Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych Omówienie
|
|
- Stanisława Nowicka
- 6 lat temu
- Przeglądów:
Transkrypt
1 Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych Omówienie P. F. Góra semestr letni 2006/07
2 Nazwa przedmiotu Przedmiot ten występuje pod dwoma nazwami: Jeśli studiujesz fizykę, przedmiot nazywa się Zaawansowane metody numeryczne, jest obowiazkowy dla IV roku, specjalizacja Fizyka komputerowa oraz, mam nadzieję, pożyteczny dla studentów innych specjalizacji. Jeśli studiujesz informatykę, przedmiot nazywa się Komputerowa analiza zagadnień różniczkowych, jest obowiazkowy dla III roku, sekcja Modelowanie oraz, mam nadzieję, pożyteczny dla studentów innych sekcji. Jeśli uważasz tę sytuację za cokolwiek schizofreniczna, to... Omówienie 2
3 Zakres materiału Zasadniczym celem kursu jest przedstawienie najważniejszych metod numerycznego rozwiazywania równań różniczkowych i zagadnień pokrewnych. Niniejszy kurs nie jest kursem programowania celem nie jest umiejętość pisania programów w takim lub innym języku programowania, ale umiejętość świadomego wybrania algorytmu właściwego do danego zagadnienia. Ponieważ numeryczne rozwiazywanie równań różniczkowych często prowadzi do innych zagadnień numerycznych, na poczatku przypomnimy trochę informacji na temat tych innych zagadnień. Omówienie 3
4 Szczegółowy plan kursu obejmuje: 1. Rozwiazywanie układów równań liniowych (a) Wiadomości wstępne i metody dokładne (b) Singular Value Decomposition (c) Metody iteracyjne (d) Metody typu gradientów sprzężonych; prewarunkowanie 2. Elementarne metody minimalizacji funkcji wielu zmiennych (metoda najszybszego spadku, gradientów sprzężonych, zmiennej metryki, metoda Levenberga-Marquardta) 3. Rozwiazywanie układów równań algebraicznych (nieliniowych) 4. Podstawowe twierdzenia o istnieniu i jednoznacznośći rozwiazań ODE Proste przykłady analityczne, w tym równania liniowe, w tym równania o stałych współczynnikach Omówienie 4
5 5. Metody Eulera (jawna, niejawna, zgodność, stabilność, układy sztywne) 6. Metody punktu środkowego 7. Metody Rungego-Kutty (a) Ogólne własności (b) Przykłady (c) Wyprowadzenie wzorów (d) Stabilność metod RK; obszary stabilności (e) Szczególne postacie metod RK (f) Metoda Rosenbrocka (g) Zmiana kroku w jawnych metodach RK; metody zagnieżdżone (h) Metody Bulirscha-Stoera 8. Metody Verleta Omówienie 5
6 9. Liniowe metody wielokrokowe (własności równań różnicowych, metody Adamsa-Bashfortha, Adamsa-Moultona, BDF, stabilność, zmiana kroku) 10. ODE z niezmiennikami (rzutowanie, algorytmy symplektyczne, układy DAE indeks, postacie Hessenberga) 11. Stochastyczne równania różniczkowe (interpretacja szumów i rachunek Ito, silny i słaby rzad zbieżności, metoda Eulera-Maryuamy, metoda Milsteina, metoda Heuna, inne metody wyższych rzędów) 12. Dwupunktowe problemy brzegowe (istnienie rozwiazań, stabilność, metoda strzelania, relaksacja na siatce) 13. Metody różnicowe dla czastkowych równań różniczkowych Omówienie 6
7 Zaliczenie Zaliczenie wykładu dokonuje się na jeden z dwu sposobów: Zdanie egazminu Regularne rozwiazywanie zadań dla wszystkich, zadawanych po wykładzie. Osoby planujace zdawać egzamin także sa zachęcane do rozwiazy- wania tych zadań. Warunkiem koniecznym dopuszczenia do egzaminu jest uzyskanie zaliczenia z ćwiczeń. Zasady zaliczania ćwiczeń ustalaja prowadzacy poszczególne grupy. Omówienie 7
8 W grupie prowadzonej przeze mnie podstawa uzyskania zaliczenia jest rozwia- zanie zadań. Zadania wywieszane sa przeze mnie wyłacznie na mojej stronie WWW. Zadania dziela się na teoretyczne i numeryczne ; te drugie oznaczone sa litera N. Uwaga: Niektóre zadania obliczeniowe uznawane sa za teoretyczne mianowicie takie, gdy obliczeń jest stosunkowo niewiele i da się je przeprowadzić na kartce. Warunkiem koniecznym uzyskania zaliczenia jest zaliczenie wszystkich zadań numerycznych. Rozwiazania zadań numerycznych proszę dostarczać wyłacznie w formie pisemnej. Forma pisemna oznacza wydruk lub elektroniczna formę pisemna, to znaczy plik pdf lub PostScript. Niezależnie od formy, rozwiazanie powinno zawierać omówinie problemu oraz wyniki w postaci prezentacyjnej, a przynajmniej uporzadkowanej. Jeśli na przykład zadanie wymaga porównania kilku metod, wyniki powinny być przedstawione Omówienie 8
9 w postaci umożliwiajacej takie porównanie. Jeśli w zadaniu wymaga się wycia- gnięcia jakichś wniosków z dokonanych obliczeń, rozwiazanie powinno zawierać te wnioski jasno wyartykułowane. Nie oczekuję dostarczania mi kodu programu w każdym przypadku, ale autor rozwiazania powinien być przygotowany do przedstawienia mi kodu jeśli sobie tego zażyczę. Wolno przy tym posługiwać się legalnie dostępnymi procedurami i bibliotekami. Ciężkim przestępstwem jest przedstawienie mi kodu, którego działania się nie rozumie, oznacza to bowiem, że jest to cudzy kod. Warunkiem koniecznym zdania egzaminu jest dobre opanowanie i zrozumienie materiału. Nie wymagam pamięciowego opanowania złożonych wzorów. W czasie egzaminu można korzystać z dowolnych podręczników i własnych notatek. (Powtórka z logiki: Proszę przypomnieć sobie różnice pomiędzy warunkiem koniecznym a wystarczajacym.) Omówienie 9
10 Język programowania Nie ma wielkiego znaczenia. Sukces programu numerycznego o wiele silniej zależy od wyboru właściwego algorytmu niż od wyboru właściwego języka. Pamiętać jednak należy, że program realizujacy (w zasadzie) dowolny algorytm można źle napisać w dowolnym języku programowania. Omówienie 10
11 Zasoby sieciowe Piszac programy, można korzystać z dowolnych legalnych źródeł oprogramowania. Nie wymagam pisania programów od zera. Przyzwoity program numeryczny pisze się często kilka miesięcy. Program numeryczny nadajacy się do włacze- nia do komercyjnej biblioteki pisze się zazwyczaj ponad rok. Mnóstwo dobrych i bardzo dobrych programów można znaleźć na sieci: Netlib to największe na sieci źródło darmowych i sprawdzonych programów z wielu dziedzin analizy numerycznej. Uwaga: większość z programów w Netlibie napisanych jest w FORTRANie (nawet nie w w Fortranie). Można je automatycznie tłumaczyć przy użyciu f2c, ale to na ogół nie jest optymalne wyjście. Template Numerical Toolkit algebra liniowa w C++ Omówienie 11
12 JAMA, implementacja w C++ obiektowo o numeryce Java Numerics Decision Tree for Optimisation Software The Fastest Fourier Transform in the West Omówienie 12
13 Dostępne na sieci FAQs Scientific Computing FAQ http: //www-unix.mcs.anl.gov/otc/guide/faq/linear-programming-faq.html Linear Programming FAQ nonlinear-programming-faq.html Nonlinear Programming FAQ Cellular Automata FAQ Genetic Algorithms FAQ Nonlinear Sciences FAQ Omówienie 13
14 Literatura Podręczników numerycznego rozwiazywania rónań różniczkowych sa tysiace, niektóre z nich sa dobre. Ja nie będę powielał żadnego konkretnego podręcznika, korzystał natomiast będę z: 1. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in C/Fortran, Second Edition, wersja on-line dostępna pod tekst jest pożyteczny, ale przestrzegam przed używaniem kodu 2. G. H. Golub, C. Van Loan, Matrix Computations 3. J. C. Butcher, Numerical Methods for Ordinary Differential Equations 4. M. R. Allen III, E. L. Isaacson, Numerical Analysis for Applied Science 5. U. M. Asher, L. R. Petzold, Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations Poza pozycja pierwsza, ksiażki te sa niezbyt łatwo dostępne. Omówienie 14
Komputerowa analiza zagadnień różniczkowych 10. Dwupunktowe problemy brzegowe (BVP, Boundary Value Problems)
Komputerowa analiza zagadnień różniczkowych 10. Dwupunktowe problemy brzegowe (BVP, Boundary Value Problems) P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Wprowadzenie Rozważmy
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: METODY NUMERYCZNE W RÓWNANIACH RÓŻNICZKOWYCH Nazwa w języku angielskim: NUMERICAL METHODS IN DIFFERENTIAL EQUATIONS Kierunek
Egzamin / zaliczenie na ocenę* 1,6 1,6
Zał. nr 4 do ZW 33/0 WYDZIAŁ / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Metody numeryczne Nazwa w języku angielskim Numerical methods Kierunek studiów (jeśli dotyczy): Inżynieria Systemów Specjalność
automatyka i robotyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014
Komputerowa analiza zagadnień różniczkowych 1. Równania różniczkowe zwyczajne podstawy teoretyczne. P. F. Góra
Komputerowa analiza zagadnień różniczkowych 1. Równania różniczkowe zwyczajne podstawy teoretyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Zasady zaliczenie ćwiczeń egzamin ustny; na egzaminie
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Wprowadzenie do numerycznej mechaniki płynów Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności: Inżynieria cieplna i samochodowa Rodzaj zajęć: wykład,
Nazwa modułu kształcenia Nazwa jednostki prowadzącej moduł Kod modułu Język kształcenia Efekty kształcenia dla modułu kształcenia
Nazwa modułu kształcenia Nazwa jednostki prowadzącej moduł Kod modułu Język kształcenia Efekty kształcenia dla modułu kształcenia Numeryczne rozwiązywanie równań różniczkowych zwyczajnych Wydział Matematyki
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Wstęp
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka finansowa Rocznik: 2014/2015 Język wykładowy: Polski Semestr
Informatyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) podstawowy (podstawowy / kierunkowy / inny HES)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Modelowanie i wizualizacja procesów fizycznych Nazwa modułu w języku angielskim
Zwięzły kurs analizy numerycznej
Spis treści Przedmowa... 7 1. Cyfry, liczby i błędy podstawy analizy numerycznej... 11 1.1. Systemy liczbowe... 11 1.2. Binarna reprezentacja zmiennoprzecinkowa... 16 1.3. Arytmetyka zmiennopozycyjna...
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 7a. Metody wielokrokowe
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 7a. Metody wielokrokowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Motywacja Metody wielokrokowe sa
I. KARTA PRZEDMIOTU CEL PRZEDMIOTU
I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: MATEMATYKA STOSOWANA II 2. Kod przedmiotu: Ma2 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Mechatronika 5. Specjalność: Zastosowanie informatyki
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka ubezpieczeniowa Rocznik: 2016/2017 Język wykładowy: Polski
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka w informatyce Rocznik: 2013/2014 Język wykładowy: Polski
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka ubezpieczeniowa Rocznik: 2013/2014 Język wykładowy: Polski
Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka finansowa Rocznik: 2013/2014 Język wykładowy: Polski Semestr
Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)
Zał nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : Obliczenia Naukowe Nazwa w języku angielskim : Scientific Computing. Kierunek studiów : Informatyka Specjalność
KARTA KURSU (realizowanego w module specjalności) Metody numeryczne
KARTA KURSU (realizowanego w module ) Administracja systemami informatycznymi (nazwa ) Nazwa Nazwa w j. ang. Metody numeryczne Numerical methods Kod Punktacja ECTS* 3 Koordynator dr Kazimierz Rajchel Zespół
Kierunek: Informatyka Stosowana Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia
Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Informatyka Stosowana Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 216/217 Język wykładowy: Polski Semestr
Komputerowa analiza zagadnień różniczkowych 1. Równania różniczkowe zwyczajne podstawy teoretyczne. P. F. Góra
Komputerowa analiza zagadnień różniczkowych 1. Równania różniczkowe zwyczajne podstawy teoretyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2013 Zasady zaliczenie ćwiczeń egzamin ustny; na egzaminie
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU
Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Nazwa w języku angielskim ORDINARY DIFFERENTIAL EQUATIONS Kierunek studiów
zna metody matematyczne w zakresie niezbędnym do formalnego i ilościowego opisu, zrozumienia i modelowania problemów z różnych
Grupa efektów kierunkowych: Matematyka stosowana I stopnia - profil praktyczny (od 17 października 2014) Matematyka Stosowana I stopień spec. Matematyka nowoczesnych technologii stacjonarne 2015/2016Z
course Imię i Nazwisko organizującego EO1ET3000SBCTOS2 dr inż. Oleg Maslennikow w c Kurs egzaminacyjny Egzamin LICZBA GODZIN
Zaawansowane metody numeryczne 4,5 ECTS Nazwa w języku angielskim: Numerical methods. Advanced dzienne magisterskie course Kod przedmiotu Imię i Nazwisko organizującego EO1ET3000SBCTOS2 dr inż. Oleg Maslennikow
Z-ETI-1040 Metody numeryczne Numerical Methods
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Z-ETI-1040 Metody numeryczne Numerical Methods Kod modułu Nazwa modułu Nazwa modułu w języku angielskim
Rozwiązywanie równań liniowych. Transmitancja. Charakterystyki częstotliwościowe
Zał. nr do ZW 33/01 WYDZIAŁ Informatyki i Zarządzania / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Modele systemów dynamicznych Nazwa w języku angielskim Dynamic Systems Models. Kierunek studiów (jeśli
KARTA PRZEDMIOTU. 12. PRZEDMIOTOWE EFEKTY KSZTAŁCENIA Odniesienie do kierunkowych efektów kształcenia (symbol)
KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Równania różniczkowe (RRO020) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: II/4 5. LICZBA PUNKTÓW ECTS: 4 6. LICZBA GODZIN: 30 / 30
Kierunek: Informatyka Stosowana Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia
Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Informatyka Stosowana Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 214/215 Język wykładowy: Polski Semestr
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: Analiza wypukła Nazwa w języku angielskim: Convex analysis Kierunek studiów (jeśli dotyczy): MATEMATYKA Specjalność (jeśli
Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1
Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1 Tomasz Chwiej 6 czerwca 2016 1 Równania różniczkowe zwyczajne Zastosowanie szeregu Taylora do konstrukcji ilorazów różnicowych: iloraz
Metody numeryczne. dr hab inż. Tomasz Chwiej. Syllabus:
Metody numeryczne dr hab inż. Tomasz Chwiej Syllabus: https://syllabuskrk.agh.edu.pl/pl Plan wykładu 1. Arytmetyka komputerowa, błędy numeryczne 2. Rozwiązywanie układów algebraicznych równań liniowych
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: MODELOWANIE PROCESÓW ENERGETYCZNYCH Kierunek: ENERGETYKA Rodzaj przedmiotu: specjalności obieralny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE
INFORMATYKA. PLAN STUDIÓW NIESTACJONARNYCH 1-go STOPNIA STUDIA ROZPOCZYNAJĄCE SIĘ W ROKU AKADEMICKIM 2016/17. zajęć w grupach A K L S P
PLAN STUDIÓ NIESTACJONARNYCH 1-go STOPNIA 2016-2019 STUDIA ROZPOCZYNAJĄCE SIĘ ROKU AKADEMICKIM 2016/17 Rok I nazwa stęp do matematyki 20 20 zal z oc. 3 Podstawy programowania* 15 30 45 prowadzenie do systemów
Kierunek: Informatyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia
Wydział: Informatyki, Elektroniki i Telekomunikacji Kierunek: Informatyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 2016/2017 Język wykładowy: Polski Semestr 1 IIN-1-103-s
S Y L A B U S P R Z E D M I O T U
"Z A T W I E R D Z A M Prof. dr hab. inż. Radosław TRĘBIŃSKI dm Dziekan Wydziału Mechatroniki i Lotnictwa Warszawa, dnia... S Y L A B U S P R Z E D M I O T U NAZWA PRZEDMIOTU: NUMERYCZNE METODY OBLICZENIOWE
PROGRAM STUDIÓW. WYDZIAŁ: Podstawowych Problemów Techniki KIERUNEK: Matematyka stosowana
WYDZIAŁ: Podstawowych Problemów Techniki KIERUNEK: Matematyka stosowana PROGRAM STUDIÓW należy do obszaru w zakresie nauk ścisłych, dziedzina nauk matematycznych, dyscyplina matematyka, z kompetencjami
PWSZ w Tarnowie Instytut Politechniczny Elektrotechnika
PWSZ w Tarnowie Instytut Politechniczny Elektrotechnika METODY NUMERYCZNE WYKŁAD Andrzej M. Dąbrowski amd@agh.edu.pl Paw.C p.100e Konsultacje: środa 14 45-15 30 czwartek 14 45 - Wykład 2 godz. lekcyjne.
Uniwersytet Śląski w Katowicach WYDZIAŁ MATEMATYKI, FIZYKI I CHEMII. Kierunek Matematyka. Studia stacjonarne i niestacjonarne I i II stopnia
Uniwersytet Śląski w Katowicach WYDZIAŁ MATEMATYKI, FIZYKI I CHEMII Kierunek Matematyka Studia stacjonarne i niestacjonarne I i II stopnia Organizacja roku akademickiego 2017/2018 Studia stacjonarne I
Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.
Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie
WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI
Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim: Matematyka (EiT stopień) Nazwa w języku angielskim: Mathematics Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy):
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU
Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim WSTĘP DO TEORII RÓWNAŃ RÓŻNICZKOWYCH Nazwa w języku angielskim INTRODUCTION TO DIFFERENTIAL EQUATIONS THEORY
I. KARTA PRZEDMIOTU CEL PRZEDMIOTU
I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: MATEMATYKA 2. Kod przedmiotu: Ma 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Mechatronika 5. Specjalność: Eksploatacja Systemów Mechatronicznych
Metody Numeryczne w Budowie Samolotów/Śmigłowców Wykład I
Metody Numeryczne w Budowie Samolotów/Śmigłowców Wykład I dr inż. Tomasz Goetzendorf-Grabowski (tgrab@meil.pw.edu.pl) Dęblin, 11 maja 2009 1 Organizacja wykładu 5 dni x 6 h = 30 h propozycja zmiany: 6
Specjalnościowy Obowiązkowy Polski Semestr szósty
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Z-ZIP-541z Techniki obliczeniowe w zagadnieniach inżynierskich Numerical
3-letnie (6-semestralne) stacjonarne studia licencjackie kier. matematyka stosowana profil: ogólnoakademicki. Semestr 1. Przedmioty wspólne
3-letnie (6-semestralne) stacjonarne studia licencjackie kier. matematyka stosowana profil: ogólnoakademicki Semestr 1 Przedmioty wspólne Nazwa przedmiotu ECTS W Ć L P S Zal. Algebra liniowa z geometrią
Matematyka Stosowana na Politechnice Wrocławskiej. Komitet Matematyki PAN, luty 2017 r.
Matematyka Stosowana na Politechnice Wrocławskiej Komitet Matematyki PAN, luty 2017 r. Historia kierunku Matematyka Stosowana utworzona w 2012 r. na WPPT (zespół z Centrum im. Hugona Steinhausa) studia
Matlab - zastosowania Matlab - applications. Informatyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Matlab - zastosowania Matlab - applications A. USYTUOWANIE MODUŁU W SYSTEMIE
Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe. P. F. Góra
Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Co można zrobić z układem równań... tak, aby jego rozwiazania się nie zmieniły? Rozważam
Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)
Zał nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : Algebra numeryczna Nazwa w języku angielskim : Numerical algebra Kierunek studiów : Informatyka Specjalność
Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr zimowy 2017/2018
Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr zimowy 2017/2018 Tomasz Chwiej 22 stycznia 2019 1 Równania różniczkowe zwyczajne Zastosowanie szeregu Taylora do konstrukcji ilorazów
Wstęp do metod numerycznych 14. Kilka wstępnych uwag na temat numerycznego rozwiazywania równań różniczkowych zwyczajnych
Wstęp do metod numerycznych 14. Kilka wstępnych uwag na temat numerycznego rozwiazywania równań różniczkowych zwyczajnych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012/13 Równania różniczkowe zwyczajne
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: moduł specjalności obowiązkowy: Inżynieria oprogramowania, Sieci komputerowe Rodzaj zajęć: wykład, laboratorium MODELOWANIE I SYMULACJA Modelling
INFORMATYKA. PLAN STUDIÓW STACJONARNYCH 1-go STOPNIA (W UKŁADZIE SEMESTRALNYM) STUDIA ROZPOCZYNAJĄCE SIĘ W ROKU AKADEMICKIM A K L S P
Semestr I INFORMATYKA PLAN STUDIÓ STACJONARNYCH 1-go STOPNIA ( UKŁADZIE SEMESTRALNYM) STUDIA ROZPOCZYNAJĄCE SIĘ ROKU AKADEMICKIM 2016-17 stęp do matematyki 30 30 zo 3 Podstawy programowania 2 20 45 65
Efekt kształcenia. Ma uporządkowaną, podbudowaną teoretycznie wiedzę ogólną w zakresie algorytmów i ich złożoności obliczeniowej.
Efekty dla studiów pierwszego stopnia profil ogólnoakademicki na kierunku Informatyka w języku polskim i w języku angielskim (Computer Science) na Wydziale Matematyki i Nauk Informacyjnych, gdzie: * Odniesienie-
Wstęp do metod numerycznych Zadania numeryczne 2016/17 1
Wstęp do metod numerycznych Zadania numeryczne /7 Warunkiem koniecznym (nie wystarczającym) uzyskania zaliczenia jest rozwiązanie co najmniej 3 z poniższych zadań, przy czym zadania oznaczone literą O
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Programowanie liniowe w technice Linear programming in engineering problems Kierunek: Rodzaj przedmiotu: obowiązkowy na kierunku matematyka przemysłowa Rodzaj zajęć: wykład, laboratorium,
Studentom zostaną dostarczone wzory lub materiały opisujące. Zachęcamy do wykonania projektów programistycznych w postaci apletów.
W niniejszym dokumencie znajdują się propozycje projektów na rok 2008. Tematy sformułowane są ogólnie, po wyborze tematu i skontaktowaniu z prowadzącym zostaną określone szczegółowe wymagania co do projektu.
Kierunek: Informatyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia
Wydział: Informatyki, Elektroniki i Telekomunikacji Kierunek: Informatyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 2016/2017 Język wykładowy: Polski Semestr 1 IIN-1-103-s
LISTA KURSÓW PLANOWANYCH DO URUCHOMIENIA W SEMESTRZE ZIMOWYM 2015/2016
LISTA KURSÓW PLANOWANYCH DO URUCHOMIENIA W SEMESTRZE ZIMOWYM 2015/2016 INFORMATYKA I STOPNIA studia stacjonarne 1 sem. PO-W08-INF- - -ST-Ii-WRO-(2015/2016) MAP003055W Algebra z geometrią analityczną A
Wstęp do ochrony własności intelektualnej Akademickie dobre wychowanie 5 0 Razem
Kierunek Zarządzanie i Inżynieria Produkcji - studia stacjonarne pierwszego stopnia Semestralny plan studiów obowiązujący od roku akademickiego 05/06 Semestr Język angielski I 30 Repetytorium z matematyki
Akademickie dobre wychowanie 5 0 Razem
Kierunek zarządzanie i inżynieria produkcji - studia stacjonarne pierwszego stopnia Semestralny plan studiów obowiązujący od roku akademickiego 2017/2018 Semestr 1 1 Język angielski I 30 1 2 Repetytorium
Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, Spis treści
Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, 2017 Spis treści Od autorów 11 I. Klasyczne metody numeryczne Rozdział 1. Na początek 15 1.1.
Kierunek: Inżynieria i Analiza Danych Poziom studiów: Studia I stopnia Forma studiów: Stacjonarne. audytoryjne. Wykład Ćwiczenia
Wydział: Geologii, Geofizyki i Ochrony Środowiska Kierunek: Inżynieria i Analiza Danych Poziom studiów: Studia I stopnia Forma studiów: Stacjonarne Rocznik: 2019/2020 Język wykładowy: Polski Semestr 1
Metody numeryczne Numerical methods. Elektrotechnika I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/13
Repetytorium z matematyki 3,0 1,0 3,0 3,0. Analiza matematyczna 1 4,0 2,0 4,0 2,0. Analiza matematyczna 2 6,0 2,0 6,0 2,0
PROGRAM STUDIÓW I INFORMACJE OGÓLNE 1. Nazwa jednostki prowadzącej kierunek: Wydział Matematyki i Informatyki 2. Nazwa kierunku: Informatyka 3. Oferowane specjalności: 4. Poziom kształcenia: studia pierwszego
WSKAŹNIKI ILOŚCIOWE - Punkty ECTS w ramach zajęć: Efekty kształcenia. Wiedza Umiejętności Kompetencje społeczne (symbole) MK_1. Analiza matematyczna
PROGRAM STUDIÓW I INFORMACJE OGÓLNE 1. Nazwa jednostki prowadzącej kierunek: Wydział Matematyki i Informatyki 2. Nazwa kierunku: Informatyka 3. Oferowane specjalności: 4. Poziom kształcenia: studia pierwszego
INFORMATYKA. PLAN STUDIÓW NIESTACJONARNYCH 1-go STOPNIA STUDIA ROZPOCZYNAJĄCE SIĘ W ROKU AKADEMICKIM 2015/16. zajęć w grupach A K L S P
PLAN STUDIÓ NIESTACJONARNYCH 1-go STOPNIA 2015-20 STUDIA ROZPOCZYNAJĄCE SIĘ ROKU AKADEMICKIM 2015/16 Rok I Podstawy programowania 15 30 45 E 7 Systemy operacyjne 15 25 40 zal z oc. 5 Teoretyczne podstawy
Metody numeryczne Numerical methods. Elektrotechnika I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
ECTS Razem 30 Godz. 330
3-letnie stacjonarne studia licencjackie kier. Matematyka profil: ogólnoakademicki Semestr 1 Przedmioty wspólne Algebra liniowa z geometrią analityczną I 7 30 30 E Analiza matematyczna I 13 60 60 E Technologie
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Równania różniczkowe Differential equations Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom kwalifikacji: I stopnia
Metody przybliżonego rozwiązywania równań różniczkowych zwyczajnych
Metody przybliżonego rozwiązywania równań różniczkowych zwyczajnych Rozwiązywanie równań różniczkowych zwyczajnych za pomocą szeregów metody dyskretne Metoda współczynników nieoznaczonych Metoda kolejnego
Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017
Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Środowiska obowiązuje studentów rozpoczynających studia w roku akademickim 206/207 Kierunek studiów: Budownictwo Profil:
Informacja o Możliwości Jednoczesnego Studiowania Matematyki i Informatyki w Systemie Studiów Dwustopniowych.
Informacja o Możliwości Jednoczesnego Studiowania Matematyki i Informatyki w Systemie Studiów Dwustopniowych. Zasady ogólne Programy studiów matematycznych i informatycznych na Wydziale Matematyki i Informatyki
WYDZIAŁ MECHANICZNY KARTA PRZEDMIOTU
Zał. nr 4 do ZW WYDZIAŁ MECHANICZNY KARTA PRZEDMIOTU Nazwa w języku polskim RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Nazwa w języku angielskim ORDINARY DIFFERENTIAL EQUATIONS Kierunek studiów (jeśli dotyczy): Automatyka
Kierunek:Informatyka- - inż., rok I specjalność: Grafika komputerowa i multimedia
:Informatyka- - inż., rok I specjalność: Grafika komputerowa i multimedia Podstawy prawne. 1 15 1 Podstawy ekonomii. 1 15 15 2 Metody uczenia się i studiowania. 1 15 1 Środowisko programisty. 1 30 3 Komputerowy
PLAN STUDIÓW STACJONARNYCH PIERWSZEGO STOPNIA
MATEMATYKA STOSOANA PLAN STUDIÓ STACJONARNYCH PIERSZEGO STOPNIA semestr: 1. w grupach 14.4- -060 prowadzenie do psychologii 15 15 30 2 S-PP/OH 11.1- -810 stęp do logiki i teorii mnogości 30 30 60 1 8 P1
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: ALGEBRA LINIOWA I GEOMETRIA ANALITYCZNA Kierunek: Mechatronika Linear algebra and analytical geometry Kod przedmiotu: A01 Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Poziom
Kierunek:Informatyka- - inż., rok I specjalność: Grafika komputerowa
:Informatyka- - inż., rok I specjalność: Grafika komputerowa Metody uczenia się i studiowania. 1 Podstawy prawne. 1 Podstawy ekonomii. 1 Matematyka dyskretna. 1 Wprowadzenie do informatyki. 1 Podstawy
Metody optymalizacji Optimization methods Forma studiów: stacjonarne Poziom studiów II stopnia. Liczba godzin/tydzień: 1W, 1Ć
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści dodatkowych Rodzaj zajęć: wykład, ćwiczenia Metody Optimization methods Forma studiów: stacjonarne Poziom studiów
Kierunek: Inżynieria Obliczeniowa Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia
Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Inżynieria Obliczeniowa Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 2016/2017 Język wykładowy: Polski Semestr
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 (1) Nazwa Rachunek różniczkowy i całkowy II (2) Nazwa jednostki prowadzącej Instytut Matematyki przedmiot (3) Kod (4) Studia
KARTA PRZEDMIOTU. Algorytmy i struktury danych, C4
KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:
3. Plan studiów PLAN STUDIÓW. Faculty of Fundamental Problems of Technology Field of study: MATHEMATICS
148 3. Plan studiów PLAN STUDIÓW 3.1. MATEMATYKA 3.1. MATHEMATICS - MSc studies - dzienne studia magisterskie - day studies WYDZIAŁ: PPT KIERUNEK: MATEMATYKA SPECJALNOŚCI: Faculty of Fundamental Problems
Wzornictwo Przemysłowe I stopień (I stopień / II stopień) akademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2014/2015
Instytut Nauk Technicznych, PWSZ w Nysie Kierunek: Informatyka Specjalność: Systemy i sieci komputerowe, SSK studia niestacjonarne Dla rocznika:
Instytut Nauk Technicznych, PWSZ w Nysie Kierunek: Informatyka Specjalność: Systemy i sieci komputerowe, SSK studia niestacjonarne Dla rocznika: Rok I, semestr I (zimowy) 1 Etykieta w życiu publicznym
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: ALGEBRA LINIOWA I GEOMETRIA ANALITYCZNA Kierunek: Inżynieria biomedyczna Linear algebra and analytical geometry forma studiów: studia stacjonarne Kod przedmiotu: IB_mp_ Rodzaj przedmiotu:
Field of study: Computer Science Study level: First-cycle studies Form and type of study: Full-time studies. Auditorium classes.
Faculty of: Computer Science, Electronics and Telecommunications Field of study: Computer Science Study level: First-cycle studies Form and type of study: Full-time studies Annual: 2014/2015 Lecture language:
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Programowanie liniowe w zagadnieniach finansowych i logistycznych Linear programming in financial and logistics problems Kierunek: Matematyka Rodzaj przedmiotu: obowiązkowy dla specjalności
Kierunek: Informatyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia
Wydział: Informatyki, Elektroniki i Telekomunikacji Kierunek: Informatyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 217/218 Język wykładowy: Polski Semestr 1 IIN-1-13-s
Uniwersytet Śląski w Katowicach WYDZIAŁ MATEMATYKI, FIZYKI I CHEMII. Kierunek Matematyka. Studia stacjonarne i niestacjonarne I i II stopnia
Uniwersytet Śląski w Katowicach WYDZIAŁ MATEMATYKI, FIZYKI I CHEMII Kierunek Matematyka Studia stacjonarne i niestacjonarne I i II stopnia Organizacja roku akademickiego 2016/2017 Studia stacjonarne I
Język programowania C C Programming Language. ogólnoakademicki
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014
INFORMATYKA PLAN STUDIÓW NIESTACJONARNYCH (W UKŁADZIE ROCZNYM) STUDIA ROZPOCZYNAJĄCE SIĘ W ROKU AKADEMICKIM 2015-16
Rok I INFORMATYKA PLAN STUDIÓ NISTACJONARNYCH ( UKŁADZI ROCZNYM) STUDIA ROZPOCZYNAJĄC SIĘ ROKU AKADMICKIM 2015-16 Podstawy programowania 15 30 45 1 7 Systemy operacyjne 15 25 40 5 Teoretyczne podstawy
Inżynierskie metody numeryczne II. Konsultacje: wtorek 8-9:30. Wykład
Inżynierskie metody numeryczne II Konsultacje: wtorek 8-9:30 Wykład Metody numeryczne dla równań hiperbolicznych Równanie przewodnictwa cieplnego. Prawo Fouriera i Newtona. Rozwiązania problemów 1D metodą
Zastosowania analizy stochastycznej w finansach Application of Stochastic Models in Financial Analysis Kod przedmiotu: Poziom przedmiotu: II stopnia
Nazwa przedmiotu: Kierunek: Matematyka Rodzaj przedmiotu: obowiązkowy dla specjalności matematyka finansowa i ubezpieczeniowa Rodzaj zajęć: wykład, ćwiczenia Zastosowania analizy stochastycznej w finansach
PLAN STUDIÓW STACJONARNYCH PIERWSZEGO STOPNIA DLA KIERUNKU MATEMATYKA NA WYDZIALE MATEMATYKI, INFORMATYKI I EKONOMETRII UNIWERSYTETU ZIELONOGÓRSKIEGO
PLAN STUDIÓW STACJONARNYCH PIERWSZEGO STOPNIA DLA KIERUNKU MATEMATYKA NA WYDZIALE MATEMATYKI, INFORMATYKI I EKONOMETRII UNIWERSYTETU ZIELONOGÓRSKIEGO rekrutacja w roku akademickim 2011/2012 Zatwierdzono:
KARTA PRZEDMIOTU. 1. Informacje ogólne. 2. Ogólna charakterystyka przedmiotu. Algorytmy i struktury danych, C3
KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:
Wstęp do metod numerycznych 9a. Układy równań algebraicznych. P. F. Góra
Wstęp do metod numerycznych 9a. Układy równań algebraicznych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Układy równań algebraicznych Niech g:r N równanie R N będzie funkcja klasy co najmniej
Rok I, semestr I (zimowy) Liczba godzin
Instytut Nauk Technicznych, PWSZ w Nysie Kierunek: Informatyka Specjalność: Bezpieczeństwo sieci i systemów informatycznych, BSiSI studia stacjonarne Dla rocznika: 2018/2019 Rok I, semestr I (zimowy) 1
Kierunek:Informatyka- - inż., rok I specjalność: Grafika komputerowa i multimedia
:Informatyka- - inż., rok I specjalność: Grafika komputerowa i multimedia Podstawy prawne. 1 15 1 Podstawy ekonomii. 1 15 15 2 Repetytorium z matematyki. 1 30 3 Środowisko programisty. 1 30 3 Komputerowy
PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION
Mirosław GUZIK Grzegorz KOSZŁKA PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION W artykule przedstawiono niektóre