Transmisja przewodowa
|
|
- Małgorzata Kulesza
- 9 lat temu
- Przeglądów:
Transkrypt
1 Warszawa, Transmisja przewodowa TRP Ćwiczenie laboratoryjne nr 3. Jakość transmisji optycznej Autorzy: Ł. Maksymiuk, G. Stępniak, E. Łukowiak
2 . Teoria Do podstawowych metod oceny transmisji sygnałów cyfrowych w systemach telekomunikacyjnych zalicza się pomiar elementowej stopy błędów (BER Bit Error Rate), analizę wykresu oczkowego diagram oka, pomiar parametru Q oraz pomiar szybkozmiennej fluktuacji fazy jitter. Elementowa stopa błędów BER to stosunek liczby błędnie odebranych bitów (0 i ) do liczby wszystkich odebranych bitów. Wykres oczkowy to nałożenie na siebie wszystkich możliwych kombinacji odebranych danych (0 i ), które tworzą charakterystyczny wykres w kształcie oka. Rys.. Wykres oczkowy z zaznaczonymi wielkościami określającymi diagram [] Podstawowymi wielkościami określającymi wykres oczkowy są: - szerokość wykresu oczkowego przedział czasu, w którym sygnał może być próbowany bez niebezpieczeństwa wystąpienia błędnego odczytu wartości sygnału - rozwartość wykresu oczkowego, zdefiniowana jako []: R o ' ' Vmax Vmin, V V max min () - margines szumowy (Ms), zdefiniowany jako []: V M s, V ' max (2) - nachylenie wykresu oczkowego (wskazuje odporność systemu na błędy czasowe) 2
3 - czas narastania sygnału (Cns), zdefiniowany jako []: Cns, (3),25T 2080 gdzie: T2080- czas narastania od 20% do 80% maksymalnej wartości sygnału. - zniekształcenia czasowe ( T ), obrazujące wymiar fluktuacji fazy sygnału, ukazane jako przecięcia wykresu oczkowego na poziomie progu decyzyjnego - współczynnik ekstynkcji (EX), zdefiniowany jako stosunek średniej wartości poziomu wysokiego sygnału do średniej wartości poziomu niskiego sygnału Rys. 2. Wykres oczkowy z zaznaczonymi wartościami potrzebnymi do obliczenia parametru Q [] Parametr Q to elektryczny stosunek sygnału do szumu, zdefiniowany jako [2]: U 0 Q, U 0 gdzie: U - wartość średnia sygnału przy, U 0 - wartość średnia sygnału przy 0, - odchylenie standardowe wartości sygnału przy, 0 - odchylenie standardowe wartości sygnału przy 0. (4) Przy danym stosunku sygnału do szumu, można przy pomocy parametru Q oszacować wartość BER z definicji []: 3
4 BER erf Q, 2 2 gdzie: erf - funkcja błędu. Można również skorzystać z uproszczonego wzoru do wyznaczania BER, opisanego zależnością [2]: BER exp Q 2 2 Q 2. (5) (6) Rys. 3. Przebieg zmiany elementowej stopy błędów w funkcji parametru Q [2] Należy pamiętać, że wyznaczenie wielkości elementowej stopy błędów na podstawie parametru Q jest tylko podejściem szacunkowym. Nie zastąpi to pomiaru BER, który jest parametrem statystycznym i zależy od czasu trwania pomiaru. Jitter, czyli drgania zboczy sygnału, są zdefiniowane jako szybkie zmiany fazy sygnału cyfrowego w odniesieniu do fazy idealnego sygnału []. Jitter powstaje w wyniku zniekształceń sygnału spowodowanych przez dyspersję chromatyczną, dyspersję polaryzacyjna, zjawiska nieliniowe oraz w wyniku występowania szumu w części odbiorczej systemu transmisyjnego. 4
5 2. Metoda pomiaru elementowej stopy błędu bathtube Podstawowa metoda pomiaru elementowej stopy błędu (BER) w systemie transmisyjnym polega na porównaniu zdekodowanego w odbiorniku ciągu bitów z ciągiem wysłanym przez nadajnik. Wadą tej metody jest bardzo duży czas pomiaru wymagany do określenia BER, jeżeli BER jest niski lub przepływność binarna niewielka. Dla przykładu wyznaczmy czas konieczny aby zmierzyć stopę błędu na poziomie P e =0-9 w systemie o przepływności binarnej R= Gbit/s. Liczba rejestrowanych zdarzeń błędnych (wykryto bit o wartości przeciwnej do nadanej) wynosi TP e R, gdzie T jest czasem obserwacji. Spróbujmy odpowiedzieć na pytanie ile zdarzeń błędnych należy zarejestrować, aby BER określony był z odpowiednią dokładnością. Potraktujmy odbiór bitu jako próbę losową: losujemy bit fałszywy z prawdopodobieństwem P e =BER lub bit prawdziwy z prawdopodobieństwem -P e, liczba prób wynosi zaś n=tr. Posługując się nomenklaturą probabilistyczną, określamy odbiór bitu błędnego jako sukces. Rozkład liczby sukcesów w n próbach jest rozkładem dwumianowym, który dla dużej liczby prób i niskiego prawdopodobieństwa sukcesu przybliżamy rozkładem Poissona o parametrze =np. Parametr jest jednocześnie wartością oczekiwaną liczby sukcesów w n próbach. Posługując się tym rozkładem, wyznaczamy rozrzut mierzonych wartości BER, w zależności od oczekiwanej liczby wykrytych bitów błędnych (Rys. 4). Widzimy, że najbardziej prawdopodobną wartością, niezależnie od oczekiwanej liczby wykrytych błędów jest nominalna wartość 0-9. Jednak nastawiając się na jedno tylko wykrycie, z takim samym w przybliżeniu prawdopodobieństwem zarejestrujemy stopę błędu zerową. Oczekując 5 błędnych bitów prawdopodobieństwo zarejestrowania BER=0 znacznie spada, jednak ciągle jest niezerowe. Dopiero dla 0-20 oczekiwanych zdarzeń błędnych możemy powiedzieć, że z niemal 00 % ufnością zmierzony BER zawiera się już w niewielkim przedziale 0.4*0-9 do.7*0-9. Łatwo policzyć, że dla omawianego systemu zarejestrowanie średnio 0 zdarzeń błędnych wymaga T=0 [s]. Jeżeli miałby to być jednak pomiar BER=0-2 oczekiwalibyśmy około pół godziny aby uzyskać sensowne rezultaty. 5
6 gestosc prawdopodobienstwa = =5 =0 = BER Rys. 4. Rozkład prawdopodobieństwa zmierzenia BER na danym poziomie, dla systemu o stopie błędu 0-9 w zależności od oczekiwanej liczby sukcesów wykrytych błędnych bitów). x 0-9 Druga z metod pomiaru BER opiera się na szacowaniu parametru Q z wykresu oka i wyliczeniu BER z analitycznego wzoru podanego w pierwszej części instrukcji. Jej zaletą jest szybkość. Metoda ta jest dobra dla systemu z szumem gaussowskim, w którym nie występują dodatkowe zniekształcenia związane z interferencją międzysymbolową czy też jitterem. Ponadto, nie sprawdza się ona, lub wymaga znacznych modyfikacji, dla systemów o różnej wariancji szumu gaussowskiego dla zera i jedynki. Przedstawiona w tym opracowaniu metoda jest pewnym kompromisem pomiędzy dwoma omawianymi metodami i została po raz pierwszy opisana w pracy [] przez Bergano. W metodzie tej mierzymy BER również zliczając (jak w metodzie ), ale dla nieoptymalnego progu decyzyjnego, tzn. dobierając go tak, aby stopa błędu była wysoka, a co za tym idzie czas pomiaru krótszy. Np. jeżeli próg ustawiony będzie poniżej poziomu optymalnego, wzrośnie prawdopodobieństwo odebrania przy nadaniu 0. Jednocześnie prawdopodobieństwo odebrania 0 przy nadanej jest wtedy znikome. W metodzie bathtube wybieramy zatem kilka wartości progu poniżej progu optymalnego, a następnie kilka wartości powyżej progu optymalnego i dla nich mierzymy BER, uzyskując wykres przypominający wnętrze wanny (Rys. 5). Okazuje się, że jeśli dominujący szum jest gaussowski, otrzymane w ten sposób krzywe mają na skali logarytmicznej charakter paraboli (wielomianu drugiego 6
7 stopnia). Możemy zatem dopasować do zebranych punktów dwa takie wielomiany za pomocą regresji (uzyskujemy wtedy ich współczynniki), a następnie obliczyć ich punkt przecięcia, który wyznacza jednocześnie optymalny próg decyzyjny, jak również wartość oczekiwanej stopy błędu. Można następnie z tak wyznaczonej stop błędu otrzymać wartość parametru Q (odwracając znaną zależność na BER(Q)). Metoda ta jest znacznie szybsza od metody oraz pozbawiona niedokładności metody 2. Rys. 5. Ilustracja graficzna metody Bergano [3]. 3. Bibliografia [] K. Perlicki: Pomiary w optycznych systemach telekomunikacyjnych, WKŁ, Warszawa 2002, [2] J. Delmanowicz: Parametr Q, 2003, [3] N.S. Bergano, F.W. Kerfoot, C.R. Davidson, Margin measurements in optical amplifier systems, IEEE Photonic Technology Letters, vol. 5, no. 3,
8 4. Przygotowanie studenta do ćwiczenia laboratoryjnego Literatura przygotowująca studenta do ćwiczenia laboratoryjnego Literatura pozwalająca rozszerzyć wiedzę potrzebną do wykonania ćwiczeń laboratoryjnych: () K. Perlicki: Pomiary w optycznych systemach telekomunikacyjnych, WKŁ, Warszawa 2002 (2) J. Siuzdak: Wstęp do współczesnej telekomunikacji światłowodowej, WKŁ, Warszawa 997, 999, Sprawdzenie przygotowania studenta do ćwiczenia laboratoryjnego Przykładowe pytania sprawdzające przygotowanie studenta do ćwiczenia laboratoryjnego:. Wymień oraz krótko scharakteryzuj parametry określające jakość transmisji w systemach telekomunikacyjnych. 2. Czym jest BER oraz jitter. 3. Zdefiniuj, czym jest wykres oczkowy oraz przedstaw jego podstawowe wielkości (opisz i zaznacz odpowiednie parametry na rysunku). 4. Zdefiniuj parametr Q (opisz i zaznacz odpowiednie parametry na rysunku). 5. Narysuj wykres zmiany elementowej stopy błędów w funkcji parametru Q. Podaj definicję zależności. 6. Na czym polega metoda pomiaru elementowej stopy błędów "bathtube" 8
Sposoby opisu i modelowania zakłóceń kanałowych
INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Podstawy Telekomunikacji Sposoby opisu i modelowania zakłóceń kanałowych Warszawa 2010r. 1. Cel ćwiczeń: Celem ćwiczeń
LABORATORIUM Z FIZYKI
LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI I PRACOWNIA FIZYCZNA C w Gliwicach Gliwice, ul. Konarskiego 22, pokoje 52-54 Regulamin pracowni i organizacja zajęć Sprawozdanie (strona tytułowa, karta pomiarowa)
AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej ROZKŁAD NORMALNY ROZKŁAD GAUSSA
AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej KATEDRA MATEMATYKI TEMAT PRACY: ROZKŁAD NORMALNY ROZKŁAD GAUSSA AUTOR: BARBARA MARDOSZ Kraków, styczeń 2008 Spis treści 1 Wprowadzenie 2 2 Definicja
Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński
Wstęp do teorii niepewności pomiaru Danuta J. Michczyńska Adam Michczyński Podstawowe informacje: Strona Politechniki Śląskiej: www.polsl.pl Instytut Fizyki / strona własna Instytutu / Dydaktyka / I Pracownia
LABORATORIUM PODSTAW TELEKOMUNIKACJI
WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego w Warszawie Wydział Elektroniki LABORATORIUM PODSTAW TELEKOMUNIKACJI Grupa Podgrupa Data wykonania ćwiczenia Ćwiczenie prowadził... Skład podgrupy:
WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH
WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH Dobrze przygotowane sprawozdanie powinno zawierać następujące elementy: 1. Krótki wstęp - maksymalnie pół strony. W krótki i zwięzły
Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014
Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu
Metody oceny jakości transmisji cyfrowej
Metody oceny jakości transmisji cyfrowej Jan Poręba Wrocław 2011 Parametry bezpośredniej oceny jakości transmisji cyfrowej Elementowa stopa błędów ESB, Se, BER (Bit Error Rate). Blokowa stopa błędów BSB,
Podstawy opracowania wyników pomiarów z elementami analizy niepewności statystycznych
Podstawy opracowania wyników pomiarów z elementami analizy niepewności statystycznych Dr inż. Marcin Zieliński I Pracownia Fizyczna dla Biotechnologii, wtorek 8:00-10:45 Konsultacje Zakład Fizyki Jądrowej
Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn
Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem
Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich
Podstawy Metrologii i Technik Eksperymentu Laboratorium Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich Instrukcja do ćwiczenia nr 4 Zakład Miernictwa
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH Dr Benedykt R. Jany I Pracownia Fizyczna Ochrona Środowiska grupa F1 Rodzaje Pomiarów Pomiar bezpośredni - bezpośrednio
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.
W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:
W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: Zmienne losowe skokowe (dyskretne) przyjmujące co najwyżej przeliczalnie wiele wartości Zmienne losowe ciągłe
Charakteryzacja telekomunikacyjnego łącza światłowodowego
Charakteryzacja telekomunikacyjnego łącza światłowodowego Szybkości transmisji współczesnych łączy światłowodowych STM 4 622 Mbps STM 16 2 488 Mbps STM 64 9 953 Mbps Rekomendacje w stadium opracowania
KARTA INFORMACYJNA PRZEDMIOTU
Uniwersytet Rzeszowski WYDZIAŁ KIERUNEK Matematyczno-Przyrodniczy Fizyka techniczna SPECJALNOŚĆ RODZAJ STUDIÓW stacjonarne, studia pierwszego stopnia KARTA INFORMACYJNA PRZEDMIOTU NAZWA PRZEDMIOTU WG PLANU
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Teoria błędów. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem.
Teoria błędów Wskutek niedoskonałości przyrządów, jak również niedoskonałości organów zmysłów wszystkie pomiary są dokonywane z określonym stopniem dokładności. Nie otrzymujemy prawidłowych wartości mierzonej
PARAMETRY TRANSMISJI ŚWIATŁOWODOWEJ
ŚWIATŁOWODOWEJ 1 Wstęp Im bardziej skomplikowany jest sygnał transmitowany, tym szersze pasmo jest wymagane do jego przesłania. Do przesłania rozmowy telefonicznej potrzebujemy pasmo 4 khz, kanał radiowy
Światłowodowy kanał transmisyjny w paśmie podstawowym
kanał transmisyjny w paśmie podstawowym Układ do transmisji binarnej w paśmie podstawowym jest przedstawiony na rys.1. Medium transmisyjne stanowi światłowód gradientowy o długości 3 km. Źródłem światła
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Β2 - DETEKTOR SCYNTYLACYJNY POZYCYJNIE CZUŁY
Β2 - DETEKTOR SCYNTYLACYJNY POZYCYJNIE CZUŁY I. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z zasadą działania detektorów pozycyjnie czułych poprzez pomiar prędkości światła w materiale scyntylatora
WYDZIAŁ ELEKTRYCZNY KATEDRA TELEKOMUNIKACJI I APARATURY ELEKTRONICZNEJ. Instrukcja do zajęć laboratoryjnych. Numer ćwiczenia: 5
Politechnika Białostocka WYDZIAŁ ELEKTRYCZNY KATEDRA TELEKOMUNIKACJI I APARATURY ELEKTRONICZNEJ Instrukcja do zajęć laboratoryjnych Temat ćwiczenia: Cyfrowa transmisja pasmowa. Numer ćwiczenia: 5 Laboratorium
Rozkład normalny, niepewność standardowa typu A
Podstawy Metrologii i Technik Eksperymentu Laboratorium Rozkład normalny, niepewność standardowa typu A Instrukcja do ćwiczenia nr 1 Zakład Miernictwa i Ochrony Atmosfery Wrocław, listopad 2010 r. Podstawy
Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
STATYSTYKA MATEMATYCZNA WYKŁAD 4. WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X.
STATYSTYKA MATEMATYCZNA WYKŁAD 4 WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X. Wysuwamy hipotezy: zerową (podstawową H ( θ = θ i alternatywną H, która ma jedną z
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych. Wykład tutora na bazie wykładu prof. Marka Stankiewicza
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Wykład tutora na bazie wykładu prof. Marka Stankiewicza Po co zajęcia w I Pracowni Fizycznej? 1. Obserwacja zjawisk i
g) wartość oczekiwaną (przeciętną) i wariancję zmiennej losowej K.
TEMAT 1: WYBRANE ROZKŁADY TYPU SKOKOWEGO ROZKŁAD DWUMIANOWY (BERNOULLIEGO) Zadanie 1-1 Prawdopodobieństwo nieprzekroczenia przez pewien zakład pracy dobowego limitu zużycia energii elektrycznej (bez konieczności
Niepewności pomiarów
Niepewności pomiarów Międzynarodowa Organizacja Normalizacyjna (ISO) w roku 1995 opublikowała normy dotyczące terminologii i sposobu określania niepewności pomiarów [1]. W roku 1999 normy zostały opublikowane
Podstawy niepewności pomiarowych Ćwiczenia
Podstawy niepewności pomiarowych Ćwiczenia 1. Zaokrąglij podane wartości pomiarów i ich niepewności. = (334,567 18,067) m/s = (153 450 000 1 034 000) km = (0,0004278 0,0000556) A = (2,0555 0,2014) s =
Ćwiczenie nr 2: ZaleŜność okresu drgań wahadła od amplitudy
Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 2: ZaleŜność okresu
W11 Kody nadmiarowe, zastosowania w transmisji danych
W11 Kody nadmiarowe, zastosowania w transmisji danych Henryk Maciejewski Jacek Jarnicki Marek Woda www.zsk.iiar.pwr.edu.pl Plan wykładu 1. Kody nadmiarowe w systemach transmisji cyfrowej 2. Typy kodów,
Weryfikacja hipotez statystycznych. KG (CC) Statystyka 26 V / 1
Weryfikacja hipotez statystycznych KG (CC) Statystyka 26 V 2009 1 / 1 Sformułowanie problemu Weryfikacja hipotez statystycznych jest drugą (po estymacji) metodą uogólniania wyników uzyskanych w próbie
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych dla studentów Chemii (2018) Autor prezentacji :dr hab. Paweł Korecki dr Szymon Godlewski e-mail: szymon.godlewski@uj.edu.pl
KOMPUTEROWY TESTER WIELOMODOWYCH TORÓW ŚWIATŁOWODOWYCH
Krzysztof Holejko, Roman Nowak, Tomasz Czarnecki, Instytut Telekomunikacji PW 00-665 Warszawa, ul. Nowowiejska 15/19 holejko@tele.pw.edu.pl, nowak@tele.pw.edu.pl, ctom@tele.pw.edu.pl KOMPUTEROWY TESTER
SPECYFIKACJA ZASIĘGU POŁĄCZEŃ OPTYCZNYCH
Lublin 06.07.2007 r. SPECYFIKACJA ZASIĘGU POŁĄCZEŃ OPTYCZNYCH URZĄDZEŃ BITSTREAM Copyright 2007 BITSTREAM 06.07.2007 1/8 SPIS TREŚCI 1. Wstęp... 2. Moc nadajnika optycznego... 3. Długość fali optycznej...
LABORATORIUM Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz.
LABORATORIUM 4 1. Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz. I) WNIOSKOWANIE STATYSTYCZNE (STATISTICAL INFERENCE) Populacja
Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych
Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zad. 1 Średnia ocen z semestru letniego w populacji studentów socjologii w roku akademickim 2011/2012
WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI
WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskiego 8, 04-703 Warszawa tel. (0)
METODY STATYSTYCZNE W BIOLOGII
METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne
Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów optycznych.
msg O 7 - - Temat: Badanie soczewek, wyznaczanie odległości ogniskowej. Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów
Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817
Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Zadanie 1: wiek 7 8 9 1 11 11,5 12 13 14 14 15 16 17 18 18,5 19 wzrost 12 122 125 131 135 14 142 145 15 1 154 159 162 164 168 17 Wykres
Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r
Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów
Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi
Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi technicznej. 1. Wstęp Celem ćwiczenia jest wyznaczenie
dr hab. Renata Karkowska 1
dr hab. Renata Karkowska 1 Miary zmienności: obrazują zmiany cen, stóp zwrotu instrumentów finansowych, opierają się na rozproszeniu ich rozkładu, tym samym uśredniają ryzyko: wariancja stopy zwrotu, odchylenie
Wprowadzenie do analizy korelacji i regresji
Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących
Wykład 3 Hipotezy statystyczne
Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
Andrzej Leśnicki Laboratorium CPS Ćwiczenie 9 1/5 ĆWICZENIE 9. Kwantowanie sygnałów
Andrzej Leśnicki Laboratorium CP Ćwiczenie 9 1/5 ĆWICZEIE 9 Kwantowanie sygnałów 1. Cel ćwiczenia ygnał przesyłany w cyfrowym torze transmisyjnym lub przetwarzany w komputerze (procesorze sygnałowym) musi
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych. Wykład tutora na bazie wykładu prof. Marka Stankiewicza
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Wykład tutora na bazie wykładu prof. Marka tankiewicza Po co zajęcia w I Pracowni Fizycznej? 1. Obserwacja zjawisk i efektów
Podstawowe funkcje przetwornika C/A
ELEKTRONIKA CYFROWA PRZETWORNIKI CYFROWO-ANALOGOWE I ANALOGOWO-CYFROWE Literatura: 1. Rudy van de Plassche: Scalone przetworniki analogowo-cyfrowe i cyfrowo-analogowe, WKŁ 1997 2. Marian Łakomy, Jan Zabrodzki:
Zastosowanie Excela w matematyce
Zastosowanie Excela w matematyce Komputer w dzisiejszych czasach zajmuje bardzo znamienne miejsce. Trudno sobie wyobrazić jakąkolwiek firmę czy instytucję działającą bez tego urządzenia. W szkołach pierwsze
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka. Wstęp teoretyczny Zmienne losowe Zmienne losowe
Rozkład Gaussa i test χ2
Rozkład Gaussa jest scharakteryzowany dwoma parametramiwartością oczekiwaną rozkładu μ oraz dyspersją σ: METODA 2 (dokładna) polega na zmianie zmiennych i na obliczeniu pk jako różnicy całek ze standaryzowanego
Rozkłady statystyk z próby
Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny
A. Metody opracowania i analizy wyników pomiarów K.Kozłowski i R Zieliński I Laboratorium z Fizyki część 1 Wydawnictwo PG.
A. Metody opracowania i analizy wyników pomiarów K.Kozłowski i R Zieliński I Laboratorium z Fizyki część 1 Wydawnictwo PG. B. Metodyka wykonywania pomiarów oraz szacowanie niepewności pomiaru. Celem każdego
Value at Risk (VaR) Jerzy Mycielski WNE. Jerzy Mycielski (Institute) Value at Risk (VaR) / 16
Value at Risk (VaR) Jerzy Mycielski WNE 2018 Jerzy Mycielski (Institute) Value at Risk (VaR) 2018 1 / 16 Warunkowa heteroskedastyczność O warunkowej autoregresyjnej heteroskedastyczności mówimy, gdy σ
PODSTAWY OBLICZEŃ CHEMICZNYCH.. - należy podać schemat obliczeń (skąd się biorą konkretne podstawienia do wzorów?)
Korozja chemiczna PODSTAWY OBLICZEŃ CHEMICZNYCH.. - należy podać schemat obliczeń (skąd się biorą konkretne podstawienia do wzorów?) 1. Co to jest stężenie molowe? (co reprezentuje jednostka/ metoda obliczania/
WYKŁAD 5 TEORIA ESTYMACJI II
WYKŁAD 5 TEORIA ESTYMACJI II Teoria estymacji (wyznaczanie przedziałów ufności, błąd badania statystycznego, poziom ufności, minimalna liczba pomiarów). PRÓBA Próba powinna być reprezentacyjna tj. jak
Sieci optoelektroniczne
Sieci optoelektroniczne Wykład 6: Projektowanie systemów transmisji światłowodowej dr inż. Walery Susłow Podstawowe pytania (przed rozpoczęciem prac projektowych) Jaka jest maksymalna odległość transmisji?
Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania
Prognozowanie i Symulacje. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Szeregi czasowe 1 Szeregi czasowe 2 3 Szeregi czasowe Definicja 1 Szereg czasowy jest to proces stochastyczny z czasem dyskretnym
LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI
LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych
Statystyczne Metody Opracowania Wyników Pomiarów
Statystyczne Metody Opracowania Wyników Pomiarów dla studentów ZMIN Teresa Jaworska-Gołąb 2018/19 Co czytać [1] I Pracownia fizyczna, Andrzej Magiera red., Oficyna Wydawnicza IMPULS, Kraków 2006; http://www.1pf.if.uj.edu.pl/materialy/zalecana-literatura
Wyniki pomiarów okresu drgań dla wahadła o długości l = 1,215 m i l = 0,5 cm.
2 Wyniki pomiarów okresu drgań dla wahadła o długości l = 1,215 m i l = 0,5 cm. Nr pomiaru T[s] 1 2,21 2 2,23 3 2,19 4 2,22 5 2,25 6 2,19 7 2,23 8 2,24 9 2,18 10 2,16 Wyniki pomiarów okresu drgań dla wahadła
Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd.
Wnioskowanie statystyczne obejmujące metody pozwalające na uogólnianie wyników z próby na nieznane wartości parametrów oraz szacowanie błędów tego uogólnienia. Przewidujemy nieznaną wartości parametru
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta
Wybrane rozkłady zmiennych losowych. Statystyka
Wybrane rozkłady zmiennych losowych Statystyka Rozkład dwupunktowy Zmienna losowa przyjmuje tylko dwie wartości: wartość 1 z prawdopodobieństwem p i wartość 0 z prawdopodobieństwem 1- p x i p i 0 1-p 1
Statystyczne Metody Opracowania Wyników Pomiarów
Statystyczne Metody Opracowania Wyników Pomiarów dla studentów Ochrony Środowiska Teresa Jaworska-Gołąb 2017/18 Co czytać [1] H. Szydłowski, Pracownia fizyczna, PWN, Warszawa 1999. [2] A. Zięba, Analiza
... prognozowanie nie jest celem samym w sobie a jedynie narzędziem do celu...
4 Prognozowanie historyczne Prognozowanie - przewidywanie przyszłych zdarzeń w oparciu dane - podstawowy element w podejmowaniu decyzji... prognozowanie nie jest celem samym w sobie a jedynie narzędziem
BER = f(e b. /N o. Transmisja satelitarna. Wskaźniki jakości. Transmisja cyfrowa
Transmisja satelitarna Wskaźniki jakości Transmisja cyfrowa Elementowa stopa błędów (Bit Error Rate) BER = f(e b /N o ) Dostępność łącza Dla żądanej wartości BER. % czasu w roku, w którym założona jakość
Zmierzyłem i co dalej? O opracowaniu pomiarów i analizie niepewności słów kilka
Zmierzyłem i co dalej? O opracowaniu pomiarów i analizie niepewności słów kilka Jakub S. Prauzner-Bechcicki Grupa: Chemia A Kraków, dn. 7 marca 2018 r. Plan wykładu Rozważania wstępne Prezentacja wyników
Wymagania kl. 3. Zakres podstawowy i rozszerzony
Wymagania kl. 3 Zakres podstawowy i rozszerzony Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za
Wykład 4. Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym. 2. Rozkłady próbkowe. 3. Centralne twierdzenie graniczne
Wykład 4 Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym 2. Rozkłady próbkowe 3. Centralne twierdzenie graniczne Przybliżenie rozkładu dwumianowego rozkładem normalnym Niech Y ma rozkład
Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne
Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur
Statystyczne Metody Opracowania Wyników Pomiarów
Statystyczne Metody Opracowania Wyników Pomiarów dla studentów ZMIN Teresa Jaworska-Gołąb 2017/18 Co czytać [1] I Pracownia fizyczna, Andrzej Magiera red., Oficyna Wydawnicza IMPULS, Kraków 2006; http://www.1pf.if.uj.edu.pl/materialy/zalecana-literatura
I jest narzędziem służącym do porównywania rozproszenia dwóch zmiennych. Używamy go tylko, gdy pomiędzy zmiennymi istnieje logiczny związek
ZADANIA statystyka opisowa i CTG 1. Dokonano pomiaru stężenia jonów azotanowych w wodzie μg/ml 1 0.51 0.51 0.51 0.50 0.51 0.49 0.52 0.53 0.50 0.47 0.51 0.52 0.53 0.48 0.59 0.50 0.52 0.49 0.49 0.50 0.49
Wybrane rozkłady zmiennych losowych. Statystyka
Wybrane rozkłady zmiennych losowych Statystyka Rozkład dwupunktowy Zmienna losowa przyjmuje tylko dwie wartości: wartość 1 z prawdopodobieństwem p i wartość 0 z prawdopodobieństwem 1- p x i p i 0 1-p 1
METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład 3-4. Parametry i wybrane rozkłady zmiennych losowych
METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład - Parametry i wybrane rozkłady zmiennych losowych Parametry zmiennej losowej EX wartość oczekiwana D X wariancja DX odchylenie standardowe inne, np. kwantyle,
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych dla studentów Chemii 2007 Paweł Korecki 2013 Andrzej Kapanowski Po co jest Pracownia Fizyczna? 1. Obserwacja zjawisk i
Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych
Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją
Spis treści 3 SPIS TREŚCI
Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe
S YLABUS MODUŁU (PRZEDMIOTU) I nformacje ogólne. Nie dotyczy
S YLABUS MODUŁU (PRZEDMIOTU) I nformacje ogólne Nazwa modułu: Moduł B - Statystyka z elementami matematyki Rodzaj modułu/przedmiotu Wydział PUM Kierunek studiów Specjalność Poziom studiów Forma studiów
LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI
LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych
PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek
PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Piotr Wiącek ROZKŁAD PRAWDOPODOBIEŃSTWA Jest to miara probabilistyczna określona na σ-ciele podzbiorów borelowskich pewnej przestrzeni metrycznej. σ-ciało podzbiorów
ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW
ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną
Komputerowa Analiza Danych Doświadczalnych
Komputerowa Analiza Danych Doświadczalnych dr inż. Adam Kisiel kisiel@if.pw.edu.pl pokój 117b (12b) 1 Materiały do wykładu Transparencje do wykładów: http://www.if.pw.edu.pl/~kisiel/kadd/kadd.html Literatura
SMOP - wykład. Rozkład normalny zasady przenoszenia błędów. Ewa Pawelec
SMOP - wykład Rozkład normalny zasady przenoszenia błędów Ewa Pawelec 1 iepewność dla rozkładu norm. Zamiast dodawania całych zakresów uwzględniamy prawdopodobieństwo trafienia dwóch wartości: P x 1, x
Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.
Literatura Krysicki W., Bartos J., Dyczka W., Królikowska K, Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, cz. I. Leitner R., Zacharski J., Zarys matematyki wyŝszej
Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota
Ekonometria ćwiczenia 3 Prowadzący: Sebastian Czarnota Strona - niezbędnik http://sebastianczarnota.com/sgh/ Normalność rozkładu składnika losowego Brak normalności rozkładu nie odbija się na jakości otrzymywanych
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Zmienne losowe i teoria prawdopodobieństwa 3. Populacje i próby danych 4. Testowanie hipotez i estymacja parametrów 5. Najczęściej wykorzystywane testy statystyczne
Rozkład zmiennej losowej Polega na przyporządkowaniu każdej wartości zmiennej losowej prawdopodobieństwo jej wystąpienia.
Rozkład zmiennej losowej Polega na przyporządkowaniu każdej wartości zmiennej losowej prawdopodobieństwo jej wystąpienia. D A R I U S Z P I W C Z Y Ń S K I 2 2 ROZKŁAD ZMIENNEJ LOSOWEJ Polega na przyporządkowaniu
PODSTAWOWE TECHNIKI PRACY LABORATORYJNEJ: WAŻENIE, SUSZENIE, STRĄCANIE OSADÓW, SĄCZENIE
PODSTAWOWE TECHNIKI PRACY LABORATORYJNEJ: WAŻENIE, SUSZENIE, STRĄCANIE OSADÓW, SĄCZENIE CEL ĆWICZENIA Zapoznanie studenta z podstawowymi technikami pracy laboratoryjnej: ważeniem, strącaniem osadu, sączeniem
Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa
Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Marek Kubiak Instytut Informatyki Politechnika Poznańska Plan wykładu Podstawowe pojęcia rachunku prawdopodobieństwa Rozkład
Wykład 9 Wnioskowanie o średnich
Wykład 9 Wnioskowanie o średnich Rozkład t (Studenta) Wnioskowanie dla jednej populacji: Test i przedziały ufności dla jednej próby Test i przedziały ufności dla par Porównanie dwóch populacji: Test i
Ważne rozkłady i twierdzenia
Ważne rozkłady i twierdzenia Rozkład dwumianowy i wielomianowy Częstość. Prawo wielkich liczb Rozkład hipergeometryczny Rozkład Poissona Rozkład normalny i rozkład Gaussa Centralne twierdzenie graniczne
Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera)
Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. grupa II Termin: 17 III 2009 Nr. ćwiczenia: 112 Temat ćwiczenia: Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła
CYFROWE PRZETWARZANIE SYGNAŁÓW
POLITECHNIKA RZESZOWSKA im. I. Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI Katedra Metrologii i Systemów Diagnostycznych CYFROWE PRZETWARZANIE SYGNAŁÓW Analiza korelacyjna sygnałów dr hab. inż.