MODELOWANIE CYFROWE PROCESU STEROWANIA SAMOLOTU W RUCHU SPIRALNYM. 1. Wstę p
|
|
- Eleonora Zielińska
- 8 lat temu
- Przeglądów:
Transkrypt
1 MECHANIKA TEORETYCZNA I STOSOWANA 3, 24 (1986) MODELOWANIE CYFROWE PROCESU STEROWANIA SAMOLOTU W RUCHU SPIRALNYM JĘ DRZEJ TRAJER IMRiL Akademia Rolnicza w Warszawie 1. Wstę p Poniż ej przedstawiono model cyfrowy procesu sterowania zastosowany w symulacji numerycznej lotu samolotu [1], [4], [5]. Uwzglę dniono, na ile to był o moż liwe, wszystkie te czynniki które charakteryzują warunki rzeczywiste [2], [3]. Przebiegi czasowe parametrów sterowania czyli wychyleń powierzchni sterowych lotek, steru kierunku i wysokoś ci uzyskano w oparciu o bież ą ec ś ledzenie parametrów lotu. Przyję ty proces sterowania na charakter dyskretny. 2. Założ enia fizyczne lotu sterowanego w spirali Zał oż ono, że zjawisko sterowanego ruchu spiralnego samolotu skł ada się z trzech zasadniczych faz lotu: wprowadzenie, lot po linii ś rubowej, - -r wyprowadzenie. W poszczególnych etapach wystę pują odmienne warunki lotu i charakteru sterowania [4], [5]. Wprowadzenie samolotu po uprzednim zredukowania cią gu nastę puje z lotu prostoliniowego ustalonego; począ tkowym impulsem jest ruch przechył u wynikają cy z wychylenia lotek. Sterowanie na zasadzie speł nienia odpowiednich kryteriów lotu jest realizowane w oparciu o bież ą ą c kontrolę parametrów lotu przez odpowiednie wychylenia powierzchni lotek, steru kierunku i wysokoś ci. Proces sterowania w locie po linii ś rubowej dą ży do utrzymania warunków ustalonych. Ukł ad sterowania samolotu przedstawia Rys. 1.
2 398 J. TRAJER prawa Rys. 1. Układ sterowania samolotu 3. Ogólna koncepcja modelu W przestrzennym sterowanym ruchu jakim jest spirala nie jest moż liwe założ enie z góry modelu sterowania, który zapewnił by poprawne wykonanie figury [1], [2]. Modelowanie ruchu samolotu w spirali jest realizowane przez modelowanie procesu sterowania. Metoda ta polega na dyskretnych zmianach wartoś ci parametrów sterowania w oparciu o krokowe bież ą e c ś ledzenie rozwią zania i korygowanie go. Stanowi to wię c dział anie podobne do automatycznego pilota, który ma moż liwość reagowania w małych odstę pach czasu. Warunkami, które decydują o sposobie sterowania i jego wartoś ci, a wię c przebiegu ó s (t) są wybane ograniczenia ruchu oraz faza lotu. W przypadku ruchu spiralnego mogą nimi być na przykł ad nie przekroczenie w locie krytycznego ką ta natarcia, nie przekroczenie dopuszczalnej prę dkośi c ką towej obrotu samolotu, utrzymanie założ onego ką ta przechylenia samolotu itp. Kryteria te dobiera się w oparciu o szczegółową analizę teoretyczną i doś wiadczenia pilotaż owe, są one odmienne w poszczególnych fazach lotu [1], [2], [3]. Należy nadmienić, że otrzymany sposób sterowania wydaje się być w praktyce do
3 MODELOWANIE CYFROWE W RUCHU osią gnię cia, pomimo zał oż onych reakcji w krótkich odstę pach czasu At. sterów w tych okresach czasu są bowiem porównywalne z wartoś ciami At. Wychylenia 4. Model cyfrowy procesu sterowania Przedstawiony model cyfrowy procesu sterowania opracowano w oparciu o dane doś wiadczalne i analizę teoretyczną zjawiska. Metoda modelowania wynika z przyję tych kryteriów dotyczą cych tego ruchu, jak również uwzglę dnia moż liwośi cpilota. Maksymalna szybkość zmian ką tów wychyleń powierzchni sterowych jest bowiem tak dobrana, aby zapewnić realizację w praktyce. Dla zilustrowania ogólnej zasady sterowania przedstawiono na Rys. 2 i Rys. 3 sieci dział ań modelu cyfrowego sterowania lotkami w fazie wprowadzenia i locie po trajektorii ś rubowej. Symbole z Rys. 2 i Rys. 3 mają nastę pują ce znaczenie: < 1 etykieta oznaczają ca model sterowania lotkami w locie po trajektorii zbliż onej po linii ś rubowej, KONIEC Rys. 2. Sieć działań modelu cyfrowego sterowania lotkami w fazie wprowadzenia
4 400 J. TRAJER TAK, Rys. 3. Sieć dział ań modelu cyfrowego sterowania lotkami w spirali ustalonej 2 etykieta oznaczają ca model sterowania lotkami niwelują cy za duży przechył samolotu, podobnie jak w fazie wprowadzenia, koniec etykieta oznaczają ca przerwanie obliczeń, 0 kr krytyczna prę dkość ką towa przechylenia samolotu, przy której ruch przechył u jest niekontrolowany, tf^top dopuszczalna prę dkość ką towa przechylenia samolotu przy której ruch przechył u jest jeszcze w peł ni kontrolowany, < >,! zał oż onaminimalna prę dkość ką towa przechylenia, która nie wpł ywa na charakter ruchu w spirali, A 0 zał oż ony przedział zmian prę dkośi cką towej przechylenia, w którym <5 Ł pozostaje stał e, wprowadzono w celu bardziej pł ynnego sterowania, zai zał oż ony kąt przechył u samolotu w locie po trajektorii ś rubowej, <P * maksymalna dopuszczalna wartość ką ta przechył u samolotu w spirali ustalonej, $j?p dopuszczalna wartość ką ta wychylenia lotek,
5 MODELOWANIE CVPROWE W RUCHU Ad L wartość przyrostu ką ta wychylenia lotek w przedziale czasowym At, /o J h > h > '3 współ czynnik proporcjonalnoś ci m 0> m 1,m 2, m 3 przy czym: k 0 < k x < k 2 < k 3, l 0 < U < h < h, m 0 < m l < m 2 < m 3. Iloś ciowego oszacowania tych wielkoś ci dokonuje się w wyniku obliczeń punktu równowagi spirali ustalonej oraz testów programu czyli identyfikacji rozumianej jako proces poszukiwania wartoś ci k t, l it mi. Wyznaczenie wartoś ci, jak wykazała praktyka, nie jest trudne bowiem istnieje tu pewna dowolnoś ć. Podobną zasadę stosowano do pozostał ych kryteriów. Uzyskany tak proces sterowania ma charakter dyskretny, ale jest zbliż ony do rzeczywistego. Stanowi to niewą tpliwą zaletę. Mankamentem w stosunku do rzeczywistoś ci jest to, że w przypadku pilota nie jest on w stanie tak dokładnie ś ledzić na bież ą co wszystkich czynników, dział a z opóź nieniem i nie tak precyzyjnie w danej chwili. 5. Wyniki i wnioski Przykładowo na Rys. 4 podano uzyskane przebiegi czasowe wychyleń powierzchni sterowych lotek d L, steru kierunku 5 y i wysokoś ci d H w fazie wprowadzenia. Podano Rys. 4. Przykłady zmian parametrów sterowania w fazie wprowadzenia xxx manewr poprawny, ką towa prę dkość przechylania 0 jest kontrolowana, manewr nieprawidłowy, ką towa prę dkość przechylania <P staje się niekontrolowana U Mech. Tcoret. i Stos. 3/86
6 402 J. TRAJER charakter zmian w przypadku manewru nieprawidł owego uzyskanego bez dobrego oszacowania współczynników proporcjonalnoś ci k t, /,-, m ( oraz poprawnego. Jak ilustrują wykresy charakter tych zmian w obu przypadkach jest ł agodny. Mał a efektywność sterów wynika z przyję tej uproszczonej koncepcji wyznaczania sił i momentów sił aerodynamicznych. W przyję tym modelu sterowania postać figury jest zdeterminowana przede wszystkim przez fazę wprowadzenia. Stan począ tkowy lotu i postać ruchu w fazie wprowadzenia decydują również o sukcesie akrobacji. Wynika wię c, że należy optymalizować postać spirali z punktu widzenia tych warunków. Prezentowana metoda modelowania cyfrowego sterowania może mieć zastosowanie do innych przypadków zł oż onego przestrzennego ruchu samolotu. Wprowadzają c pewne modyfikacje moż na otrzymać proces sterowania prawie identyczny z działaniem pilota. Literatura 1. B. ETKIN, Dynamics of atmospheric flight, John Wiley, New York W. FISZDON, Mechanika lotu. Czę ś ći i II, PWN Łódź, Warszawa Instrukcja techniki pilotowania i zastosowanie bojowe samolotu TS- U Iskra", MON Poznań J. MARYNIAK, Z. GORAJ, E. T. DĄ BROWSKA, Modelowanie i badanie wł asnoś cidynamicznych samolotów w ruchu przestrzennym, IV Konferencja Naukowo- Techniczna ITL WAT Warszawa 1979, Referat problemowy. 5. J. TRAJER, Modelowanie i badanie wł asnoś cidynamicznych poddiwię kowegosamolotu odrzutowego w sterowanym ruchu spiralnym, Praca doktorska, Politechnika Warszawska Warszawa J. MARYNIAK, J. TRAJER, Symulacja numeryczna sterowanego samolotu w ruchu spiralnym, MTiS 24 (1986), 3, ^HCJTEHHBIE P e 3 K M e MOflEJIHPOBAHHH ITPOI],ECCA yitpabjiehhjł CAMOJIETOM B CnHPAJIŁHOM flbhhcehhh B CTaTte npeflciabjieho tjhcnehhyio MOflejit npoijecca ynpabjieroih camoji&ra c nphmehehheiw K i mcrrojieta. Kpirrepun nocrpoehhh *nicjiehhoh MOAWIH HBHwesnis caiaojieia B ynpabjmemom nojiete c oflhobpemetmoft KOHTPOJIŁK) napaweipob noneta Heo6xoflHMŁix K ynpabjiemno. IIony^eHo flhckperabra xaparaep npcmeca ynpabjiemih. 'tjhcnehhbie BbnmcjieHiw cflejiaho fljia ca- MoJie'Ta KJiacca TS 11 Iskra". Summary MODEL PRESENTATION OF NUMERICAL PROCESS OF AIRPLANE CONTROL IN A SPIRAL MOTION In the paper a numerical model of control process of an airplane for flight numerical simulation is presented. The physical assumptions, the criteria of constructing numerical model of airplane motion in controlled flight with simultaneous flight control parameters have been discussed. The assumed model of motion controlling is discrete. Praca wpłynę ła do Redakcji dnia 26 wrześ nia 1986 roku
SYMULACJA NUMERYCZNA STEROWANEGO SAMOLOTU W RUCHU SPIRALNYM. 1. Wstę p
MECHANIKA TEORETYCZNA I STOSOWANA 3, 24 (1986) SYMULACJA NUMERYCZNA STEROWANEGO SAMOLOTU W RUCHU SPIRALNYM JERZY MARYNIAK ITLiMS Politechnika Warszawska JĘ DRZEJ TRAJER JMRiL Akademia Rolnicza Warszawa
STATECZNOŚĆ SPIRALNA SAMOLOTU W RUCHU PRZESTRZENNYM Z UWZGLĘ DNIENIEM EFEKTÓW ELEMENTÓW WIRUJĄ CYCH ZESPOŁU NAPĘ DOWEGO*
MECHANIKA TEORETYCZNA 1 STOSOWANA 3-4, 23 (1985) STATECZNOŚĆ SPIRALNA SAMOLOTU W RUCHU PRZESTRZENNYM Z UWZGLĘ DNIENIEM EFEKTÓW ELEMENTÓW WIRUJĄ CYCH ZESPOŁU NAPĘ DOWEGO* JERZY MARYNIAK, WITOLD MOLICKJ
MODEL MATEMATYCZNY WYZNACZANIA FUNKCJI STEROWANIA SAMOLOTEM W PĘ TLI
MECHANIKA TEORETYCZNA I STOSOWANA 1/ 2, 25, 1987 MODEL MATEMATYCZNY WYZNACZANIA FUNKCJI STEROWANIA SAMOLOTEM W PĘ TLI WOJCIECH BLAJER JAN PARCZEWSKI Wyż szaszkoł a Inż ynierskaw Radomiu Modelowano programowy
WPŁYW RAKIETOWEGO UKŁADU HAMUJĄ CEGO NA RUCH ZASOBNIKA LOTNICZEGO*) 1. Wstę p
MECHANIKA TEORETYCZNA f STOSOWANA 1/ 2, 2,(1986) WPŁYW RAKIETOWEGO UKŁADU HAMUJĄ CEGO NA RUCH ZASOBNIKA LOTNICZEGO*) JERZY MAUYNIAK Politechnika Warszawska KAZIMIERZ MICHALEWICZ ZYGMUNT WINCZURA Instytut
W KORKOCIĄ GU* 1. Wstę p
MECHANIKA TEORETYCZNA I STOSOWANA 3-4, 13 (1985) MODELOWANIE MATEMATYCZNE STEROWANEGO RUCHU SAMOLOTU W KORKOCIĄ GU* WOJCIECH BLAJER, (RADOM) WSI Radom JERZY MARYNIAK (WARSZAWA) Politechnika Warszawska
WYZNACZANIE MODELU STEROWANIA SAMOLOTEM ZAPEWNIAJĄ CEGO Ś CISŁĄ REALIZACJĘ RUCHU PROGRAMOWEGO*
MECHANIKA TEORETYCZNA I STOSOWANA 3, 25, (1987) WYZNACZANIE MODELU STEROWANIA SAMOLOTEM ZAPEWNIAJĄ CEGO Ś CISŁĄ REALIZACJĘ RUCHU PROGRAMOWEGO* WOJCIECH BLAJER Wyż szaszkoł a Inż ynierska w Radomiu Praca
ANALIZA NUMERYCZNA PARAMETRÓW LOTU I STEROWANIA SAMOLOTU W USTALONYM RUCHU SPIRALNYM
MECHANIKA TEORETYCZNA I STOSOWANA 3, 24 (1986) ANALIZA NUMERYCZNA PARAMETRÓW LOTU I STEROWANIA SAMOLOTU W USTALONYM RUCHU SPIRALNYM JERZY MARYNIAK ITLiMS Politechnika Warszawska JĘ DRZEJ TRAJER IMRiL Akademia
SYMULACJA STEROWANEGO RUCHU SAMOLOTU PODCZAS STARTU I LĄ DOWAN IA. Streszczenie
MECHANIKA TEORETYCZNA I STOSOWANA 1/ 2, 25, 1987 SYMULACJA STEROWANEGO RUCHU SAMOLOTU PODCZAS STARTU I LĄ DOWAN IA JANUSZ GAJDA RYSZARD VOGT Politechnika Warszawska Streszczenie Przedstawiono model systemu
ANALIZA MOŻ LIWOŚ I CZMNIEJSZENIA NIEBEZPIECZNEJ STREFY H-V W ZAWISIE I LOCIE PIONOWYM Ś MIGŁOWCA
MECHANIKA TEORETYCZNA I STOSOWANA 1/2, 25, 1987 ANALIZA MOŻ LIWOŚ I CZMNIEJSZENIA NIEBEZPIECZNEJ STREFY H-V W ZAWISIE I LOCIE PIONOWYM Ś MIGŁOWCA CEZARY KAMIŃ SKI JANUSZ NARKIEWICZ Politechnika Warszawska
SYSTEM SYMULACJI TRENAŻ ERA LOTU, NAPROWADZANIA I WALKI POWIETRZNEJ SAMOLOTU
MECHANIKA TEORETYCZNA I STOSOWANA 1/ 2, 25, 1987 SYSTEM SYMULACJI TRENAŻ ERA LOTU, NAPROWADZANIA I WALKI POWIETRZNEJ SAMOLOTU JERZY MARYNIAK Instytut Techniki Lotniczej i Mechaniki Stosowane) PW W opracowaniu
USTALONY KORKOCIĄ G SAMOLOTU, WARUNKI RÓWNOWAGI. i. Wstę p
MECHANIKA TEORETYCZNA 1 STOSOWANA 1/ 2, 22 (1984) USTALONY KORKOCIĄ G SAMOLOTU, WARUNKI RÓWNOWAGI WOJCIECH BLAJER Politechnika Warszawska JERZY MARYMIAK Politechnika Warszawska i. Wstę p W pracy przedstawiono
ż ć
Ł Ł Ż ć Ż Ś ć ć Ż ż ć ć Ś Ż ż ć ó ż ż ć Ą Ż ć ć Ż ć ć Ż ć ć ć ć Ż Ż ż Ż Ż ć Ś Ż Ż Ś Ś ż Ś Ż ż ŁĄ ć Ż Ą Ż Ł Ść ć Ść Ż ŁĄ Ś Ż Ą Ś ż Ż Ż ŁĄ Ą Ą Ż Ł ć ć ć ć Ż ć Ż Ż ż ż ż Ż Ż ż Ż ż Ź Ś Ż Ź Ź Ż ć Ż Ż ć ć ć
ANALIZA DOKŁADNOŚ CI PROWADZENIA WYPORNOŚ CIOWYCH OBIEKTÓW NAWODNYCH PO ZADANEJ TRAJEKTORII W RÓŻ NYCH WARUNKACH HYDROMETEOROLOGICZNYCH.
MECHANIKA TEORETYCZNA i STOSOWANA 4, TA, (1986). ANALIZA DOKŁADNOŚ CI PROWADZENIA WYPORNOŚ CIOWYCH OBIEKTÓW NAWODNYCH PO ZADANEJ TRAJEKTORII W RÓŻ NYCH WARUNKACH HYDROMETEOROLOGICZNYCH ZYGMUNT KITOWSKI
ZMODYFIKOWANA METODA PROPORCJONALNEGO NAPROWADZANIA POCISKÓW W POZIOMEJ PŁASZCZYŹ NIE ZBLIŻ ENIA
MECHANIKA TEORETYCZNA 1 STOSOWANA 3-4, 23 (1985) ZMODYFIKOWANA METODA PROPORCJONALNEGO NAPROWADZANIA POCISKÓW W POZIOMEJ PŁASZCZYŹ NIE ZBLIŻ ENIA MIROSŁAW GLAPSKI (WARSZAWA) Wojskowa Akademia Techniczna
ŁĄ
Ś ĄŻ ŁĄ Ź Ą ÓŹ Ś Ś Ą Ą Ś Ó ŚÓ Ó Ą Ó Ż Ź Ś Ż Ó Ó Ó Ż Ó Ą Ż Ó Ż Ż Ż Ż Ś Ą Ż Ć Ą Ć Ą Ż Ł Ś Ś Ź Ó Ś Ó Ó Ó Ś Ż Ź Ż Ż Ę Ą Ó Ś ź Ó Ę Ą Ź Ą Ż Ó Ś Ć Ę Ś Ą Ś Ś Ś Ą Ó Ę Ó Ę Ą Ż Ż Ó Ż ź Ą Ó Ś Ź Ż Ó Ż Ż Ź Ó Ó Ś Ś Ó
Ł Ś Ś Ń Ń
Ą Ą Ć ź Ł Ł Ł Ś Ł Ś Ś Ń Ń Ł Ó ź ź ź Ą ź Ś Ś ź Ź Ź Ź Ż Ź Ś Ż Ć Ź Ż Ż Ó Ś Ż Ń Ą Ó Ź Ś Ś ź Ł Ą ź Ź Ć Ź Ą Ż ź Ż Ó Ś Ą Ą Ż Ź Ó Ś Ś Ż Ą ź ź ÓŻ Ś Ż Ź Ł Ż Ś Ś Ś Ż Ż Ś Ł Ź Ś ź ź Ą ź Ź Ż Ó Ś Ż Ż Ź Ź Ź Ż ź Ź Ł Ń
Ł ź ź ź
Ń ź Ó Ć Ą Ą Ń Ą Ą Ą Ą ź Ż Ł ź ź ź Ń Ń Ą Ą ź ź ź Ń Ł Ź Ł Ż Ń Ó Ł Ż Ś Ó Ą Ń Ł Ż Ś ź ź Ż ź ź ź Ą ź Ą Ą ź Ć ź ź Ń Ą Ą Ń Ł Ś Ą Ą Ł Ł Ą Ń Ń Ń Ł Ą Ą Ą Ż Ą Ą Ą ź Ą Ą Ą Ł Ł ź Ó Ń Ł Ś Ż Ą Ą ź Ł Ó Ż Ł Ń Ś Ż ź
SYSTEM PRZERWA Ń MCS 51
Zachodniopomorski Uniwersytet Technologiczny WYDZIAŁ ELEKTRYCZNY Zakład Cybernetyki i Elektroniki LABORATORIUM TECHNIKA MIKROPROCESOROWA SYSTEM PRZERWA Ń MCS 51 Opracował: mgr inŝ. Andrzej Biedka Uwolnienie
ŁĄ Ł
Ł Ę Ś ŁĄ Ł Ś Ś Ś Ą Ś Ó Ę Ś Ą Ś Ę Ą Ą Ś Ą Ó Ó Ś Ś Ą Ą Ę ć ć ć ć Ó Ó ż ć ć ć ż ć ż ć Ł Ś Ś Ś Ą Ś Ę Ś Ś Ś Ś Ś ż Ś ć ż ć ż ć Ś Ś ż Ó ć ż ć Ó Ó ć ż Ó ć Ś ć Ź ć ż ż ć ć Ó ć ż ć ć Ó ć Ó ż ż ć Ó ż ć Ó ć ć ż Ó
ż (0 = Rz(0+ Sm(0, ( 2 )
MECHANIKA TEORETYCZNA I STOSOWANA 1/ 2, 25, 1987 PRAWA STEROWANIA JAKO WIĘ ZY NIEHOLONOMICZNE AUTOMATYCZNEGO UKŁADU STEROWANIA Ś MIGŁOWCEM JERZY MARYNIAK Instytut Techniki Lotniczej i Mechaniki Stosowanej
Ę ż ć ŁĄ
Ł Ł Ę ć ż Ś ć ć Ę Ę ż ć ŁĄ Ą Ł ć ć ć Ę ż ć Ą ć ć ż ć ć ż Ę ż ć ć ć ć ż Ę Ą ż ć Ś ż ć ż ż Ę ć ż Ł ć Ą Ę Ł ć ć ć Ś ć Ł ć ć Ą Ł ć ć ć ć ó Ę Ł ć ć Ą Ł ć ć ć Ł Ść ć ó ć ć ć ć ż Ł ć ć ć Ł Ą Ś Ł Ą ż Ę Ą ć ć ć
SYNTEZA GROWEGO SYSTEMU NAPROWADZANIA SAMOLOTU NA SAMOLOT- CEL W PŁASZCZYŹ NIE PODŁUŻ NEJ METODĄ GIER ELEMENTARNYCH
MECHANIKA TEORETCZNA I STOSOWANA 1/2, 25, 1987 SYNTEZA GROWEGO SYSTEMU NAPROWADZANIA SAMOLOTU NA SAMOLOT- CEL W PŁASZCZYŹ NIE PODŁUŻ NEJ METODĄ GIER ELEMENTARNYCH JERZY GAŁAJ JERZY MARYNIAK Instytut Techniki
Ą ź Ą ń ź Ł Ł ń Ł ń ń ź ń Ł Ś Ą Ń ń ŁĄ Ś ń ń ń ń ń ń Ł Ą ń ń ń ń Ą Ą Ś ń Ó Ł ń ń ń ń ń ń ń ń ń ń ń ń ń ń ń ń ń ń ń ń ń ń Ł ń Ą ŁĄ Ś Ł Ś Ł ń ń ń ń Ń Ą ć ń ń Ł Ń ń Ł Ł ń Ł ń ń ń ń ń ń Ź Ł ń ń Ź Ł ń ń Ł
Ł ć Ą ć ć ć ć ć Ł
Ł Ś Ą Ś Ą Ł Ś Ś Ł Ł Ó Ą Ł ŚĆ Ń Ó Ł ć Ą ć ć ć ć ć Ł Ó Ł Ń Ś Ó ć Ś Ó Ń ŁĄ Ł Ó Ó Ł Ń Ś Ś Ó Ó Ó Ł Ń Ó Ł ć ć Ó Ó Ó Ł ć ż ż ć ć ż ż Ź ż ć ć ć Ó Ó Ó Ł Ń Ł Ó Ó Ó Ł ć ż ż ż ć ż ć ż Ł Ó Ó Ó Ł ż ż ć ć ć ć ć ć Ó Ż
DYNAMIKA RUCHU FOTELA ODRZUCANEGO WZGLĘ DEM SAMOLOTU W LOCIE SYMETRYCZNYM* 1. Wstę p
MECHANIKA TEORETYCZNA I STOSOWANA j/ 2, 24, (1986) DYNAMIKA RUCHU FOTELA ODRZUCANEGO WZGLĘ DEM SAMOLOTU W LOCIE SYMETRYCZNYM* CZESŁAW SZEMDZIELORZ WAT 1. Wstę p Przedmiotem analizy jest ruch fotela odrzucanego
Adres strony internetowej, na której Zamawiający udostępnia Specyfikację Istotnych Warunków Zamówienia:
Adres strony internetowej, na której Zamawiający udostępnia Specyfikację Istotnych Warunków Zamówienia: www.bip.spzoz.krotoszyn.pl Krotoszyn: Dostawa i montaż sterylizatorów i myjek w ramach rozbudowy,
DYNAMIKA NIEAUTONOMICZNEG O PRZESTRZENNEG O RUCHU SAMOLOTU Z ODKSZTAŁCALNYMI UKŁADAMI STEROWANIA* 1. Wstę p
MECHANIKA TEORETYCZNA I STOSOWANA /2, 24, (986) DYNAMIKA NIEAUTONOMICZNEG O PRZESTRZENNEG O RUCHU SAMOLOTU Z ODKSZTAŁCALNYMI UKŁADAMI STEROWANIA* ZBIGNIEW DŻ YGADŁO ADAM KRZYŻ ANOWSKI WAT. Wstę p Samolot
MODELOWANIE SERWOMECHANIZMU HYDRAULICZNEGO NA MASZYNIE CYFROWEJ. 1. Wprowadzenie
MECHANIKA TEORETYCZNA I STOSOWANA 1/2, 25, 1987 MODELOWANIE SERWOMECHANIZMU HYDRAULICZNEGO NA MASZYNIE CYFROWEJ WŁADYSŁAW JAROMINEK Polska Akademia Nauk, Warszawa TADEUSZ STEFAŃ SKI Politechnika Ś wię
Ó ż ż Ść ż ż ć ż ż Ś Ść Ó
Ć ż Ą Ą Ó Ł Ś Ł Ó Ś Ó ż ż Ść ż ż ć ż ż Ś Ść Ó Ó Ł ź ć ż Ść ż ż ż ż Ś ż ć ż ż Ś ć Ś Ś ż ć ż ż Ż Ż Ż Ś Ż Ś Ą Ó ź ź Ł Ż ź ź ź ż ż Ż ż ż ć ż Ś ż Ą ź ć ż Ł ć ż ż Ą Ł ż ż ż ź ż ć Ą ż Ś ź ż ż ż ż ć Ź ć ż ć ż
IDENTYFIKACJA PARAMETRYCZNA MODELU MATEMATYCZNEGO SAMOLOTU. 1. Wprowadzenie
MECHANIKA TEORETYCZNA I STOSOWANA 3, 25, (1987) IDENTYFIKACJA PARAMETRYCZNA MODELU MATEMATYCZNEGO SAMOLOTU WŁADYSŁAW JAROMINEK Polska Akademia Nauk, Warszawa TADEUSZ STEFAŃ SKI Politechnika Ś wię tokrzyska,kielce
Ą Ł Ł Ł ĄĄ Ą Ł Ą Ń Ń Ń
ź Ł ź ź Ł ź Ą ź Ą Ą Ą Ł Ł Ł ĄĄ Ą Ł Ą Ń Ń Ń Ś Ż ź Ą Ą ź ź Ą Ł Ł Ą Ą Ą Ń ź Ź ź Ł Ł ź Ś ź Ł Ł Ł Ś Ł Ś Ń Ś Ą ź Ń Ą ź Ś Ś Ś ŁĄ ź ź ź Ó Ś ź ź ź Ż ź Ł Ą Ń Ń Ą ź Ś Ą ź Ł Ł ź Ź Ń Ś Ó Ą Ł Ł ź Ż Ż Ó Ó Ś Ó Ś Ó Ó Ń
Ł Ą Ó Ł ć Ą ć ć
Ą Ł Ż Ż Ą Ń Ą Ś ź Ść ć Ł Ą Ó Ł ć Ą ć ć Ó ć Ż ż ż ż ć ć ż ć ż Ść Ż ć Ó ź Ł ć Ą ż ż ć ć Ś Ą ż ć Ę Ś Ś Ł ć ć ż ć ź Ż Ę Ó Ś ć ć Ś ż ż ć ć Ż Ó Ń ć Ó Ż Ść Ś ć ć Ż ć Ę ć Ł Ź ŁĄ ż Ó ć ć Ę Ż Ę Ł Ś Ł Ł Ż Ż Ż Ż ć
Ł Ń ś ń ć Ź ś ń
Ł Ł Ł Ń ś ń ć Ź ś ń ŁĄ Ę Ą Ą Ź ć ś ś Ź ć ć ć ć Ą ń ść ść ń Ź ń ś ś ń ń ń ń ń ś ń ś ść ś Ą ź Ź ś ś ń ć ń ń Ą ń ś ś ś ś Ź ś Ź ś ś Ź ś Ł Ś Ó Ą Ź Ą Ą Ó Ó ń ś ć ć ś ń ń Ść ń Ź ść ść ść ś ś ń ść ś ść ć ś Ń ć
MODELOWANIE DYNAMIKI STEROWANEGO OBIEKTU LATAJĄ CEGO KLASY ZIEMIA- POWIETRZE. 1. Wstę p
MECHANIKA TEORETYCZNA I STOSOWANA 1/ 2, 25, 1987 MODELOWANIE DYNAMIKI STEROWANEGO OBIEKTU LATAJĄ CEGO KLASY ZIEMIA- POWIETRZE JAN NICZYPORUK ALEKSANDER WIELGUS Wojskowa Akademia Techniczna 1. Wstę p W
Wykład 3. Ruch w obecno ś ci wię zów
Wykład 3 Ruch w obecno ś ci wię zów Wię zy Układ nieswobodnych punktów materialnych Układ punktów materialnych, których ruch podlega ograniczeniom wyraŝ onym przez pewne zadane warunki dodatkowe. Wię zy
Ó Ż ż Ć ż ż ż Ó Ę Ę Ó Ó ż Ó Ł ż Ł
ż Ó Ż Ż ż ź ż ż Ź Ż ż Ę Ą Ó Ż ż Ć ż ż ż Ó Ę Ę Ó Ó ż Ó Ł ż Ł Ń Ę ż ż Ź ż Ę Ż Ż ż ż ż ż ż ż ż ż ż ż ż Ź ż ż ż Ź Ó Ś Ó ż Ś Ą Ą ż ż Ł Ą Ń Ą Ą Ł ż Ź ż ż ż ż ż ż ŁĄ Ł Ś ż Ż ż Ś ż ż ż Ż ż Ż Ż ż Ż Ż Ż ż ż Ń ź
SYMULACJA CYFROWA LOTU SAMOLOTU TS- 1 ISKRA" W JĘ ZYKU MACROASSEMBLER*' 1. Cel pracy
MECHANIKA TEORETYCZNA I STOSOWANA 3, 24 (1986) SYMULACJA CYFROWA LOTU SAMOLOTU TS- 1 ISKRA" W JĘ ZYKU MACROASSEMBLER*' DANUTA FARYŃ SKA ŁUCJA SOBOLEWSKA ZBIGNIEW ZAGDAŃ SKI Instytut Techniczny Wojsk Lotniczych
ń
Ą ń Ą ż ń Ł ć ń ć ż ć ż Ą ć ń ź ż Ę ż ż ć ń ć ż ć ż ć ż ń ż ć ż ń ń ń ż ń ń ż Ł ń ż ń ć ń ż Ń ć ż ń ń ń ń ń ż ż Ą ć ż ć ż ć ż ć Ń ć ć ń ć ć ń ć ć ż ń ń Ń ń ż ć ź ń ż ż ŁĄ ż ń ż ż ż Ą ż ć ń ż ć ż Ń ż Ń
Ę Ź ś ś ść ś ść ś ś ś ś Ż ż Ś ś Ę Ś ś śś Ł
ś Ą ś Ż Ż Ł ź Ś Ż ż Ż ż ż Ó Ż Ę ś Ę Ę Ę ś ś Ł Ą Ę Ź ś ś ść ś ść ś ś ś ś Ż ż Ś ś Ę Ś ś śś Ł ż Ą ś ś ś ś ś ś ć ść Ę ś ś Ą Ę Ą ż Ę ś śś Ę ś ś ś ś ż Ę ć ś ć ż ć Óź Ę Ę Ę Ą ś ś ś Ś ś Ż Ż Ż żć ś ś ź Ę Ę ś ś
Ruch w potencjale U(r)=-α/r. Zagadnienie Keplera Przybli Ŝ enie małych drgań. Wykład 7 i 8
Wykład 7 i 8 Zagadnienie Keplera Przybli Ŝ enie małych drgań Ruch w potencjale U(r)=-α/r RozwaŜ my ruch punktu materialnego w polu centralnym, o potencjale odwrotnie proporcjonalnym do odległo ś ci r od
ć ć ż ć ź ż ż ź ź ŚĆ Ź ź ć Ź ź ź ź ź Ś Ą Ć Ć ć Ź ź
Ł Ł ć ć Ś Ź Ć Ś ć ć ż ć ź ż ż ź ź ŚĆ Ź ź ć Ź ź ź ź ź Ś Ą Ć Ć ć Ź ź Ś Ć Ć Ś ź Ć ż ż ź ż Ć ć ż Ć Ć ż ż ź Ć Ś Ś ż ż ć ż ż Ć ż Ć Ś Ś Ź Ć Ę ż Ś Ć ć ć ź ź Ś Ć Ś Ć Ł Ś Ź Ś ć ż Ś Ć ć Ś ż ÓŹ Ś Ś Ź Ś Ś Ć ż ż Ś ż
Ę ź ó ż ż ó ó ć Ę ż ć ż ó ó ó Ą ż ó ó ó ó ó ó ó ó ó
Ł ÓŁ Ł Ż Ę Ł Ł Ł Ł ó ż ó ó ó ó ó Ń ó ó ó ó ó ó Ł Ę Ł ó ó Ł ó Ę Ł Ż Ę ź ó ż ż ó ó ć Ę ż ć ż ó ó ó Ą ż ó ó ó ó ó ó ó ó ó ó ó ó Ń Ć Ż ó Ż Ę Ś ó ó Ą Ę ż ż ż Ń Ń ż ć Ść ó ŚĆ ó Ę ć ż Ź ŚĆ ź Ę Ś ć ó ó Ś ż ź Ó
ą ą Ź Ą Ó Ó Ó ż ą Ź Ó Ę ą
ÓŚ ż Ć ą ą ą Ź Ą Ó Ó Ó ż ą Ź Ó Ę ą ą Ę ŁĄ ż ą ą ą Ś ą Ś ą ą ą ż ć Ź ą ć Ó Ą Ę ą ś ą Ę ż ą ś Ź ą Ś ą Ą ŁĄ ś Ź Ś Ł Ź Ż ą Ć ś ś ć ś ą Ź ą ą ć Ź ś ą ą ą Ż Ó ś ś ś ś Ą Ś Ś ą Ź ą Ź ż ś ż Ę ć ś ą Ó ż ż Ą Ź Ż
Ś Ó Ą Ó Ó Ż ć Ó Ż Ó Ą Ź Ź Ó Ó Ó Ź Ó Ź Ó
Ś Ó Ą Ó Ó Ż ć Ó Ż Ó Ą Ź Ź Ó Ó Ó Ź Ó Ź Ó Ź Ż Ż Ć ć Ź Ź Ż Ó Ó Ź ć ć Ż Ź Ó Ą Ó ć ć Ż ć Ó ć ć Ź ć ć ć Ż Ś Ć Ę Ć ć Ę Ó ć Ż Ż Ę Ż Ę Ź ć Ó Ó Ś ć Ł Ś Ó ć Ż Ś Ó Ó Ś Ż ć ć Ó Ó ć Ś Ó Ś Ć ć Ó Ó Ó Ą Ą Ą Ą Ą Ą Ą Ą ź
METODYKA WYZNACZANIA PARAMETRÓW RUCHU USTALONEGO Ś MIGŁOWCA NA PRZYKŁADZIE LOTU POZIOMEGO I ZAWISU. 1. Wstę p
Mli CHAN IK A TEORETYCZNA I STOSOWANA 3-4, 23 (1985) METODYKA WYZNACZANIA PARAMETRÓW RUCHU USTALONEGO Ś MIGŁOWCA NA PRZYKŁADZIE LOTU POZIOMEGO I ZAWISU KRZYSZTOF JANKOWSKI (WARSZAWA) Politechnika Warszawska
Ę Ć Ś Ż ź Ż ć ć ć ć Ś ć ć ż ż Ź ć Ż ć
Ł Ę Ć Ś Ż ź Ż ć ć ć ć Ś ć ć ż ż Ź ć Ż ć Ś ć ż ć Ś ć ż ż ć Ść ć ć ć ć Ś Ś ż Ę Ś Ń ć ć Ś ć ć Ż ż ź ź ć ć ź Ż Ą Ś ź ż ż Ż Ż ż Ż ż Ż Ż ć ż Ż Ż ż ć ć Ż ć ć Ż Ą ć ć ż ź Ł Ł Ś Ą Ń Ż Ż Ż ć ć ż Ż ć Ż Ę ć Ż Ż ć
CHARAKTERYSTYKI AERODYNAMICZNE STATKU POWIETRZNEGO - LOT POZIOMY I ZAKRĘT
Samolot, dynamika lotu, modelowanie Sebastian GŁOWIŃSKI 1 CHARAKTERYSTYKI AERODYNAMICZNE STATKU POWIETRZNEGO - LOT POZIOMY I ZAKRĘT W artykule przedstawiono charakterystyki aerodynamiczne samolotu odrzutowego
ć ć Ł
Ł Ą Ę Ó Ą Ę Ż Ę Ś ć ć Ł Ą ĘŚĆ ć Ś ć ć ć ć ć Ś ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ć ć ć ć ć Ł Ś ć ć ć ć ć ć ć ć ć ć Ł Ś ć ć ć ć ć Ć ć ć ć Ć ć ć ć ć ć ć Ć Ś Ł ć Ę ć Ł Ź ź ź ć Ł Ę Ę Ł ŁĄ Ż ć ć ć Ś ŚÓ Ś ć ć Ś
Application of SPME/GC-MS for determination of chlorophenoxy herbicide residues within weed tissues. W: Chemistry for Agriculture 7. (H. Górecki, Z. Dobrzański, P. Kafarski, red.). wyd. CZECH-POL-TRADE, Prague-Brussels, pp. 967-971 (ISBN: 80-239-7759-8).
ć Ę ó ż ć
Ą Ł ż ż Ę ó ó ó ć ó ć ó ż ó ó ż ó ć Ę ó ż ć ó ź ó ó ó ć ó ć ó ć ó ó ó ó ó Ę ó ó ó ż ó Ę ó ó ż ó óż ó ó ć ć ż ó Ą ó ó ć ó ó ó ó ó ż ó ó ó ó Ą ó ó ć ó ó ź ć ó ó ó ó ć ó Ę ó ż ż ó ó ż ż ó ó ó ć ó ć ó ć ó
Ą Ź ć ć Ó Ó Ć Ć Ś
Ł Ł ź Ę Ą Ą Ź ć ć Ó Ó Ć Ć Ś Ł Ą Ą Ó ć ć ć Ś Ś Ó Ś Ó Ó Ó Ó Ó Ó Ó ć Ść Ó Ć ć Ź Ó ć Ó Ó Ó Ś Ź Ó ć ć ć Ł Ć Ź Ó Ó Ś ć Ź ć ć Ć ć ć ć Ź Ó ć Ó Ó Ś Ź Ó Ó Ś Ó ć ć ć Ś Ś Ó Ó Ó ć Ź Ł Ó ć Ś Ś Ó Ó ć Ź ć Ź Ł Ó Ó ć Ź
Ś Ż Ó Ś ż Ó ć ź ż ż Ą
Ś ż Ż Ż Ś Ż Ó ż ż ż Ą Ś Ż Ó Ś ż Ó ć ź ż ż Ą Ą Ó ż ż Ó Ś Ż Ó ż ż ż Ż Ź ź Ć Ó ż Ż ć Ż ż Ś ć Ś Ś Ż Ą Ż Ż Ó Ż Ż Ś Ż Ż Ź Ż Ż Ż Ę Ś Ż Ż Ś Ó Ż Ż ż Ą Ż Ą Ż Ś Ś ć Ź ć ć Ó ć Ś Ą Ó Ó ć Ż ż Ż Ó ż Ś Ś Ó Ś Ż Ż Ż Ż Ż
Ł ó ó Ż ż ó Ń Ń Ł ó ż Ę ż
Ł Ł Ń Ń Ł ó ó Ż ż ó Ń Ń Ł ó ż Ę ż Ł Ś Ł Ś Ś ó ż ć ó ó óż ó ć ó ć ż ć ż Ć ż ż ć ó ó ó ó Ś ó ż ż ŚĆ ż ż ż Ś ż ó ó ó ó Ą Ć ż ó ó ż ó Ę ż ó ó ó Ś ć ż ż ć ó Ę ć Ś ó ż ć ż ć ż ć ż Ę ó ż ż ź ó Ę Ę ó ó ż ó ó ć
ć ć ź ć ć ć Ść ć ź ź ź ć ź Ą ź
ć ć ć ź ć ć ć ć ź ć Ż ź ź ć ć ź ć ć ć Ść ć ź ź ź ć ź Ą ź ć ć ć ć ć ć ź ź Ż ć ć ć ć ć Ś ć ć Ź ć Ś ź ć ź ć ź ć ź ć ź Ź ć ć Ś ź ć ć ź Ć ć ź Ó Ż ć ć ź Ś ź ź ć ć ć ź ć ć ć ć ć ć ć ź ź ć ć ć Ś Ć Ó ź ć ź ć ć
ć Ś Ś Ść
ć Ś Ś Ść Ś Ł Ź Ść ć ć ć Ść ć Ść Ś Ść ć ć Ś Ó Ś Ś ć ć Ś Ś Ó Ś Ś ć Ą ć Ś Ś Ł ć Ś Ś Ł ć Ą Ść ć Ś Ó Ź ć ć Ś Ś ć ć ć Ś Ść Ść Ś Ś Ś Ś Ś Ś Ś Ś Ś Ś ć Ą Ś Ą Ś Ś Ź Ź ć ć Ś Ę Ź Ł ź Ę Ę Ś Ś Ś Ę Ą Ź ć Ł Ś Ś Ś Ś ć Ś
C e l e m c z ę ś c i d y s k u s y j n e j j e s t u ś w i a d o m i e n i e s o b i e, w o p a r c i u o r o z w a ż a n i a P i s m a Ś w.
1. C e l s p o t k a n i a. C e l e m c z ę ś c i d y s k u s y j n e j j e s t u ś w i a d o m i e n i e s o b i e, w o p a r c i u o r o z w a ż a n i a P i s m a Ś w., ż e : B y d z b a w i o n y m
Ś ż Ś ć Ś ż Ą ż Ś Ż ż Ż ć ż ż Ż Ż Ś Ś Ś Ś
Ą ź Ż ż Ś Ś Ź Ź ć Ś Ż Ś ź Ż Ż Ł Ż Ż Ż Ł Ś Ś Ź ć Ś Ś ż Ś ć Ś ż Ą ż Ś Ż ż Ż ć ż ż Ż Ż Ś Ś Ś Ś ć ć Ś Ść Ż Ó ż Ż Ń Ó ć ż ć ć Ść Ś Ś Ś Ż ć ć ż Ż ż Ż ć Ą Ż Ś Ś ż Ż Ó Ś ż ż Ż ż Ó Ż ć ż ż Ż ż ż Ż ć Ź Ź Ś ż Ść
Ł Ę ó Ę Ł Ó Ś Ź Ł ó ó Ń Ł Ę Ł
Ł Ł Ń Ń Ł Ę ó Ę Ł Ó Ś Ź Ł ó ó Ń Ł Ę Ł Ł Ó Ń Ł ó ó ó ó ó ó ć ć ć ć ó Ż ó ó Ą óź ó ó ó Ł ć ó ó ó ó ó ć ó Ó ó ó Ś ó ó ó Ś Ś ó ó ć Ż ź ó ó ó ó Ę Ą Ą ó ó ó ó ó ó ć ó ó ć ó ó ć ć ó ó ó Ą Ł Ń Ż Ą Ż Ą ó ź ó ó
Ł Ą ź ź Ż ź Ź Ó Ó ź Ł
Ł Ń Ó Ł Ą ź ź Ż ź Ź Ó Ó ź Ł ź Ń Ł Ź Ś Ł ź Ś Ó Ć Ą Ń Ą ź ź ź Ż ź ź Ź Ć ź ź Ł ź Ó Ą Ą Ł Ą Ą Ś ŚĆ Ł ź ź ź ź Ł ź Ń ź ź ź ź ź ź ź ź Ż Ą Ą Ó Ą Ł Ś Ś ź Ł ź Ł ź ź ź Ź Ź Ś Ź Ź Ó ź ź Ś Ó Ł Ś ź Ł ź ź Ź ź ź ź ź Ś
ż ć
Ł Ł ż ć ć ż ć Ą Ł ó ó ć ż ć ć ż ć Ę ć Ę ć ć Ę ć ć ć Ę ż ć ć ć Ś ć Ę Ę ż ż ć ż Ę ć ć Ę ż ż Ę Ł ć ć Ą Ę Ł ć ć ć ż ć Ę Ł Ść Ą Ę Ł ć ć ć ć Ę Ł Ść Ą Ę Ł ć ć ć Ł ć Ę Ę ć ć ć ć Ł Ść ć ć Ę Ę Ł Ś Ą Ś Ś Ł Ą Ą ż
I Pracownia fizyczna ćwiczenie nr 16 (elektrycznoś ć)
BADANIE PĘTLI HISTEREZY DIELEKTRYCZNEJ SIARCZANU TRÓJGLICYNY Zagadnienia: 1. Pole elektryczne wewnątrz dielektryków. 2. Własnoś ci ferroelektryków. 3. Układ Sowyera-Towera. Literatura: 1. Sz. Szczeniowski,
Ą Ą Ż ć Ż ć Ń Ą
Ą Ż Ż Ż Ż Ż Ą Ą Ż ć Ż ć Ń Ą Ż ć Ż Ż Ż Ż Ż Ż Ż Ż Ż Ż Ż Ż Ż ć Ż Ą Ż Ż Ż Ż Ż Ż Ś ć Ą Ż Ż Ł Ł Ą Ą Ł Ż ć Ż Ż Ż Ż Ż ź ć Ż Ź Ą Ż Ż Ż ź Ą Ł Ż Ż ć Ź Ł Ń ź Ż Ż ź Ł Ż Ą Ń Ż Ż ć Ą Ż ć Ż Ą Ż Ż Ń Ą Ą ć Ą Ą ź Ż Ó Ó
Krzyżanowski R. 2017 – Zastosowanie metody mikroekstrakcji SPME w analizie pozostałości pestycydów. [W:] Badania naukowe w świetle uwarunkowań turbulentnego otoczenia – Gospodarka-Świat-Człowiek (red. Joanna Nowakowska-Grunt, Judyta Kabus). Wydawnictwo Naukowe Sophia, Katowice, pp. 79-86 (ISBN: 978-83-65929-09-9).