapa Kohonena, (2 aproksymacja sieć RBF dr inż Przemysław Klęsk Klasteryzacja za pomocą samoorganizującej się mapy Kohonena