PRZEDMIOTOWE ZASADY OCENIANIA I WYMAGANIA EDUKACYJNE Z MATEMATYKI Klasa 3
|
|
- Czesław Kwiecień
- 7 lat temu
- Przeglądów:
Transkrypt
1 PRZEDMIOTOWE ZASADY OCENIANIA I WYMAGANIA EDUKACYJNE Z MATEMATYKI Klasa 3 I. FUNKCJE grupuje elementy w zbiory ze względu na wspólne cechy wymienia elementy zbioru rozpoznaje funkcje wśród przyporządkowań opisanych słownie, za pomocą grafu lub tabeli (proste uzasadnia, że dane przyporządkowanie jest funkcją (proste uzasadnia, że dane przyporządkowanie nie jest funkcją (proste przedstawia za pomocą grafu lub tabeli funkcję opisaną słownie podaje dziedzinę i wartość funkcji dla danego argumentu oraz zbiór wartości funkcji opisanych za pomocą grafu lub tabeli odczytuje współrzędne punktów w układzie współrzędnych zaznacza punkty o danych współrzędnych w układzie współrzędnych odczytuje z wykresu funkcji jej wartość dla danego argumentu odczytuje argumenty, dla których funkcja przyjmuje daną wartość podaje miejsca zerowe funkcji opisanej za pomocą grafu lub tabeli odczytuje z wykresu funkcji jej miejsca zerowe odczytuje z wykresu funkcji, dla jakich argumentów funkcja przyjmuje wartości dodatnie, a dla jakich wartości ujemne określa najmniejszą i największą wartość danej funkcji odczytuje informacje z wykresów funkcji osadzonych w kontekście praktycznym (proste zapisuje wzór funkcji opisanej za pomocą grafu, tabeli lub słownie (proste oblicza wartość funkcji opisanej wzorem dla danego argumentu sprawdza, czy punkt o danych współrzędnych należy do wykresu funkcji, korzystając z jej wzoru podaje dziedzinę i wartość funkcji dla danego argumentu oraz zbiór wartości funkcji uzasadnia, że dany wykres nie opisuje funkcji przedstawia funkcję, której wykres jest dany, za pomocą tabeli lub grafu szkicuje wykresy funkcji o danych własnościach odczytuje z wykresu funkcji, dla jakich argumentów wartości funkcji są większe lub
2 mniejsze od danej liczby korzysta ze wzoru funkcji, aby ustalić, dla jakiego argumentu funkcja przyjmuje daną wartość (proste stosuje wzór funkcji do rozwiązywania zadań rozwiązuje zadania o podwyższonym stopniu trudności dotyczące funkcji II. PODOBIEŃSTWO wskazuje figury podobne oblicza skalę podobieństwa wielokątów podobnych stosuje skalę podobieństwa do wyznaczania długości boków wielokątów podobnych stosuje własność boków prostokątów podobnych do sprawdzania ich podobieństwa wskazuje wśród wielu trójkątów pary trójkątów prostokątnych podobnych podaje skalę podobieństwa trójkątów prostokątnych podobnych uzasadnia, że dane dwa trójkąty prostokątne są podobne/nie są podobne stosuje podobieństwo trójkątów prostokątnych do wyznaczenia długości ich boków oblicza pole wielokąta podobnego do danego, znając pole danego wielokąta i skalę podobieństwa obu wielokątów oblicza skalę podobieństwa figur, znając ich pola stosuje własności wielokątów podobnych do uzasadniania własności wielokątów stosuje cechy podobieństwa trójkątów prostokątnych do rozwiązywania zadań, w tym zadań osadzonych w kontekście praktycznym stosuje związek między polami figur podobnych do rozwiązywania zadań, w tym zadań osadzonych w kontekście praktycznym przeprowadza proste dowody dotyczące podobieństwa trójkątów rozwiązuje zadania o znacznym stopniu trudności dotyczące przystawania i podobieństwa figur 2
3 III. WIELOŚCIANY wskazuje: podstawy, ściany, krawędzie, wierzchołki, przekątne i wysokość graniastosłupa nazywa i charakteryzuje graniastosłupy, w tym graniastosłupy: proste, prawidłowe, pochyłe zamienia jednostki objętości oblicza pole powierzchni i objętość graniastosłupa prawidłowego oblicza pole powierzchni i objętość graniastosłupa prostego (proste wyznacza długość przekątnej prostopadłościanu wyznacza długości przekątnych graniastosłupów prawidłowych wskazuje: podstawę, ściany, krawędzie, wierzchołki, wysokość i spodek wysokości ostrosłupa nazywa i charakteryzuje ostrosłupy, w tym ostrosłupy prawidłowe, czworościany wyznacza: liczbę wierzchołków, krawędzi i ścian ostrosłupa rysuje ostrosłupy prawidłowe rysuje siatkę ostrosłupa prawidłowego oblicza pole powierzchni bocznej i pole powierzchni całkowitej ostrosłupa prawidłowego oblicza objętość ostrosłupa prawidłowego: trójkątnego, czworokątnego i sześciokątnego rozpoznaje bryły powstające w wyniku przecięcia graniastosłupa i ostrosłupa wyznacza długości przekątnych graniastosłupów oblicza pole powierzchni i objętość graniastosłupa stosuje wzory na pole powierzchni całkowitej i objętość graniastosłupa do rozwiązywania zadań tekstowych, w tym zadań osadzonych w kontekście praktycznym stosuje zależność między liczbą wierzchołków, krawędzi i ścian ostrosłupa do rozwiązywania zadań rysuje ostrosłupy wyznacza wysokość i krawędź podstawy ostrosłupa prawidłowego, stosując twierdzenie Pitagorasa rysuje siatkę ostrosłupa oblicza pole powierzchni bocznej i pole powierzchni całkowitej ostrosłupa oblicza objętość ostrosłupa trójkątnego oblicza objętość ostrosłupa czworokątnego, którego podstawą jest prostokąt lub romb, znając wysokość bryły rozpoznaje i stosuje odpowiednie wzory do obliczania pola powierzchni i objętości brył powstałych przez złączenie dwóch (lub więcej) graniastosłupów lub ostrosłupów rozwiązuje zadania dotyczące pola powierzchni i objętości wielościanów, osadzone w kontekście praktycznym 3
4 rozwiązuje zadania dotyczące przekrojów wielościanu IV. BRYŁY OBROTOWE buduje modele walca i stożka rysuje walec powstały na skutek obrotu danego prostokąta wokół prostej zawierającej jeden z boków lub symetralnej przeciwległych boków; podaje wysokość i promień podstawy tego walca rysuje siatki walca i stożka oblicza pole powierzchni bocznej i pole powierzchni całkowitej walca i stożka (proste oblicza pole powierzchni kuli (proste oblicza objętość: walca, stożka i kuli (proste rysuje stożek powstały na skutek obrotu danego trójkąta prostokątnego wokół prostej zawierającej jedną z przyprostokątnych; podaje wysokość i promień podstawy tego stożka podaje miarę kąta rozwarcia stożka oblicza promień kuli, znając jej pole powierzchni lub objętość rysuje bryły powstałe na skutek obrotu trójkąta lub trapezu wokół wskazanej prostej (proste oblicza pole powierzchni bocznej i pole powierzchni całkowitej walca i stożka oraz pole powierzchni kuli rozwiązuje zadania dotyczące walca i stożka, znając przekroje osiowe tych brył stosuje wzór na pole wycinka koła do rozwiązywania zadań dotyczących stożka rozwiązuje zadania dotyczące pola powierzchni i objętości walca, stożka oraz kuli, osadzone w kontekście praktycznym rysuje bryły powstające na skutek obrotu trójkąta lub trapezu wokół wskazanej prostej oblicza pole powierzchni i objętość bryły powstałej przez złączenie dwóch innych brył obrotowych rozwiązuje zadania o podwyższonym stopniu trudności dotyczące brył obrotowych 4
5 VI. TEMATY DODATKOWE analizuje nietypowe zadania i tworzy strategie ich rozwiązywania, wykorzystując metody graficzne oraz obserwacje szczególnych przypadków przeprowadza proste rozumowania matematyczne analizuje krytycznie informacje zawarte w tabeli, na wykresie lub diagramie (proste wyznacza nachylenie drogi stosuje reguły obowiązujące w grach przeprowadza rozumowanie i uzasadnia jego poprawność wyznacza wartości proporcji trygonometrycznych kątów ostrych danego trójkąta prostokątnego stosuje proporcje trygonometryczne do rozwiązywania zadań osadzonych w kontekście praktycznym tworzy strategię wygrywającą dla danej gry samodzielnie rozwija omawiane zagadnienie 5
Wymagania edukacyjne z matematyki dla klasy III gimnazjum
Wymagania edukacyjne z matematyki dla klasy III gimnazjum Poziomy wymagań edukacyjnych: K konieczny dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je zatem opanować każdy
MATEMATYKA - WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY
MATEMATYKA - WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KLASA III GIMNAZJUM Wymagania konieczne (K) dotyczą zagadnień elementarnych, podstawowych; powinien je opanować każdy uczeń. Wymagania podstawowe
ZESPÓŁ SZKÓŁ W OBRZYCKU
Matematyka na czasie Program nauczania matematyki w gimnazjum ZGODNY Z PODSTAWĄ PROGRAMOWĄ I z dn. 23 grudnia 2008 r. Autorzy: Agnieszka Kamińska, Dorota Ponczek ZESPÓŁ SZKÓŁ W OBRZYCKU Wymagania edukacyjne
Przedmiotowe zasady oceniania i wymagania edukacyjne
Agnieszka Kamińska, Dorota Ponczek Matematyka na czasie Gimnazjum, klasa 3 Przedmiotowe zasady oceniania i wymagania edukacyjne Przed przystąpieniem do omawiania zagadnień programowych i przed rozwiązywaniem
Temat lekcji Zakres treści Osiągnięcia uczeń: I. FUNKCJE 14
I. FUNKCJE 1 Podstawowe Ponadpodstawowe grupuje dane elementy w zbiory ze względu na wspólne cechy wymienia elementy zbioru rozpoznaje funkcje wśród przyporządkowa opisanych słownie lub za pomocą grafu
Agnieszka Kamińska, Dorota Ponczek. Matematyka na czasie Gimnazjum, klasa 3 Rozkład materiału i plan wynikowy
Agnieszka Kamińska, Dorota Ponczek Matematyka na czasie Gimnazjum, klasa Rozkład materiału i plan wynikowy I. FUNKCJE 1 1. Pojęcie funkcji zbiór i jego elementy pojęcie przyporządkowania pojęcie funkcji
WYMAGANIA EDUKACYJNE Z MATEMATYKI
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA 2 I. POTĘGI I PIERWIASTKI oblicza wartości potęg o wykładnikach całkowitych liczb różnych od zera zapisuje liczbę w postaci potęgi o wykładniku ujemnym porządkuje
Przedmiotowy system oceniania z matematyki
Przedmiotowy system oceniania z matematyki Klasa 3 Gimnazjum cykl kształcenia 2016-2019 rok szkolny 2018/2019 opracowany na podstawie programu Matematyka na czasie, zmodyfikowany i realizowany przez nauczycieli
DZIAŁ 1. STATYSTYKA DZIAŁ 2. FUNKCJE
DZIAŁ 1. STATYSTYKA poda pojęcie diagramu słupkowego i kołowego (2) poda pojęcie wykresu (2) poda potrzebę korzystania z różnych form prezentacji informacji (2) poda pojęcie średniej, mediany (2) obliczy
Matematyka na czasie
Agnieszka Kamińska, Dorota Ponczek Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klas gimnazjalnych: 2 i 3 Proponujemy, by omawiając dane zagadnienie programowe
Katalog wymagań na poszczególne stopnie szkolne klasa 3
Katalog wymagań na poszczególne stopnie szkolne klasa 3 I. GRANIASTOSŁUPY I OSTROSŁUPY 6 5 4 3 2 Wskazuje wśród wielościanów graniastosłupy proste i pochyłe. Wskazuje na modelu lub rysunku krawędzie, wierzchołki,
Wymagania na poszczególne oceny szkolne z. matematyki. dla uczniów klasy IIIa i IIIb. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016
Wymagania na poszczególne oceny szkolne z matematyki dla uczniów klasy IIIa i IIIb Gimnazjum im. Jana Pawła II w Mętowie w roku szkolnym 2015/2016 DZIAŁ 1. FUNKCJE (11h) Uczeń: poda definicję funkcji (2)
Wymagania edukacyjne na poszczególne stopnie szkolne klasa III
Wymagania edukacyjne na poszczególne stopnie szkolne klasa III Rozdział 1. Bryły - wie, czym jest graniastosłup, graniastosłup prosty, graniastosłup prawidłowy - wie, czym jest ostrosłup, ostrosłup prosty,
WYMAGANIA EDUKACYJNE Z MATEMATYKI dla uczniów klasy trzeciej gimnazjum na podstawie programu MATEMATYKA 2001
Osiągnięcia ponadprzedmiotowe WYMAGANIA EDUKACYJNE Z MATEMATYKI dla uczniów klasy trzeciej gimnazjum na podstawie programu MATEMATYKA 2001 W rezultacie kształcenia matematycznego uczeń potrafi: czytać
Plan wynikowy, klasa 3 ZSZ
Plan wynikowy, klasa 3 ZSZ Nazwa działu Temat Liczba godzin 1. Trójkąty prostokątne powtórzenie 1. Trygonometria (10 h) 2. Funkcje trygonometryczne kąta ostrego 3. 4. Trygonometria zastosowania 5. 6. Związki
Katalog wymagań na poszczególne stopnie szkolne klasa 3
Katalog wymagań na poszczególne stopnie szkolne klasa 3 Przedstawiamy, jakie umiejętności z danego działu powinien zdobyć uczeń, aby uzyskać poszczególne stopnie. Na ocenę dopuszczający uczeń powinien
w najprostszych przypadkach, np. dla trójkątów równobocznych
MATEMATYKA - klasa 3 gimnazjum kryteria ocen według treści nauczania (Przyjmuje się, że jednym z warunków koniecznych uzyskania danej oceny jest spełnienie wszystkich wymagań na oceny niższe.) Dział programu
Osiągnięcia ponadprzedmiotowe
Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 3 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo
1 wyznacza współrzędne punktów przecięcia prostej danej
Wymagania edukacyjne z matematyki DLA II i III KLASY ZASADNICEJ SZKOŁY ZAWODOWEJ Gwiazdką * oznaczono te hasła i wymagania, które są rozszerzeniem podstawy programowej. Nauczyciel może je realizować jedynie
Strona 1 z 9. prowadzić rozumowania matematyczne sprawnie posługiwać się językiem matematycznym
Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 3 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe KONIECZNE( 2) PODSTAWOWE (3) ROZSZERZAJĄCE (4) DOPEŁNIAJACE
Konieczne Podstawowe Rozszerzające Dopełniające Wykraczające. tworzyć teksty w stylu matematycznym
14 OSIĄGNIĘCIA PONADPRZEDMIOTOWE W rezultacie kształcenia matematycznego w klasie 3 uczeń potrafi: czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji nowych treści W rezultacie
Osiągnięcia ponadprzedmiotowe. Osiągnięcia przedmiotowe
Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 3 gimnazjum uczeń potrafi: KONIECZNE PODSTAWOWE ROZSZERZAJĄCE DOPEŁNIAJACE WYKRACZAJĄCE czytać teksty w stylu matematycznym
Kryteria oceniania Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 3 gimnazjum uczeń potrafi:
1 Copyright by Wydawnictwa Szkolne i Pedagogiczne, Warszawa 2017 Kryteria oceniania Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 3 gimnazjum uczeń potrafi: czytać teksty
KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY
KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA III FUNKCJE rozumie wykres jako sposób prezentacji informacji umie odczytać informacje z wykresu umie odczytać i porówna ć informacje z kilku wykresów
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE III GIMNAZJUM
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE III GIMNAZJUM 1. 2. 3. 4. 5. 6. czytać dane przedstawione na diagramach i w tabelach przekształcać równania liniowe na równania równoważne ekształcać układy równań
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie rozszerzonym. Klasa 4 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. III GIMNAZJUM BRYŁY
KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. III GIMNAZJUM OCENA DOPUSZCZAJĄCA BRYŁY UCZEŃ ZNA: - pojęcie graniastosłupa, prostopadłościanu i sześcianu; - pojęcie graniastosłupa prostego i prawidłowego;
Podstawą do uzyskania pozytywnego stopnia za I i II półrocze jest wykazanie się ( w formie pisemnej)
Wymagania programowe z matematyki - Klasa 3 obowiązujące w od roku szkolnego 2013/2014 UWAGA! Podstawą do uzyskania pozytywnego stopnia za I i II półrocze jest wykazanie się ( w formie pisemnej) znajomością
Wymagania edukacyjne z matematyki w klasie trzeciej zasadniczej szkoły zawodowej
Wymagania edukacyjne z matematyki w klasie trzeciej zasadniczej szkoły zawodowej Temat ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca Dział I. TRYGONOMETRIA (15 h )
CZEŚĆ PIERWSZA. Wymagania na poszczególne oceny,,matematyka wokół nas Klasa III I. POTĘGI
Wymagania na poszczególne oceny,,matematyka wokół nas Klasa III CZEŚĆ PIERWSZA I. POTĘGI Zamienia potęgi o wykładniku całkowitym ujemnym na odpowiednie potęgi o wykładniku naturalnym. Oblicza wartości
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM LICZBY, WYRAŻENIA ALGEBRAICZNE umie obliczyć potęgę o wykładniku naturalnym; umie obliczyć
Wymagania programowe na poszczególne oceny. Klasa 2. Potęgi o wykładnikach naturalnych i całkowitych. Poziom wymagań edukacyjnych:
Wymagania programowe na poszczególne oceny Poziom wymagań edukacyjnych: K konieczny (ocena dopuszczająca) P podstawowy (ocena dostateczna) R rozszerzający (ocena dobra) D dopełniający (ocena bardzo dobra)
Plan wynikowy do programu MATEMATYKA 2001 klasa 3 gimnazjum
Plan wynikowy do programu MATEMATYKA 2001 klasa 3 gimnazjum Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: czytać teksty w stylu matematycznym wykorzystywać słownictwo
WYMAGANIA EDUKACYJNE Z MATEMATYKI Szkoła Branżowa I Stopnia
WYMAGANIA EDUKACYJNE Z MATEMATYKI Szkoła Branżowa I Stopnia KLASA I 1. Liczby rzeczywiste i wyrażenia algebraiczne 1) Liczby naturalne, cechy podzielności stosuje cechy podzielności liczby przez 2, 3,
str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk
str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 3e: wpisy oznaczone jako: (T) TRYGONOMETRIA, (PII) PLANIMETRIA II, (RP) RACHUNEK PRAWDOPODOBIEŃSTWA, (ST)
MATEMATYKA KLASY III gimnazjum LICZBY I WYRAŻENIA ALGEBRAICZNE
MATEMATYKA KLASY III gimnazjum LICZBY I WYRAŻENIA ALGEBRAICZNE - pojęcie liczby naturalnej, całkowitej, wymiernej, niewymiernej, - sposób i potrzebę zaokrąglania liczb, - pojęcie wartości bezwzględnej,
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
Plan wynikowy do programu MATEMATYKA 2001 klasa 3 gimnazjum
Plan wynikowy do programu MATEMATYKA 2001 klasa 3 gimnazjum Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Umiejętności podstawowe KONIECZNE PODSTAWOWE ROZSZERZAJĄCE
Kryteria ocen z matematyki dla klasy III gimnazjum. Osiągnięcia przedmiotowe
umiejętności konieczne ocena dopuszczający umiejętności podstawowe ocena dostateczny umiejętności rozszerzające ocena dobry umiejętności dopełniające ocena bardzo dobry umiejętności wykraczające ocena
KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM
KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM POTĘGI I PIERWIASTKI - pojęcie potęgi o wykładniku naturalnym; - wzór na mnożenie i dzielenie potęg o tych samych podstawach; - wzór na potęgowanie
Wymagania kl. 3. Zakres podstawowy i rozszerzony
Wymagania kl. 3 Zakres podstawowy i rozszerzony Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za
Plan wynikowy klasa 3. Zakres podstawowy
Plan wynikowy klasa 3 Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające. RACHUNE PRAWDOPODOBIEŃSTWA
WYMAGANIA NA OCENĘ 12. Równania kwadratowe Uczeń demonstruje opanowanie umiejętności ogólnych rozwiązując zadania, w których:
str. 1 / 1. Równania kwadratowe sprawdza, czy liczba jest pierwiastkiem równania, po uporządkowaniu równania określa jego rodzaj (zupełne, niezupełne), rozwiązuje proste uporządkowane równania zupełne
Dopuszczający Dostateczny Dobry Bardzo dobry Celujący
Liczby i wyrażenia zna pojęcie liczby naturalnej, całkowitej, wymiernej zna pojęcie liczby niewymiernej, rzeczywistej zna sposób zaokrąglania liczb umie zapisać i odczytać liczby naturalne dodatnie w systemie
Statystyka opisowa i elementy rachunku prawdopodobieostwa
MATEMATYKA (wg programu Nie tylko wynik ) Wymagania programowe na poszczególne oceny wymagao edukacyjnych: K konieczny (ocena ) P podstawowy (ocena ) R rozszerzający (ocena dobra) D dopełniający (ocena
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH Marzena Zbrożyna DOPUSZCZAJĄCY: Uczeń potrafi: odczytać informacje z tabeli odczytać informacje z diagramu
6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb
LICZBY I DZIAŁANIA PROCENTY str. 1 Przedmiot: matematyka Klasa: 2 ROK SZKOLNY 2015/2016 temat Wymagania podstawowe P 2. Wartość bezwzględna oblicza wartość bezwzględną liczby wymiernej 3. Potęga o wykładniku
Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Szczegółowe wymagania edukacyjne z matematyki w klasie trzeciej.
Agnieszka amińska, Dorota Ponczek MATeMAtyka 3 Szczegółowe wymagania edukacyjne z matematyki w klasie trzeciej Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające;
Liczby i działania klasa III
Liczby i działania klasa III - oblicza wartość bezwzględną liczby - wykonuje działania w zbiorze liczb rzeczywistych proste przykłady - potęguje liczby naturalne proste przykłady - pierwiastkuje liczby
KATALOG WYMAGAŃ PROGRAMOWYCH NA POSZCZEGÓLNE STOPNIE SZKOLNE klasa 2. rok szkolny 2014/2015
KATALOG WYMAGAŃ PROGRAMOWYCH NA POSZCZEGÓLNE STOPNIE SZKOLNE klasa 2 NAZWA PROGRAMU POZIOMY WYMAGAŃ rok szkolny 2014/2015 Interdyscyplinarny program nauczania dla klas I-III gimnazjum obejmujący skorelowane
2. Permutacje definicja permutacji definicja liczba permutacji zbioru n-elementowego
Wymagania dla kl. 3 Zakres podstawowy Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za pomocą drzewa
Wymagania edukacyjne z matematyki
Wymagania edukacyjne z matematyki Poziom podstawowy Klasa IIIb r.szk. 2014/2015 PLANIMETRIA(1) rozróżnia trójkąty: ostrokątne, prostokątne, rozwartokątne stosuje twierdzenie o sumie miar kątów w trójkącie
DZIAŁ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE
Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen z przedmiotu matematyka w III klasie gimnazjum w roku szkolnym 2013/2014 Wymagania edukacyjne dostosowane do obowiązującej
Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Plan wynikowy. Zakres podstawowy
Agnieszka amińska, Dorota Ponczek MATeMAtyka 3 Plan wynikowy Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania
Wymagania na poszczególne oceny,,matematyka wokół nas. Klasa III
I. Potęgi. Wymagania na poszczególne oceny,,matematyka wokół nas Klasa III 1. Zamienia potęgi o wykładniku całkowitym ujemnym na odpowiednie potęgi o wykładniku naturalnym. 2. Oblicza wartości potęg o
Nie tylko wynik Plan wynikowy dla klasy 3 gimnazjum
Poziomy wymagań edukacyjnych: K konieczny P podstawowy R rozszerzający D dopełniający W wykraczający Nie tylko wynik Plan wynikowy dla klasy 3 gimnazjum Statystyka opisowa i elementy rachunku prawdopodobieństwa
wymagania programowe z matematyki kl. III gimnazjum
wymagania programowe z matematyki kl. III gimnazjum 1. Liczby i wyrażenia algebraiczne Zna pojęcie notacji wykładniczej. Umie zapisać liczbę w notacji wykładniczej. Umie porównywać liczy zapisane w różny
Wymagania edukacyjne z matematyki dla klasy III a,b liceum (poziom podstawowy) rok szkolny 2018/2019
Wymagania edukacyjne z matematyki dla klasy III a,b liceum (poziom podstawowy) rok szkolny 2018/2019 Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające,
WYMAGANIA EDUKACYJNE
GIMNAZJUM NR 2 W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z MATEMATYKI w klasie II gimnazjum str. 1 Wymagania edukacyjne niezbędne
Uczeo spełnia wymagania poziomu koniecznego oraz umie: porównywać liczby zapisane w różny sposób, obliczyć potęgę o wykładniku całkowitym,
szacować wyniki działań, zaokrąglać liczby do podanego rzędu, zapisywać i odczytywać liczby naturalne w systemie rzymskim, podać rozwinięcie dziesiętne ułamka zwykłego, odczytać współrzędną punktu na osi
Kształcenie w zakresie rozszerzonym. Klasa IV
Kształcenie w zakresie rozszerzonym. Klasa IV Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI ROK SZKOLNY 2018/2019 POZIOM PODSTAWOWY I ROZSZERZONY KLASA 3 UWAGI: 1. Zakłada się,
ZAKRES PODSTAWOWY CZĘŚĆ II. Wyrażenia wymierne
CZĘŚĆ II ZAKRES PODSTAWOWY Wyrażenia wymierne Temat: Wielomiany-przypomnienie i poszerzenie wiadomości. (2 godz.) znać i rozumieć pojęcie jednomianu (2) znać i rozumieć pojęcie wielomianu stopnia n (2)
Wymagania edukacyjne na poszczególne oceny Matematyka Kl.III gimnazjum
Wymagania edukacyjne na poszczególne oceny Matematyka Kl.III gimnazjum Ocena dopuszczająca Uczeń: - zna pojęcie notacji wykładniczej - zna sposób i potrzebę zaokrąglania liczb - umie oszacować wynik działań
Nie tylko wynik Plan wynikowy dla klasy 2 gimnazjum
Poziomy wymagań edukacyjnych: K konieczny P podstawowy R rozszerzający D dopełniający W wykraczający Nie tylko wynik Plan wynikowy dla klasy 2 gimnazjum Potęgi o wykładnikach naturalnych i całkowitych
Wymagania z matematyki na poszczególne stopnie szkolne w klasie trzeciej gimnazjum
Wymagania z matematyki na poszczególne stopnie szkolne w klasie trzeciej gimnazjum I LICZBY I WYRAŻENIA ALGEBRAICZNE podawanie przykładów liczb naturalnych, całkowitych, wymiernych i niewymiernych; porównywanie
WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą
1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku
Osiągnięcia ponadprzedmiotowe
W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji
Katalog wymagań programowych na poszczególne stopnie szkolne klasa 2
Katalog wymagań programowych na poszczególne stopnie szkolne klasa 2 Wymagania i umiejętności ucznia na ocenę dopuszczającą: Zapisuje liczby z systemu dziesiętnego w zakresie 3000 w systemie rzymskim i
WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASYFIKACYJNE DLA UCZNIÓW KLAS TRZECICH. Sposoby sprawdzania wiedzy i umiejętności uczniów
WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASYFIKACYJNE DLA UCZNIÓW KLAS TRZECICH Sposoby sprawdzania wiedzy i umiejętności uczniów 1. Odpowiedzi ustne. 2. Sprawdziany pisemne. 3. Kartkówki. 4. Testy.
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste
Wymagania edukacyjne zakres podstawowy klasa 3A
Ciągi Pojęcie ciągu. Sposoby opisywania ciągów Monotoniczność ciągów Ciąg arytmetyczny Suma początkowych wyrazów ciągu arytmetycznego Ciąg geometryczny Suma początkowych wyrazów ciągu geometrycznego Procent
KATALOG WYMAGAŃ PROGRAMOWYCH NA POSZCZEGÓLNE STOPNIE SZKOLNE klasa 2
KATALOG WYMAGAŃ PROGRAMOWYCH NA POSZCZEGÓLNE STOPNIE SZKOLNE klasa 2 I. LICZBY I DZIAŁANIA Uczeń: Zapisuje liczby z systemu dziesiętnego w zakresie 3000 w systemie rzymskim i odwrotnie. Zaznacza na osi
Osiągnięcia ponadprzedmiotowe
W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe KONIECZNE PODSTAWOWE ROZSZERZAJĄCE DOPEŁNIAJACE WYKRACZAJĄCE czytać teksty w stylu
Kryteria oceniania osiągnięć uczniów z matematyki w kl. III gimnazjum. (Program Matematyka z plusem dla III etapu edukacyjnego)
Kryteria oceniania osiągnięć uczniów z matematyki w kl. III gimnazjum. (Program Matematyka z plusem dla III etapu edukacyjnego) Ocena DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY CELUJĄCY Uczeń: Uczeń:
Wymagania edukacyjne z matematyki
Wymagania edukacyjne z matematyki Klasa III program Matematyka z plusem Dział: LICZBY I WYRAŻENIA ALGEBRAICZNE POZIOM KONIECZNY - ocena dopuszczająca Uczeń umie: szacować wyniki działań, zaokrąglać liczby
Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Plan wynikowy. Zakres podstawowy i rozszerzony
Agnieszka amińska, Dorota Ponczek MATeMAtyka 3 Plan wynikowy Zakres podstawowy i rozszerzony Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające;
Wymagania edukacyjne na poszczególne oceny Matematyka klasa III Gimnazjum
Wymagania edukacyjne na poszczególne oceny Matematyka klasa III Gimnazjum Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których
Wymagania edukacyjne z matematyki Klasa III program Matematyka z plusem Rok szkolny 2017/2018 I okres
LICZBY I WYRAŻENIA ALGEBRAICZNE Wymagania edukacyjne z matematyki Klasa III program Matematyka z plusem Rok szkolny 2017/2018 I okres rozróżniać liczby naturalne, całkowite, wymierne, dodawać, odejmować,
KOŃCOWOROCZNE KRYTERIA OCENIANIA Z MATEMATYKI DLA KLASY III
KOŃCOWOROCZNE KRYTERIA OCENIANIA Z MATEMATYKI DLA KLASY III Ocenę dopuszczającą otrzymuje uczeń, który: definiuje notację wykładniczą przedstawia sposób zaokrąglania liczb szacuje wynik działań zaokrągla
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
Wymagania z matematyki na poszczególne oceny III klasy gimnazjum
Wymagania z matematyki na poszczególne oceny III klasy gimnazjum Opracowano na podstawie planu realizacji materiału nauczania matematyki Matematyka Podręcznik do gimnazjum Nowa wersja Praca zbiorowa pod
Poziom wymagań K P K R K R. 2. Permutacje definicja permutacji definicja n! liczba permutacji zbioru n-elementowego K K K P D
Plan wynikowy klasa 3g - Jolanta Pająk Matematyka 3. dla liceum ogólnokształcącego, liceum profilowanego i technikum. ształcenie ogólne w zakresie rozszerzonym rok szkolny 2015/2016 Wymagania edukacyjne
ZAKRES WYMAGAŃ Z MATEMATYKI DLA KLASY III
ZAKRES WYMAGAŃ Z MATEMATYKI DLA KLASY III Ocena dopuszczająca: Liczby i wyrażenia algebraiczne: Pojęcie liczby naturalnej, całkowitej, wymiernej, niewymiernej, rzeczywistej Sposób zaokrąglania liczb Pojęcie
Uczeń otrzymuje ocenę dostateczną, jeśli opanował wiadomości i umiejętności konieczne na ocenę dopuszczającą oraz dodatkowo:
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI Rok szkolny 2018 / 2019 POZIOM PODSTAWOWY KLASA 3 1. RACHUNEK PRAWDOPODOBIEŃSTWA wypisuje
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III Program nauczania matematyki w gimnazjum Matematyka dla przyszłości DKW 4014 162/99 Opracowała: mgr Mariola Bagińska 1. Liczby i działania Podaje rozwinięcia
KATALOG WYMAGAŃ PROGRAMOWYCH NA POSZCZEGÓLNE STOPNIE SZKOLNE klasa 2
KATALOG WYMAGAŃ PROGRAMOWYCH NA POSZCZEGÓLNE STOPNIE SZKOLNE klasa 2 Przedstawiamy, jakie umiejętności z danego działu powinien zdobyć uczeń, aby uzyskać poszczególne stopnie. Na ocenę dopuszczający uczeń
Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 3 (oddział gimnazjalny)
edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 3 (oddział gimnazjalny) Rozdział 1. Bryły wie, czym jest graniastosłup, graniastosłup prosty, graniastosłup
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE IV TECHNIKUM.
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE IV TECHNIKUM. I. Podstawowe pojęcia statystyki. 1. Sposoby prezentowania danych, interpretacja wykresów. 2. Mediana i dominanta. 3. Średnia arytmetyczna
Plan wynikowy z rozkładem materiału MATEMATYKA ZASADNICZA SZKOŁA ZAWODOWA
. Liczby rzeczywiste (3 h) Plan wynikowy z rozkładem materiału MATEMATYKA ZASADNICZA SZKOŁA ZAWODOWA Gwiazdką * oznaczono te hasła i wymagania, które są rozszerzeniem podstawy programowej. Nauczyciel może
Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum
Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum I. POTĘGI I PIERWIASTKI oblicza wartości potęg o wykładnikach całkowitych liczb różnych od zera zapisuje liczbę
Okręgi i proste na płaszczyźnie
Okręgi i proste na płaszczyźnie 1 Kąt środkowy i pole wycinka koła rozpoznawać kąty środkowe, obliczać kąt środkowy oparty na zadanym łuku, obliczać długość okręgu i łuku okręgu, obliczać pole koła, pierścienia,
Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 3 (oddział gimnazjalny)
edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 3 (oddział gimnazjalny) Rozdział 1. Bryły wie, czym jest graniastosłup, graniastosłup prosty, graniastosłup
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III Wymagania edukacyjne z matematyki dla kl I-III Informacje wstępne 1. Obowiązuje skala ocen: 1, 2, 3, 4, 5, 6. 2. W ciągu semestru ocenia się: a) prace klasowe
Wymagania edukacyjne klasa pierwsza.
Wymagania edukacyjne klasa pierwsza. TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I DZIAŁANIA Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglanie liczb. Szacowanie wyników Dodawanie
MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony
Agnieszka Kamińska, Dorota Ponczek MATeMAtyka 3 Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania
WYMAGANIA NA POSZCZEGÓLNE ŚRÓDROCZNE I ROCZNE OCENY Z MATEMATYKI PROGRAM NAUCZANIA: MATEMATYKA WOKÓŁ NAS GIMNAZJUM
WYMAGANIA NA POSZCZEGÓLNE ŚRÓDROCZNE I ROCZNE OCENY Z MATEMATYKI PROGRAM NAUCZANIA: MATEMATYKA WOKÓŁ NAS GIMNAZJUM PODRĘCZNIK: MATEMATYKA WOKÓŁ NAS KLASA 2 NAUCZYCIEL: BARBARA MIKA Ocena dopuszczająca:
Wymagania programowe z matematyki na poszczególne oceny w klasie III A i III B LP. Kryteria oceny
Wymagania programowe z matematyki na poszczególne oceny w klasie III A i III B LP Przygotowane w oparciu o propozycję Wydawnictwa Nowa Era 2017/2018 Kryteria oceny Znajomość pojęć, definicji, własności
Wymagania na poszczególne oceny z matematyki w klasie III G.
Wymagania na poszczególne oceny z matematyki w klasie III G. DZIAŁ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Wymagania na ocenę dopuszczającą (2) zna sposób zaokrąglania liczb umie oszacować wynik działań umie
WYMAGANIA EDUKACYJNE Z MATEMATYKI GIMNAZJUM KLASA III Zgodnie z programem Matematyka z plusem
Liczby i wyrażenia algebraiczne WYMAGANIA EDUKACYJNE Z MATEMATYKI GIMNAZJUM KLASA III Zgodnie z programem Matematyka z plusem zna pojęcie notacji wykładniczej umie oszacować wynik działań umie zaokrąglić