9. Praktyczna ocena jakości klasyfikacji
|
|
- Gabriela Przybysz
- 6 lat temu
- Przeglądów:
Transkrypt
1 Algorytmy rozpoznawania obrazów 9. Praktyczna ocena jakości klasyfikacji dr inż. Urszula Libal Politechnika Wrocławska
2 1. Zbiór uczacy i zbiór testowy 1. Zbiór uczacy służy do konstrukcji (treningu) klasyfikatora w procesie uczenia 2. Zbiór testowy służy do weryfikacji jakości klasyfikatora Podział zbioru danych na zbiór uczący i testowy zależy od liczności tego zbioru. Zbiory uczący i testowy są rozłączne (zawierają inne obrazy). Częsty podział dla dużych zbiorów danych to: 2/3 (zbiór uczący), 1/3 (zbiór testowy). 2
3 2. Metody oceny jakości klasyfikatora Ocena klasyfikacji na podstawie zbioru testowego: 1. Macierz pomyłek (confusion matrix) 2. Miary oceny jakości klasyfikacji: ryzyko, błąd klasyfikacji, trafność klasyfikacji, współczynniki TP, TN, FP, FN, Krzywa ROC 4. Kroswalidacja (cross-validation) 3
4 3. Macierz pomyłek Przypadek klasyfikacji do wielu klas M = {1, 2,,..., m}: klasa wskazana przez klasyfikator klasa pochodzenia obrazu C 1 C 2 C m C 1 r 11 r 12 r 1m C 2 r 21 r 22 r 2m C m r m1 r m2 r mm r i j - liczba obrazów testowych z klasy C i, przypisana do klasy C j, N i - liczność obrazów z klasy C i (zbiór testowy) 4
5 Liczność zbioru testowego: #test = m N i i=1 Łączna liczba poprawnie zaklasyfikowanych obrazów testowych: #correct = m r ii i=1 Łączna liczba błędnie zaklasyfikowanych obrazów testowych: #error = #test #correct 5
6 Przypadek klasyfikatora binarnego: klasa wskazana przez klasyfikator klasa pochodzenia obrazu C 1 (+) C 2 (-) C 1 (+) r 11 (TP) r 12 (FN) C 2 (-) r 21 (FP) r 22 (TN) TP (true positive) - liczba poprawnie zaklasyfikowanych obrazów z klasy C 1 FP (false positive) - liczba błędnie zaklasyfikowanych obrazów z klasy C 2 do klasy C 1 FN (false negative) - liczba błędnie zaklasyfikowanych obrazów z klasy C 1 do klasy C 2 TN (true negative) - liczba poprawnie zaklasyfikowanych obrazów z klasy C 2 6
7 Rysunek 1. Współczynniki TP, FP, FN i TN dla klasyfikacji binarnej. Źródło: [4] 7
8 4. Miary oceny jakości klasyfikacji Miary uniwersalne (dla dowolnej liczby klas): trafność (accuracy) #correct #test bład klasyfikacji (error rate) #error #test = 1 #correct #test 8
9 Miary w przypadku klasyfikacji binarnej: trafność bład klasyfikacji T P + T N T P + T N = N 1 + N 2 T P + FN + FP + T N FP + FN FP + FN = N 1 + N 2 T P + FN + FP + T N Ryzyko klasyfikatora szacujemy za pomoca błędu klasyfikacji (patrz rys. 1) 9
10 współczynnik TP (TP rate, czułość) T PR = T P T P = N 1 T P + FN współczynnik TN (TN rate, specyficzność) T NR = T N N 2 = T N FP + T N współczynnik FP (FP rate) FPR = FP FP = N 2 FP + T N 10
11 5. Krzywa ROC Rysunek 2. Krzywa ROC. Źródło: [1] 11
12 6. K-krotna kroswalidacja Dzielimy dane na k możliwie równych, wzajemnie rozłącznych, części. Do uczenia wykorzystujemy k 1 części, do testowania pozostałą jedną część. Procedurę powtarzamy k razy, za każdym razem zmieniając zbiór testowy na kolejną niewykorzystaną dotychczas część. Rysunek 3. K-krotna kroswalidacja: U-uczenie, T-testowanie. Źródło: opracowanie własne 12
13 Sumaryczna liczba poprawnych klasyfikacji podzielona przez liczność zbioru danych N stanowi oszacowanie trafności klasyfikacji. Szczególny przypadek: N-krotna kroswalidacja (leave-one-out cross-validation), gdzie N to liczność zbioru danych przed podziałem na zbiór uczący i testowy. 13
14 Literatura [1] T. Morzy, Eksploracja danych. Metody i algorytmy, Wydawnictwo Naukowe PWN, Warszawa (2013) [2] M. Krzyśko, W. Wołyński, T. Górecki, M. Skorzybut, Systemy uczace się. Rozpoznawanie wzorców, analiza skupień i redukcja wymiarowości. WNT, Warszawa (2008) [3] R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, 2nd ed., Wiley, (2000) [4] 14
Algorytmy rozpoznawania obrazów. 11. Analiza skupień. dr inż. Urszula Libal. Politechnika Wrocławska
Algorytmy rozpoznawania obrazów 11. Analiza skupień dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Analiza skupień Określenia: analiza skupień (cluster analysis), klasteryzacja (clustering), klasyfikacja
7. Maszyny wektorów podpierajacych SVMs
Algorytmy rozpoznawania obrazów 7. Maszyny wektorów podpierajacych SVMs dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Maszyny wektorów podpierajacych - SVMs Maszyny wektorów podpierających (ang.
WYKŁAD 7. Testowanie jakości modeli klasyfikacyjnych metodyka i kryteria
Wrocław University of Technology WYKŁAD 7 Testowanie jakości modeli klasyfikacyjnych metodyka i kryteria autor: Maciej Zięba Politechnika Wrocławska Testowanie modeli klasyfikacyjnych Dobór odpowiedniego
Sztuczna Inteligencja w medycynie projekt (instrukcja) Bożena Kostek
Sztuczna Inteligencja w medycynie projekt (instrukcja) Bożena Kostek Cel projektu Celem projektu jest przygotowanie systemu wnioskowania, wykorzystującego wybrane algorytmy sztucznej inteligencji; Nabycie
Jakość uczenia i generalizacja
Jakość uczenia i generalizacja Dokładność uczenia Jest koncepcją miary w jakim stopniu nasza sieć nauczyła się rozwiązywać określone zadanie Dokładność mówi na ile nauczyliśmy się rozwiązywać zadania które
8. Drzewa decyzyjne, bagging, boosting i lasy losowe
Algorytmy rozpoznawania obrazów 8. Drzewa decyzyjne, bagging, boosting i lasy losowe dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Drzewa decyzyjne Drzewa decyzyjne (ang. decision trees), zwane
Data Mining Wykład 4. Plan wykładu
Data Mining Wykład 4 Klasyfikacja danych Klasyfikacja poprzez indukcje drzew decyzyjnych Plan wykładu Sformułowanie problemu Kryteria oceny metod klasyfikacji Metody klasyfikacji Klasyfikacja poprzez indukcje
Stan dotychczasowy. OCENA KLASYFIKACJI w diagnostyce. Metody 6/10/2013. Weryfikacja. Testowanie skuteczności metody uczenia Weryfikacja prosta
Stan dotychczasowy OCENA KLASYFIKACJI w diagnostyce Wybraliśmy metodę uczenia maszynowego (np. sieć neuronowa lub drzewo decyzyjne), która będzie klasyfikować nieznane przypadki Na podzbiorze dostępnych
Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład III 2016/2017
Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład III bogumil.konopka@pwr.edu.pl 2016/2017 Wykład III - plan Regresja logistyczna Ocena skuteczności klasyfikacji Macierze pomyłek Krzywe
ZeroR. Odpowiada zawsze tak samo Decyzja to klasa większościowa ze zbioru uczącego A B X 1 5 T 1 7 T 1 5 T 1 5 F 2 7 F
ZeroR Odpowiada zawsze tak samo Decyzja to klasa większościowa ze zbioru uczącego A B X 5 T 7 T 5 T 5 F 2 7 F Tutaj jest więcej obiektów klasy T, więc klasyfikator ZeroR będzie zawsze odpowiadał T niezależnie
Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład II 2017/2018
Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład II bogumil.konopka@pwr.edu.pl 2017/2018 Określenie rzeczywistej dokładności modelu Zbiór treningowym vs zbiór testowy Zbiór treningowy
Wprowadzenie do uczenia maszynowego
Wprowadzenie do uczenia maszynowego Agnieszka Ławrynowicz 12 stycznia 2017 Co to jest uczenie maszynowe? dziedzina nauki, która zajmuje się sprawianiem aby komputery mogły uczyć się bez ich zaprogramowania
Indukowane Reguły Decyzyjne I. Wykład 8
Indukowane Reguły Decyzyjne I Wykład 8 IRD Wykład 8 Plan Powtórka Krzywa ROC = Receiver Operating Characteristic Wybór modelu Statystyka AUC ROC = pole pod krzywą ROC Wybór punktu odcięcia Reguły decyzyjne
Systemy uczące się wykład 2
Systemy uczące się wykład 2 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 19 X 2018 Podstawowe definicje Fakt; Przesłanka; Konkluzja; Reguła; Wnioskowanie. Typy wnioskowania
PODSTAWY STATYSTYCZNEJ ANALIZY DANYCH. Wykład 5 Kwadratowa analiza dyskryminacyjna QDA. Metody klasyfikacji oparte na rozkładach prawdopodobieństwa.
Wykład 5 Kwadratowa analiza dyskryminacyjna QDA. Metody klasyfikacji oparte na rozkładach prawdopodobieństwa. Kwadratowa analiza dyskryminacyjna Przykład analizy QDA Czasem nie jest możliwe rozdzielenie
Ocena dokładności diagnozy
Ocena dokładności diagnozy Diagnoza medyczna, w wielu przypadkach może być interpretowana jako działanie polegające na podjęciu jednej z dwóch decyzji odnośnie stanu zdrowotnego pacjenta: 0 pacjent zdrowy
Wprowadzenie do uczenia maszynowego
Wprowadzenie do uczenia maszynowego Agnieszka Ławrynowicz 16 listopada 2017 Co to jest uczenie maszynowe? dziedzina nauki, która zajmuje się sprawianiem aby komputery mogły uczyć się bez ich zaprogramowania
Pattern Classification
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley & Sons, 2000 with the permission of the authors
Krzywe ROC i inne techniki oceny jakości klasyfikatorów
Krzywe ROC i inne techniki oceny jakości klasyfikatorów Wydział Matematyki, Informatyki i Mechaniki Uniwersytetu Warszawskiego 20 maja 2009 1 2 Przykład krzywej ROC 3 4 Pakiet ROCR Dostępne metryki Krzywe
Eksploracja danych OCENA KLASYFIKATORÓW. Wojciech Waloszek. Teresa Zawadzka.
Eksploracja danych OCENA KLASYFIKATORÓW Wojciech Waloszek wowal@eti.pg.gda.pl Teresa Zawadzka tegra@eti.pg.gda.pl Katedra Inżynierii Oprogramowania Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika
Wprowadzenie do klasyfikacji
Wprowadzenie do klasyfikacji ZeroR Odpowiada zawsze tak samo Decyzja to klasa większościowa ze zbioru uczącego A B X 1 5 T 1 7 T 1 5 T 1 5 F 2 7 F Tutaj jest więcej obiektów klasy T, więc klasyfikator
Metody oceny wiedzy klasyfikacyjnej odkrytej z danych Jerzy Stefanowski Instytut Informatyki Politechnika Poznańska
Metody oceny wiedzy klasyfikacyjnej odkrytej z danych Jerzy Stefanowski Instytut Informatyki Politechnika Poznańska Wykład dla spec. Mgr TWO Poznań 2010 dodatek 1 Ocena wiedzy klasyfikacyjnej wykład dla
2. Ocena dokładności modelu klasyfikacji:
Spis treści: 1. Klasyfikacja... 1 2. Ocena dokładności modelu klasyfikacji:...1 2.1. Miary dokładności modelu...2 2.2. Krzywe oceny...2 3. Wybrane algorytmy...3 3.1. Naiwny klasyfikator Bayesa...3 3.2.
Testowanie modeli predykcyjnych
Testowanie modeli predykcyjnych Wstęp Podczas budowy modelu, którego celem jest przewidywanie pewnych wartości na podstawie zbioru danych uczących poważnym problemem jest ocena jakości uczenia i zdolności
Wstęp do sieci neuronowych, wykład 09, Walidacja jakości uczenia. Metody statystyczne.
Wstęp do sieci neuronowych, wykład 09, Walidacja jakości uczenia. Metody statystyczne. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-12-06 1 Przykład
Algorytm do rozpoznawania człowieka na podstawie dynamiki użycia klawiatury. Paweł Kobojek, prof. dr hab. inż. Khalid Saeed
Algorytm do rozpoznawania człowieka na podstawie dynamiki użycia klawiatury Paweł Kobojek, prof. dr hab. inż. Khalid Saeed Zakres pracy Przegląd stanu wiedzy w dziedzinie biometrii, ze szczególnym naciskiem
Wstęp do sieci neuronowych, wykład 13-14, Walidacja jakości uczenia. Metody statystyczne.
Wstęp do sieci neuronowych, wykład 13-14,. Metody statystyczne. M. Czoków, J. Piersa Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland 2011.01.11 1 Przykład Przeuczenie
Laboratorium 4. Naiwny klasyfikator Bayesa.
Laboratorium 4 Naiwny klasyfikator Bayesa. 1. Uruchom narzędzie Oracle Data Miner i połącz się z serwerem bazy danych. 2. Z menu głównego wybierz Activity Build. Na ekranie powitalnym kliknij przycisk
2. Empiryczna wersja klasyfikatora bayesowskiego
Algorytmy rozpoznawania obrazów 2. Empiryczna wersja klasyfikatora bayesowskiego dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Brak pełnej informacji probabilistycznej Klasyfikator bayesowski
5. Analiza dyskryminacyjna: FLD, LDA, QDA
Algorytmy rozpoznawania obrazów 5. Analiza dyskryminacyjna: FLD, LDA, QDA dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Liniowe funkcje dyskryminacyjne Liniowe funkcje dyskryminacyjne mają ogólną
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA REALIZACJA W ROKU AKADEMICKIM 2016/2017
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2014-2018 REALIZACJA W ROKU AKADEMICKIM 2016/2017 1.1. Podstawowe informacje o przedmiocie/module Nazwa przedmiotu/ modułu Metody eksploracji danych Kod przedmiotu/ modułu*
Laboratorium 6. Indukcja drzew decyzyjnych.
Laboratorium 6 Indukcja drzew decyzyjnych. 1. Uruchom narzędzie Oracle Data Miner i połącz się z serwerem bazy danych. 2. Z menu głównego wybierz Activity Build. Na ekranie powitalnym kliknij przycisk
WEKA klasyfikacja z użyciem sztucznych sieci neuronowych
WEKA klasyfikacja z użyciem sztucznych sieci neuronowych 1 WEKA elementy potrzebne do zadania WEKA (Data mining software in Java http://www.cs.waikato.ac.nz/ml/weka/) jest narzędziem zawierającym zbiór
ALGORYTM RANDOM FOREST
SKRYPT PRZYGOTOWANY NA ZAJĘCIA INDUKOWANYCH REGUŁ DECYZYJNYCH PROWADZONYCH PRZEZ PANA PAWŁA WOJTKIEWICZA ALGORYTM RANDOM FOREST Katarzyna Graboś 56397 Aleksandra Mańko 56699 2015-01-26, Warszawa ALGORYTM
Klasyfikacja LDA + walidacja
Klasyfikacja LDA + walidacja Dr hab. Izabela Rejer Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Plan wykładu 1. Klasyfikator 2. LDA 3. Klasyfikacja wieloklasowa 4. Walidacja
Barycentryczny układ współrzędnych
SkaiWD Laboratorium 2 Barycentryczny układ współrzędnych Iwo Błądek 21 marca 2019 1 Barycentryczny układ współrzędnych Podstawowa wiedza została przekazana na wykładzie. W tej sekcji znajdują się proste
Zaawansowana eksploracja danych: Metody oceny wiedzy klasyfikacyjnej odkrytej z danych Jerzy Stefanowski Instytut Informatyki Politechnika Poznańska
Zaawansowana eksploracja danych: Metody oceny wiedzy klasyfikacyjnej odkrytej z danych Jerzy Stefanowski Instytut Informatyki Politechnika Poznańska Wykład dla spec. Mgr TPD Poznań 2008 popr. 2010 1 Ocena
10. Redukcja wymiaru - metoda PCA
Algorytmy rozpoznawania obrazów 10. Redukcja wymiaru - metoda PCA dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. PCA Analiza składowych głównych: w skrócie nazywana PCA (od ang. Principle Component
Metody eksploracji danych 4. Klasyfikacja
Metody eksploracji danych 4. Klasyfikacja Piotr Szwed Katedra Informatyki Stosowanej AGH 2017 Wprowadzenie Ocena klasyfiaktorów Regresja Logistyczna Zagadnienie klasyfikacji Dane: Zbiór uczący: D = {(x
ROZPOZNAWANIE SYGNAŁÓW FONICZNYCH
Przetwarzanie dźwięków i obrazów ROZPOZNAWANIE SYGNAŁÓW FONICZNYCH mgr inż. Kuba Łopatka, p. 628 klopatka@sound.eti.pg.gda.pl Plan wykładu 1. Wprowadzenie 2. Zasada rozpoznawania sygnałów 3. Parametryzacja
Laboratorium 5. Adaptatywna sieć Bayesa.
Laboratorium 5 Adaptatywna sieć Bayesa. 1. Uruchom narzędzie Oracle Data Miner i połącz się z serwerem bazy danych. 2. Z menu głównego wybierz Activity Build. Na ekranie powitalnym kliknij przycisk Dalej>.
Eksploracja Danych. wykład 4. Sebastian Zając. 10 maja 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja / 18
Eksploracja Danych wykład 4 Sebastian Zając WMP.SNŚ UKSW 10 maja 2017 Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja 2017 1 / 18 Klasyfikacja danych Klasyfikacja Najczęściej stosowana (najstarsza)
WEKA klasyfikacja z użyciem sztucznych sieci neuronowych
WEKA klasyfikacja z użyciem sztucznych sieci neuronowych 1 WEKA elementy potrzebne do zadania WEKA (Data mining software in Java http://www.cs.waikato.ac.nz/ml/weka/) jest narzędziem zawierającym zbiór
Odczarowujemy modele predykcyjne Teoria i Praktyka
Odczarowujemy modele predykcyjne Teoria i Praktyka Mariusz Gromada, MathSpace.PL mariuszgromada.org@gmail.com 1 Kilka słów o mnie 1999 2004 Politechnika Warszawska Wydział Matematyki i Nauk Informacyjnych
METODY INŻYNIERII WIEDZY
METODY INŻYNIERII WIEDZY WALIDACJA KRZYŻOWA dla ZAAWANSOWANEGO KLASYFIKATORA KNN ĆWICZENIA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej
Ćwiczenie 12. Metody eksploracji danych
Ćwiczenie 12. Metody eksploracji danych Modelowanie regresji (Regression modeling) 1. Zadanie regresji Modelowanie regresji jest metodą szacowania wartości ciągłej zmiennej celu. Do najczęściej stosowanych
Grupowanie stron WWW. Funkcje oceniające.
Eksploracja zasobów internetowych Wykład 6 Grupowanie stron WWW. Funkcje oceniające. mgr inż. Maciej Kopczyński Białystok 2015 Wstęp Rolą algorytmów grupujących jest pogrupowanie dokumentów na bazie ich
Naiwny klasyfikator Bayesa brał pod uwagę jedynie najbliższe otoczenie. Lecz czym jest otoczenie? Jak je zdefiniować?
Algorytm k-nn Naiwny klasyfikator Bayesa brał pod uwagę jedynie najbliższe otoczenie. Lecz czym jest otoczenie? Jak je zdefiniować? Jak daleko są położone obiekty od siebie? knn k nearest neighbours jest
Ocena możliwości wykorzystania deskryptorów cech lokalnych obrazu twarzy w zadaniu automatycznej identyfikacji osób
Jacek JAKUBOWSKI Wojskowa Akademia Techniczna, Instytut Systemów Elektronicznych Ocena możliwości wykorzystania deskryptorów cech lokalnych obrazu twarzy w zadaniu automatycznej identyfikacji osób Streszczenie.
KRZYWE ROC, CZYLI OCENA JAKOŚCI KLASYFIKATORA I POSZUKIWANIE OPTYMALNEGO PUNKTU ODCIĘCIA
KRZYWE ROC, CZYLI OCENA JAKOŚCI KLASYFIKATORA I POSZUKIWANIE OPTYMALNEGO PUNKTU ODCIĘCIA Grzegorz Harańczyk, StatSoft Polska Sp. z o.o. Krzywa ROC (Receiver Operating Characteristic) jest narzędziem do
Elementy modelowania matematycznego
Elementy modelowania matematycznego Modelowanie algorytmów klasyfikujących. Podejście probabilistyczne. Naiwny klasyfikator bayesowski. Modelowanie danych metodą najbliższych sąsiadów. Jakub Wróblewski
SYSTEMY UCZĄCE SIĘ WYKŁAD 1. INFORMACJE WSTĘPNE. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.
SYSTEMY UCZĄCE SIĘ WYKŁAD 1. INFORMACJE WSTĘPNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska PLAN WYKŁADU WSTĘP W 1 Uczenie się w ujęciu algorytmicznym. W
Metody klasyfikacji danych - część 1 p.1/24
Metody klasyfikacji danych - część 1 Inteligentne Usługi Informacyjne Jerzy Dembski Metody klasyfikacji danych - część 1 p.1/24 Plan wykładu - Zadanie klasyfikacji danych - Przeglad problemów klasyfikacji
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników
Rok akademicki: 2017/2018 Kod: JIS AD-s Punkty ECTS: 5. Kierunek: Informatyka Stosowana Specjalność: Modelowanie i analiza danych
Nazwa modułu: Eksploracja danych Rok akademicki: 2017/2018 Kod: JIS-2-202-AD-s Punkty ECTS: 5 Wydział: Fizyki i Informatyki Stosowanej Kierunek: Informatyka Stosowana Specjalność: Modelowanie i analiza
Sieci neuronowe w Statistica
http://usnet.us.edu.pl/uslugi-sieciowe/oprogramowanie-w-usk-usnet/oprogramowaniestatystyczne/ Sieci neuronowe w Statistica Agnieszka Nowak - Brzezińska Podstawowym elementem składowym sztucznej sieci neuronowej
Identyfikacja istotnych atrybutów za pomocą Baysowskich miar konfirmacji
Identyfikacja istotnych atrybutów za pomocą Baysowskich miar konfirmacji Jacek Szcześniak Jerzy Błaszczyński Roman Słowiński Poznań, 5.XI.2013r. Konspekt Wstęp Wprowadzenie Metody typu wrapper Nowe metody
Sieci neuronowe w Statistica. Agnieszka Nowak - Brzezioska
Sieci neuronowe w Statistica Agnieszka Nowak - Brzezioska Podstawowym elementem składowym sztucznej sieci neuronowej jest element przetwarzający neuron. Schemat działania neuronu: x1 x2 w1 w2 Dendrites
Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L,
Klasyfikator Jedną z najistotniejszych nieparametrycznych metod klasyfikacji jest metoda K-najbliższych sąsiadów, oznaczana przez K-NN. W metodzie tej zaliczamy rozpoznawany obiekt do tej klasy, do której
OCENA KLASYFIKACYJNYCH MODELI DATA MINING (wybrane miary oceny algorytmów uczenia maszynowego)
OCENA KLASYFIKACYJNYCH MODELI DATA MINING (wybrane miary oceny algorytmów uczenia maszynowego) Miary oceny klasyfikacyjnych modeli uczenia maszynowego dzielimy przede wszystkim na parametry oceny oraz
Modelowanie interakcji helis transmembranowych
Modelowanie interakcji helis transmembranowych Witold Dyrka, Jean-Christophe Nebel, Małgorzata Kotulska Instytut Inżynierii Biomedycznej i Pomiarowej, Politechnika Wrocławska Faculty of Computing, Information
Metody Sztucznej Inteligencji II
17 marca 2013 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką, która jest w stanie odbierać i przekazywać sygnały elektryczne. Neuron działanie Jeżeli wartość sygnału
ALGORYTMY SZTUCZNEJ INTELIGENCJI
ALGORYTMY SZTUCZNEJ INTELIGENCJI Sieci neuronowe 06.12.2014 Krzysztof Salamon 1 Wstęp Sprawozdanie to dotyczy ćwiczeń z zakresu sieci neuronowych realizowanym na przedmiocie: Algorytmy Sztucznej Inteligencji.
BADANIE JAKOŚCI PREDYKCYJNEJ SEGMENTACJI RYNKU
STUDIA INFORMATICA 2016 Volume 37 Number 1 (123) Łukasz PAŚKO, Galina SETLAK Politechnika Rzeszowska, Zakład Informatyki BADANIE JAKOŚCI PREDYKCYJNEJ SEGMENTACJI RYNKU Streszczenie. Celem pracy jest ocena
Kombinacja jądrowych estymatorów gęstości w klasyfikacji wstępne wyniki
Kombinacja jądrowych estymatorów gęstości w klasyfikacji wstępne wyniki Mateusz Kobos, 10.12.2008 Seminarium Metody Inteligencji Obliczeniowej 1/46 Spis treści Działanie algorytmu Uczenie Odtwarzanie/klasyfikacja
Jakość procedury klasyfikacyjnej:
Jakość procedury klasyfikacyjnej: poglądowa interpretacja i szacowanie możliwości poprawy na podstawie charakterystyki ROC Maciej Górkiewicz mygorkie@cyf-kr.edu.pl Uniwersytet Jagielloński w Krakowie Collegium
Klasyfikator liniowy Wstęp Klasyfikator liniowy jest najprostszym możliwym klasyfikatorem. Zakłada on liniową separację liniowy podział dwóch klas między sobą. Przedstawia to poniższy rysunek: 5 4 3 2
Algorytmy klasteryzacji jako metoda dyskretyzacji w algorytmach eksploracji danych. Łukasz Przybyłek, Jakub Niwa Studenckie Koło Naukowe BRAINS
Algorytmy klasteryzacji jako metoda dyskretyzacji w algorytmach eksploracji danych Łukasz Przybyłek, Jakub Niwa Studenckie Koło Naukowe BRAINS Dyskretyzacja - definicja Dyskretyzacja - zamiana atrybutów
Rozpoznawanie wzorców. Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki
Rozpoznawanie wzorców Dr inż. Michał Bereta p. 144 / 10, Instytut Informatyki mbereta@pk.edu.pl beretam@torus.uck.pk.edu.pl www.michalbereta.pl Metody Bayesa Niepewnośd wiedzy Wiedza uzyskana od ekspertów
Algorytmy metaheurystyczne Wykład 11. Piotr Syga
Algorytmy metaheurystyczne Wykład 11 Piotr Syga 22.05.2017 Drzewa decyzyjne Idea Cel Na podstawie przesłanek (typowo zbiory rozmyte) oraz zbioru wartości w danych testowych, w oparciu o wybrane miary,
Biometryczna Identyfikacja Tożsamości
c Adam Czajka, IAiIS PW, wersja: 18 czerwca 2015, 1/49 Adam Czajka Wykład na Wydziale Elektroniki i Technik Informacyjnych Politechniki Warszawskiej Semestr letni 2015 c Adam Czajka, IAiIS PW, wersja:
Przykładowa analiza danych
Przykładowa analiza danych W analizie wykorzystano dane pochodzące z publicznego repozytorium ArrayExpress udostępnionego na stronach Europejskiego Instytutu Bioinformatyki (http://www.ebi.ac.uk/). Zbiór
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy oólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK
Metody eksploracji danych Laboratorium 4. Klasyfikacja dokumentów tekstowych Naiwny model Bayesa Drzewa decyzyjne
Metody eksploracji danych Laboratorium 4 Klasyfikacja dokumentów tekstowych Naiwny model Bayesa Drzewa decyzyjne Zbiory danych Podczas ćwiczeń będziemy przetwarzali dane tekstowe pochodzące z 5 książek
P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H
W O J S K O W A A K A D E M I A T E C H N I C Z N A W Y D Z I A Ł E L E K T R O N I K I Drukować dwustronnie P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H Grupa... Data wykonania
Metody eksploracji danych Laboratorium 2. Weka + Python + regresja
Metody eksploracji danych Laboratorium 2 Weka + Python + regresja KnowledgeFlow KnowledgeFlow pozwala na zdefiniowanie procesu przetwarzania danych Komponenty realizujące poszczególne czynności można konfigurować,
Drzewa decyzyjne i lasy losowe
Drzewa decyzyjne i lasy losowe Im dalej w las tym więcej drzew! ML Gdańsk http://www.mlgdansk.pl/ Marcin Zadroga https://www.linkedin.com/in/mzadroga/ 20 Czerwca 2017 WPROWADZENIE DO MACHINE LEARNING CZYM
Algorytmy klasyfikacji
Algorytmy klasyfikacji Konrad Miziński Instytut Informatyki Politechnika Warszawska 6 maja 2015 1 Wnioskowanie 2 Klasyfikacja Zastosowania 3 Drzewa decyzyjne Budowa Ocena jakości Przycinanie 4 Lasy losowe
Zastosowanie sieci neuronowych w problemie klasyfikacji wielokategorialnej. Adam Żychowski
Zastosowanie sieci neuronowych w problemie klasyfikacji wielokategorialnej Adam Żychowski Definicja problemu Każdy z obiektów może należeć do więcej niż jednej kategorii. Alternatywna definicja Zastosowania
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 4. UCZENIE SIĘ INDUKCYJNE Częstochowa 24 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska WSTĘP Wiedza pozyskana przez ucznia ma charakter odwzorowania
KATEDRA SYSTEMÓW MULTIMEDIALNYCH. Inteligentne systemy decyzyjne. Ćwiczenie nr 12:
KATEDRA SYSTEMÓW MULTIMEDIALNYCH Inteligentne systemy decyzyjne Ćwiczenie nr 12: Rozpoznawanie mowy z wykorzystaniem ukrytych modeli Markowa i pakietu HTK Opracowanie: mgr inż. Kuba Łopatka 1. Wprowadzenie
Wybór modelu i ocena jakości klasyfikatora
Wybór modelu i ocena jakości klasyfikatora Błąd uczenia i błąd testowania Obciążenie, wariancja i złożoność modelu (klasyfikatora) Dekompozycja błędu testowania Optymizm Estymacja błędu testowania AIC,
Agnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
Wprowadzenie. Data Science Uczenie się pod nadzorem
Wprowadzenie Wprowadzenie Wprowadzenie Wprowadzenie Machine Learning Mind Map Historia Wstęp lub uczenie się z przykładów jest procesem budowy, na bazie dostępnych danych wejściowych X i oraz wyjściowych
Matlab podstawy + testowanie dokładności modeli inteligencji obliczeniowej
Matlab podstawy + testowanie dokładności modeli inteligencji obliczeniowej Podstawy matlaba cz.ii Funkcje Dotychczas kod zapisany w matlabie stanowił skrypt który pozwalał na określenie kolejności wykonywania
Wykład 8. Testowanie w JEE 5.0 (1) Autor: Zofia Kruczkiewicz. Zofia Kruczkiewicz
Wykład 8 Testowanie w JEE 5.0 (1) Autor: 1. Rola testowania w tworzeniu oprogramowania Kluczową rolę w powstawaniu oprogramowania stanowi proces usuwania błędów w kolejnych fazach rozwoju oprogramowania
PODSTAWY STATYSTYCZNEGO MODELOWANIA DANYCH. Wykład 6 Drzewa klasyfikacyjne - wprowadzenie. Reguły podziału i reguły przycinania drzew.
PODSTAWY STATYSTYCZNEGO MODELOWANIA DANYCH Wykład 6 Drzewa klasyfikacyjne - wprowadzenie. Reguły podziału i reguły przycinania drzew. Wprowadzenie Drzewo klasyfikacyjne Wprowadzenie Formalnie : drzewo
Wprowadzenie do programu RapidMiner, część 2 Michał Bereta 1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów
Wprowadzenie do programu RapidMiner, część 2 Michał Bereta www.michalbereta.pl 1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów Zaimportuj dane pima-indians-diabetes.csv. (Baza danych poświęcona
Autostopem przez galaiktykę: Intuicyjne omówienie zagadnień. Tom II: Uczenie maszynowe. Nie panikuj!
Autostopem przez galaiktykę: Intuicyjne omówienie zagadnień Tom II: Uczenie maszynowe Nie panikuj! Autorzy: Iwo Błądek Konrad Miazga Oświadczamy, że w trakcie produkcji tego tutoriala nie zginęły żadne
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 3. SYSTEMY UCZĄCE SIĘ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska LITERATURA [Cic] * Cichosz P.: Systemy uczące się. WNT, 2003
Projekt Sieci neuronowe
Projekt Sieci neuronowe Chmielecka Katarzyna Gr. 9 IiE 1. Problem i dane Sieć neuronowa miała za zadanie nauczyć się klasyfikować wnioski kredytowe. W projekcie wykorzystano dane pochodzące z 110 wniosków
Biometryczna Identyfikacja Tożsamości
c Adam Czajka IAiIS PW 3 czerwca 2014 1/49 Adam Czajka Wykład na Wydziale Elektroniki i Technik Informacyjnych Politechniki Warszawskiej Semestr letni 2014 c Adam Czajka IAiIS PW 3 czerwca 2014 2/49 Problem
Metody i modele statystyczne w wykrywaniu nieubezpieczonych posiadaczy pojazdów mechanicznych
Wojciech Bijak Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa w Warszawie Ubezpieczeniowy Fundusz Gwarancyjny Piotr Dziel, Stanisław Garstka, Krzysztof Hrycko Ubezpieczeniowy Fundusz Gwarancyjny
Komputerowa diagnoza medyczna tworzenie i interpretowanie. prof. dr hab. inż. Andrzej Walczak
Komputerowa diagnoza medyczna tworzenie i interpretowanie prof. dr hab. inż. Andrzej Walczak Agenda 1. Po co budujemy komputerowe wspomaganie diagnostyki medycznej? 2. Wymagania na IT wdrażane w medycynie
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników
RILL - przyrostowy klasyfikator regułowy uczący się ze zmiennych środowisk
Wprowadzenie RILL - przyrostowy klasyfikator regułowy uczący się ze zmiennych środowisk Magdalena Deckert Politechnika Poznańska, Instytut Informatyki Seminarium ISWD, 21.05.2013 M. Deckert Przyrostowy
Ewelina Dziura Krzysztof Maryański
Ewelina Dziura Krzysztof Maryański 1. Wstęp - eksploracja danych 2. Proces Eksploracji danych 3. Reguły asocjacyjne budowa, zastosowanie, pozyskiwanie 4. Algorytm Apriori i jego modyfikacje 5. Przykład
mgr inż. Magdalena Deckert Poznań, r. Metody przyrostowego uczenia się ze strumieni danych.
mgr inż. Magdalena Deckert Poznań, 30.11.2010r. Metody przyrostowego uczenia się ze strumieni danych. Plan prezentacji Wstęp Concept drift i typy zmian Algorytmy przyrostowego uczenia się ze strumieni