LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI
|
|
- Damian Kowalski
- 6 lat temu
- Przeglądów:
Transkrypt
1 LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI
2 WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych parametrów lub rozkładu Hipoteza statystyczna PARAMETRYCZNA (parametryczne testy istotności) precyzuje wartość parametru w rozkładzie populacji gen. NIEPARAMETRYCZNA (nieparametryczne testy istotności) orzeka o typie rozkładu TESTY ZGODNOŚCI Sprawdzają hipotezę, że populacja ma określony typ rozkładu. TESTY SPRAWDZAJĄCE CZY 2 PRÓBY POCHODZĄ Z JEDNEJ POPULACJI
3 Standardowy przebieg procedury weryfikacyjnej Reguły postępowania przy weryfikacji hipotez są określane mianem testów statystycznych 1. Sformułowanie hipotezy zerowej i alternatywnej Hipoteza zerowa (H 0 ) - Jest to hipoteza poddana procedurze weryfikacyjnej, w której zakładamy, że różnica między analizowanymi parametrami lub rozkładami wynosi zero. Przykładowo wnioskując o parametrach hipotezę zerową zapiszemy jako: Θ 2 znane (hipotetyczna wartość) Hipoteza alternatywna (H 1 ) - hipoteza przeciwstawna do weryfikowanej. Możemy ją zapisać na trzy sposoby w zależności od sformułowania badanego problemu: 2. Wybór statystyki testowej Wyznaczamy pewną funkcję wyników z próby losowej, i wyznaczamy jej rozkład przy założeniu, że hipoteza zerowa jest prawdziwa. Funkcję x ϴ nazywa się statystyką testową lub funkcją testową.
4 Standardowy przebieg procedury weryfikacyjnej 3. Określenie poziomu istotności α Na tym etapie procedury weryfikacyjnej przyjmujemy maksymalne dopuszczalne prawdopodobieństwo popełnienia błędu I rodzaju, który polega na odrzuceniu hipotezy zerowej wtedy, gdy jest ona prawdziwa. Prawdopodobieństwo to jest oznaczane symbolem α i nazywane poziomem istotności. Na ogół przyjmujemy prawdopodobieństwo bliskie zeru, ponieważ chcemy aby ryzyko popełnienia błędu było jak najmniejsze. Najczęściej zakładamy poziom istotności α=0.05, czasem przyjmuje się np. α=0.01 ; α= Podjęcie decyzji Wyznaczoną na podstawie próby wartość statystyki porównujemy z wartością krytyczną testu. Jeżeli wartość ta znajdzie się w obszarze krytycznym, to hipotezę zerową należy odrzucić jako nieprawdziwą. Stąd wniosek, że prawdziwa jest hipoteza alternatywna. Jeżeli natomiast wartość ta znajdzie się poza obszarem krytycznym, oznacza to, że brak jest podstaw do odrzucenia hipotezy zerowej. Stąd wniosek, że hipoteza zerowa może, ale nie musi, być prawdziwa, a postępowanie nie dało żadnych dodatkowych informacji uprawniających do podjęcia decyzji o przyjęciu lub odrzuceniu hipotezy zerowej.
5 OBSZAR KRYTYCZNY Obszar krytyczny- obszar znajdujący się zawsze na krańcach rozkładu. Jeżeli obliczona przez nas wartość statystyki testowej znajdzie się w tym obszarze, to weryfikowaną przez nas hipotezę H 0 odrzucamy. Wielkość obszaru krytycznego wyznacza dowolnie mały poziom istotności α, natomiast jego położenie określane jest przez hipotezę alternatywną. DWUSTRONNY OBSZAR KRYTYCZNY test dwuśladowy (two-tail test)
6 DECYZJE Obszar krytyczny od pozostałej części rozkładu statystyki oddzielony jest przez tzw. wartości krytyczne testu czyli wartości odczytane z rozkładu statystyki przy danym α, tak aby spełniona była relacja zależna od sposobu sformułowania H 1.
7 OBSZAR KRYTYCZNY LEWOSTRONNY OBSZAR KRYTYCZNY Test jednośladowy (one- tail test) PRAWOSTRONNY OBSZAR KRYTYCZNY Test jednośladowy (one- tail test) H o odrzucić, przyjąć H1 H o nie ma podstaw do odrzucenia
8 TESTY DLA WARTOŚCI ŚREDNIEJ POPULACJI ( znane σ ) Przypadek 1. Populacja generalna ma rozkład normalny N(µ, σ); odchylenie standardowe σ jest znane. Na podstawie n-elementowej próby sprawdzić, hipotezę: H o : µ= µ o (µ o -hipotetyczna wartość) wobec hipotezy alternatywnej: H 1 : µ µ o. Rozwiązanie: Statystyka testowa: ma rozkład N(0,1), dwustronny obszar krytyczny Dwustronny test Dla H 1 : µ > µ o lub H 1 : µ < µ o zastosować prawostronny lub lewostronny test, odpowiednio.
9 TESTY DLA WARTOŚCI ŚREDNIEJ POPULACJI (próba duża) Przypadek 2. Populacja generalna ma rozkład normalny N(µ, σ) lub dowolny inny; odchylenie standardowe σ jest nieznane. Na podstawie dużej próby n 30 sprawdzić, hipotezę: H o : µ= µ o (µ o -hipotetyczna wartość) wobec hipotezy alternatywnej: H 1 : µ µ o. Rozwiązanie: Statystyka testowa: ma rozkład N(0,1)dwustronny obszar krytyczny (dalej postępować jak w Przypadku 1. H o odrzucić, przyjąć H 1 H o nie ma podstaw do odrzucenia
10 TESTY DLA WARTOŚCI ŚREDNIEJ POPULACJI (próba mała) Przypadek 3. Populacja generalna ma rozkład normalny N(µ, σ),odchylenie standardowe σ jest nieznane. Na podstawie małej próby (n <30) sprawdzić, hipotezę: H o : µ= µ o (µ o -hipotetyczna wartość) wobec hipotezy alternatywnej: H 1 : µ µ o. Rozwiązanie: Statystyka testowa: ma rozkład t-studenta z k=n-1 stopniami swobody, dwustronny obszar krytyczny.
11 WARYFIKACJA HIPOTEZ dla μ: H o : µ= µ o (µ o -hipotetyczna wartość) H 1 : µ µ o lub: µ > µ o lub: µ <µ o Dane: próba losowa: P (n), poziom istotności: α PRÓBA LOSOWA P (n) Próba duża Mała (n <30) Gdy: σ znane (jest to słuszne też dla małej próby) Gdy: σ nieznane TYLKO dla dużej próby σ nieznane dla małej próby Z α N(0,1) : ROZKLAD.N.S.ODWR prawdopodobieństwo : a) Test dwustronny (H 1 : µ µ o ) : α/2 b) Test jednostronny (H 1 : µ >µ o lub : µ <µ o ) : α t α : ROZKLAD.T.ODWR Stopnie swobody: k=n-1, prawdopodobieństwo: a) Test dwustronny (H 1 : µ µ o ) : α/2 b) Test jednostronny (H 1 : µ >µ o lub : µ <µ o ) : α
12 Prawdopodobieństwo testowe p- value (probability value) Definicja: p-wartość (p-value) jest to najmniejsza wartość (poziomu istotności), która prowadzi do odrzucenia hipotezy zerowej, H o. Wyznaczanie p- wartości: a) z próby wyznaczamy z α (t α ) b) korzystając z funkcji: ROZKŁAD.N.S (ROZKŁAD.T) wyznaczamy p=α
13 ĆWICZENIA 1) Z populacji generalnej pobrano losowo próbę P (n) (n-elementową). Wyznaczone wartości dla tej próby wynoszą: x sr = 136 g, s= 12 g. Na poziomie istotności α=0,05 zweryfikować hipotezę: H o : μ = 148 g gdy: a)n=36, σ= 10 g, H 1 : µ 148 g, H 1 : µ <148 g b)n=16, σ= 10 g, H 1 : µ 148 g c)n=50 (σ nieznane), H 1 : µ 148 g d)n=26 (σ nieznane), H 1 : µ < 148 g; µ > 148 g e) Wyznaczyć : p-wartość
14 WARYFIKACJA HIPOTEZ dla DWÓCH POPULACJI PRÓBY LOSOWE P(n 1 ) i P(n 2 ) H o : µ 1 = µ 2 H 1 : µ 1 µ 2 lub: µ 1 > µ 2 lub: µ 1 <µ 2 Dane: próby losowe: P(n 1 ) i P(n 2 ) poziom istotności: α Małe (n <30) Próby duże Gdy: σ 1 i σ 2 znane (jest to słuszne też dla małej próby) Gdy: σ 1 i σ 2 nieznane TYLKO dla dużej próby σ 1 i σ 2 nieznane, ale σ 1 =σ 2 dla małej próby; k=n 1 +n 2-2 Populacja generalna przed (X i ) oraz po (Y i ) MODYFIKACJI z i =y i -x i H o : z =0 k= n-1 Z α N(0,1) : ROZKLAD.N.S.ODWR prawdopodobieństwo : a) Test dwustronny (H 1 : µ µ o ) : α/2 b) Test jednostronny (H 1 : µ >µ o lub : µ <µ o ) : α t α : ROZKLAD.T.ODWR a) Test dwustronny (H 1 : µ µ o ) : α/2 b) Test jednostronny (H 1 : µ >µ o lub : µ <µ o ) : α
15 ĆWICZENIA c.d 2. Zmierzono czas reakcji u 8 kierowców przed i po wypiciu 100 g wódki, wyniki w sekundach następujące: a) Przed wypiciem: 0,22; 0,18; 0,16; 0,19; 0,20; 0,23; 0.17; 0,25 a) Po wypiciu: 0,28; 0,25; 0,20; 0,30; 0,19; 0,26; 0,28; 0,24 Na poziomie istotności =0,05 zweryfikować hipotezę, że wódka zwiększa czas reakcji. 3. Wykonano pomiary porowatości 8-miu wylosowanych kształtek ceramicznych przed i po modyfikacji polegającej na dodatkowym procesie spiekania, uzyskano następujące wyniki porowatości w [%]: przed modyfikacją: 21, 17, 20, 26, 23, 22, 21, 18 po modyfikacji: 16, 13, 14, 21, 19, 18, 26, 17 Na poziomie istotności α=0,05 zweryfikować hipotezę, że modyfikacja zmniejsza porowatość tych wyrobów. Zastosować test dla par na różnicach wyników
16 TEST DLA WSKAŹNIKA STRUKTURY (PROCENTU) Populacja generalna ma rozkład dwupunktowy z parametrem p. Z populacji tej wylosowano próbę n-elementową (n>100) próbę. W oparciu o wynik tej próby zweryfikować hipotezę: H o : p=p o wobec hipotezy alternatywnej: H 1 : p p o, gdzie p o jest hipotetyczna wartość parametru p Statystyka testowa: Gdzie m- liczba wyróżnionych elementów w próbie. Statystyka z ma rozkład N(0,1)
17 TEST DLA DWÓCH WSKAŹNIKÓW STRUKTURY Dwie populacje generalne o rozkładach dwupunktowych z parametrami p 1 i p 2. W oparciu o wyniki dwu niezależnych prób, o liczebnościach n 1 i n 2 (n 1 >100 i n 2 >100) wylosowanych z tych populacji sprawdzić hipotezę, że parametry p 1 i p 2 są jednakowe, tzn: H o : p 1 =p 2 wobec hipotezy alternatywnej: H 1 : p 1 p 2. Statystyka testowa: gdzie: m 1 i m 2 oznaczają ilość wyróżnionych elementów w obu próbach, a: z- ma rozkład N(0,1)
18 ĆWICZENIA c.d 4. Przy kontroli pracy dwu central telefonicznych stwierdzono, że na 200 połączeń w centrali A 16 było omyłkowych. Natomiast na 100 połączeń w centrali B złych połączeń było 10. Na poziomie istotności α=0,05 zweryfikować hipotezę, że procent złych połączeń jest jednakowy w obu centralach telefonicznych.
19 TEST DLA WARIANCJI POPULACJI Populacja generalna ma rozkład normalny N(µ, σ) o nieznanych parametrach µ i σ. Z populacji tej wylosowano próbę n-elementową próbę, na jej podstawie sprawdzić hipotezę: H o : wobec hipotezy alternatywnej:h 1 :, gdzie jest hipotetyczną wartością wariancji Rozwiązanie: Statystyka testowa: Statystyka ta ma rozkład χ 2 z k=n-1 stopniami swobody
20 ĆWICZENIA 5. Spośród studentów AGH wylosowano niezależnie do próby 200 studentów i zapytano ich czy palą i ile dziennie palą papierosów. 152 studentów z nich stwierdziło, ze pali systematycznie, a wariancja z tej próby wypalanych papierosów wynosi s 2 =50 (papierosów) 2. Na poziomie istotności α=0,05 zweryfikować hipotezy: a) palących studentów na AGH jest 60 %, b) odchylenie standardowe liczby wypalanych dziennie papierosów wynosi 5.
21 TEST DLA DWÓCH WARIANCJI POPULACJI Dane są dwie populacje generalne o rozkładach normalnych N(µ 1, σ 1 ) i N(µ 2, σ 2 ). Ich parametry są nieznane. W oparciu o wyniki dwu niezależnych prób, o liczebnościach n 1 i n 2 wylosowanych z tych populacji sprawdzić hipotezę: H o : wobec hipotezy alternatywnej: H 1 : Statystyka testowa: ma rozkład F-Snedecora z k 1 =n 1-1 oraz k 2 =n 2-1 stopniami swobody. Gdy F F odrzucamy H o
22 ĆWICZENIA c.d 6. W celu porównania regularności wyników sportowych dwu oszczepników, wylosowano 20 wyników rzutu oszczepem zawodnika A i 16 wyników zawodnika B. Dla zawodnika A s A = 2,65 m, a dla B s B =4,80 m. Na poziomie istotności α=0,10 sprawdzić hipotezę o większej regularności wyników zawodnika A
23 Alternatywne podejście: p-wartości (p Value of a test) Powyższa standardowa procedura wymaga przyjęcia arbitralnego poziomu istotności α a wynikiem weryfikacji jest odpowiedź binarna albo statystyka testowa mieści się w przedziale ufności, albo nie. (Alternatywnym i nowocześniejszym, choć mniej popularnym podejściem jest obliczenie zamiast tego surowej p-wartości prawdopodobieństwa popełnienia błędu I rodzaju) i podawanie jej jako wyników weryfikacji. Dzięki temu nie ma potrzeby przyjmowania a priori żadnych wartości α, pozwala to również na porównywanie istotności różnych konkurencyjnych hipotez statystycznych. Definicja: p-wartość (p-value) testowania hipotezy jest to najmniejsza wartość (poziomu istotności), która prowadzi do odrzucenia hipotezy zerowej, H o. Wyznaczanie p- wartości: a) z próby wyznaczamy z α (t α ) b) korzystając z funkcji: ROZKŁAD.N.S (ROZKŁAD.T) wyznaczamy p=α Mała p-wartość wskazuje na poparcie hipotezy alternatywnej H 1 Duża p-wartość dostarcza mało argumentów na poparcie hipotezy alternatywnej
LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI
LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych
VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15
VI WYKŁAD STATYSTYKA 9/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 6 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności, zasady
LABORATORIUM 9 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI
LABORATORIUM 9 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI 1. Test dla dwóch średnich P.G. 2. Testy dla wskaźnika struktury 3. Testy dla wariancji DECYZJE Obszar krytyczny od pozostałej
VII WYKŁAD STATYSTYKA. 30/04/2014 B8 sala 0.10B Godz. 15:15
VII WYKŁAD STATYSTYKA 30/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 7 (c.d) WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności,
Wstęp do probabilistyki i statystyki. Wykład 4. Statystyki i estymacja parametrów
Wstęp do probabilistyki i statystyki Wykład 4. Statystyki i estymacja parametrów dr hab.inż. Katarzyna Zakrzewska, prof.agh, Katedra Elektroniki, WIET AGH Wstęp do probabilistyki i statystyki. Wykład 4
Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa
Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie
Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych
Statystyka matematyczna. Wykład IV. e-mail:e.kozlovski@pollub.pl Spis treści 1 2 3 Definicja 1 Hipoteza statystyczna jest to przypuszczenie dotyczące rozkładu (wielkości parametru lub rodzaju) zmiennej
Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28
Statystyka #5 Testowanie hipotez statystycznych Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik rok akademicki 2016/2017 1 / 28 Testowanie hipotez statystycznych 2 / 28 Testowanie hipotez statystycznych
Statystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje
Testowanie hipotez statystycznych. Wnioskowanie statystyczne
Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy
Testowanie hipotez statystycznych
Testowanie hipotez statystycznych Przypuśdmy, że mamy do czynienia z następującą sytuacją: nieznany jest rozkład F rządzący pewnym zjawiskiem losowym. Dysponujemy konkretną próbą losową ( x1, x2,..., xn
Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r
Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów
Wykład 3 Hipotezy statystyczne
Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza
Wnioskowanie statystyczne i weryfikacja hipotez statystycznych
Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne Wnioskowanie statystyczne obejmuje następujące czynności: Sformułowanie hipotezy zerowej i hipotezy alternatywnej.
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Hipotezy statystyczne
Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o którego prawdziwości lub fałszywości wnioskuje się na podstawie pobranej próbki losowej. Hipotezy
Idea. θ = θ 0, Hipoteza statystyczna Obszary krytyczne Błąd pierwszego i drugiego rodzaju p-wartość
Idea Niech θ oznacza parametr modelu statystycznego. Dotychczasowe rozważania dotyczyły metod estymacji tego parametru. Teraz zamiast szacować nieznaną wartość parametru będziemy weryfikowali hipotezę
TESTOWANIE HIPOTEZ STATYSTYCZNYCH
TETOWANIE HIPOTEZ TATYTYCZNYCH HIPOTEZA TATYTYCZNA przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Prawdziwość tego przypuszczenia jest oceniana na
SIGMA KWADRAT. Weryfikacja hipotez statystycznych. Statystyka i demografia CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY
SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY Weryfikacja hipotez statystycznych Statystyka i demografia PROJEKT DOFINANSOWANY ZE ŚRODKÓW NARODOWEGO BANKU POLSKIEGO URZĄD STATYSTYCZNY
Hipotezy statystyczne
Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o którego prawdziwości lub fałszywości wnioskuje się na podstawie pobranej
Weryfikacja hipotez statystycznych za pomocą testów statystycznych
Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej
WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH
WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH Było: Estymacja parametrów rozkładu teoretycznego punktowa przedziałowa Przykład. Cecha X masa owocu pewnej odmiany. ZałoŜenie: cecha X ma w populacji rozkład
Testowanie hipotez statystycznych
Agenda Instytut Matematyki Politechniki Łódzkiej 2 stycznia 2012 Agenda Agenda 1 Wprowadzenie Agenda 2 Hipoteza oraz błędy I i II rodzaju Hipoteza alternatywna Statystyka testowa Zbiór krytyczny Poziom
STATYSTYKA MATEMATYCZNA WYKŁAD 4. WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X.
STATYSTYKA MATEMATYCZNA WYKŁAD 4 WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X. Wysuwamy hipotezy: zerową (podstawową H ( θ = θ i alternatywną H, która ma jedną z
STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Karl Popper... no matter how many instances of white swans we may have observed, this does not
LABORATORIUM 6 ESTYMACJA cz. 2
LABORATORIUM 6 ESTYMACJA cz. 2 TEORIA ESTYMACJI I 1. ODRZUCANIE WYNIKÓW WĄTPLIWYCH PRÓBA P (m) (m-elementowa) Obliczenie: ; s bez wyników wątpliwych Odrzucenie wyników z poza przedziału: 3s PRÓBA LOSOWA
TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy.
TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. Hipotezy dzielimy na parametryczne i nieparametryczne. Zajmiemy
Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( )
Statystyka Rozkład prawdopodobieństwa Testowanie hipotez Wykład III (04.01.2016) Rozkład t-studenta Rozkład T jest rozkładem pomocniczym we wnioskowaniu statystycznym; stosuje się go wyznaczenia przedziału
Statystyka matematyczna i ekonometria
Statystyka matematyczna i ekonometria Wykład 5 dr inż. Anna Skowrońska-Szmer zima 2017/2018 Hipotezy 2 Hipoteza zerowa (H 0 )- hipoteza o wartości jednego (lub wielu) parametru populacji. Traktujemy ją
Uwaga. Decyzje brzmią różnie! Testy parametryczne dotyczące nieznanej wartości
TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu, z którego pochodzi próbka. Hipotezy dzielimy na parametryczne i nieparametryczne. Parametrycznymi
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI TESTOWANIE HIPOTEZ PARAMETRYCZNYCH
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI TESTOWANIE HIPOTEZ PARAMETRYCZNYCH Co to są hipotezy statystyczne? Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej. Dzielimy je
ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1.
Opracowała: Joanna Kisielińska ZMIENNE LOSOWE Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R tzn. X: R. Realizacją zmiennej losowej
Testowanie hipotez statystycznych.
Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie
Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu
Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotności, p-wartość i moc testu Wrocław, 01.03.2017r Przykład 2.1 Właściciel firmy produkującej telefony komórkowe twierdzi, że wśród jego produktów
LABORATORIUM Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz.
LABORATORIUM 4 1. Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz. I) WNIOSKOWANIE STATYSTYCZNE (STATISTICAL INFERENCE) Populacja
Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych
Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zad. 1 Średnia ocen z semestru letniego w populacji studentów socjologii w roku akademickim 2011/2012
RÓWNOWAŻNOŚĆ METOD BADAWCZYCH
RÓWNOWAŻNOŚĆ METOD BADAWCZYCH Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska Równoważność metod??? 2 Zgodność wyników analitycznych otrzymanych z wykorzystaniem porównywanych
TESTOWANIE HIPOTEZ STATYSTYCZNYCH Hipotezą statystyczną nazywamy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy.
TESTOWANIE HIPOTEZ STATYSTYCZNYCH Hipotezą statystyczną nazywamy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. Hipotezy dzielimy na parametryczne i nieparametryczne. Zajmiemy
Weryfikacja hipotez statystycznych. KG (CC) Statystyka 26 V / 1
Weryfikacja hipotez statystycznych KG (CC) Statystyka 26 V 2009 1 / 1 Sformułowanie problemu Weryfikacja hipotez statystycznych jest drugą (po estymacji) metodą uogólniania wyników uzyskanych w próbie
WYKŁAD 5 TEORIA ESTYMACJI II
WYKŁAD 5 TEORIA ESTYMACJI II Teoria estymacji (wyznaczanie przedziałów ufności, błąd badania statystycznego, poziom ufności, minimalna liczba pomiarów). PRÓBA Próba powinna być reprezentacyjna tj. jak
STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2
STATYSTYKA I DOŚWIADCZALNICTWO Wykład Parametry przedziałowe rozkładów ciągłych określane na podstawie próby (przedziały ufności) Przedział ufności dla średniej s X t( α;n 1),X + t( α;n 1) n s n t (α;
Statystyka matematyczna i ekonometria
Statystyka matematyczna i ekonometria Wykład 5 Anna Skowrońska-Szmer lato 2016/2017 Hipotezy 2 Hipoteza zerowa (H 0 )- hipoteza o wartości jednego (lub wielu) parametru populacji. Traktujemy ją jako prawdziwą
Testowanie hipotez statystycznych.
Bioinformatyka Wykład 4 Wrocław, 17 października 2011 Temat. Weryfikacja hipotez statystycznych dotyczących wartości oczekiwanej w dwóch populacjach o rozkładach normalnych. Model 3. Porównanie średnich
Zad. 4 Należy określić rodzaj testu (jedno czy dwustronny) oraz wartości krytyczne z lub t dla określonych hipotez i ich poziomów istotności:
Zadania ze statystyki cz. 7. Zad.1 Z populacji wyłoniono próbę wielkości 64 jednostek. Średnia arytmetyczna wartość cechy wyniosła 110, zaś odchylenie standardowe 16. Należy wyznaczyć przedział ufności
Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych.
Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Hipotezy i Testy statystyczne Każde
Statystyka matematyczna
Statystyka matematyczna Wykład 9 i 10 Magdalena Alama-Bućko 14 i 21 maja 2018 Magdalena Alama-Bućko Statystyka matematyczna 14 i 21 maja 2018 1 / 25 Hipotezy statystyczne Hipoteza statystyczna nazywamy
Testowanie hipotez statystycznych
Temat Testowanie hipotez statystycznych Kody znaków: Ŝółte wyróŝnienie nowe pojęcie pomarańczowy uwaga kursywa komentarz 1 Zagadnienia omawiane na zajęciach 1. Idea i pojęcia teorii testowania hipotez
1 Estymacja przedziałowa
1 Estymacja przedziałowa 1. PRZEDZIAŁY UFNOŚCI DLA ŚREDNIEJ (a) MODEL I Badana cecha ma rozkład normalny N(µ, σ) o nieznanym parametrze µ i znanym σ. Przedział ufności: [ ( µ x u 1 α ) ( σn ; x + u 1 α
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 9 i 10 1 / 30 TESTOWANIE HIPOTEZ STATYSTYCZNYCH
Testowanie hipotez statystycznych cd.
Temat Testowanie hipotez statystycznych cd. Kody znaków: żółte wyróżnienie nowe pojęcie pomarańczowy uwaga kursywa komentarz 1 Zagadnienia omawiane na zajęciach 1. Przykłady testowania hipotez dotyczących:
TESTOWANIE HIPOTEZ STATYSTYCZNYCH Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas
TESTOWANIE HIPOTEZ STATYSTYCZNYCH Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. Hipotezy dzielimy na parametryczne i nieparametryczne.
Porównanie modeli statystycznych. Monika Wawrzyniak Katarzyna Kociałkowska
Porównanie modeli statystycznych Monika Wawrzyniak Katarzyna Kociałkowska Jaka jest miara podobieństwa? Aby porównywać rozkłady prawdopodobieństwa dwóch modeli statystycznych możemy użyć: metryki dywergencji
Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.
Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ
Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 9. TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd.
WYKŁAD 9 TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd. Było: Przykład 1. Badano krąŝek o wymiarach zbliŝonych do monety jednozłotowej ze stronami oznaczonymi: A, B. NaleŜy ustalić, czy krąŝek jest symetryczny?
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0
Testowanie hipotez Każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy nazywamy hipotezą statystyczną. Hipoteza określająca jedynie wartości nieznanych parametrów liczbowych badanej cechy
Weryfikacja hipotez statystycznych za pomocą testów statystycznych
Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej
TESTY NIEPARAMETRYCZNE. 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa.
TESTY NIEPARAMETRYCZNE 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa. Standardowe testy równości średnich wymagają aby badane zmienne losowe
Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności. Dr Anna ADRIAN Paw B5, pok407
Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Weryfikacja hipotez dotyczących postaci nieznanego rozkładu -Testy zgodności.
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI Test zgodności i analiza wariancji Analiza wariancji Test zgodności Chi-kwadrat Sprawdza się za jego pomocą ZGODNOŚĆ ROZKŁADU EMPIRYCZNEGO Z PRÓBY Z ROZKŁADEM HIPOTETYCZNYM
Wykład 3 Testowanie hipotez statystycznych o wartości średniej. średniej i wariancji z populacji o rozkładzie normalnym
Wykład 3 Testowanie hipotez statystycznych o wartości średniej i wariancji z populacji o rozkładzie normalnym Wrocław, 08.03.2017r Model 1 Testowanie hipotez dla średniej w rozkładzie normalnym ze znaną
Wnioskowanie statystyczne Weryfikacja hipotez. Statystyka
Wnioskowanie statystyczne Weryfikacja hipotez Statystyka Co nazywamy hipotezą Każde stwierdzenie o parametrach rozkładu lub rozkładzie zmiennej losowej w populacji nazywać będziemy hipotezą statystyczną
166 Wstęp do statystyki matematycznej
166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta
Wyniki badań reprezentatywnych są zawsze stwierdzeniami hipotetycznymi, o określonych granicach niepewności
Wyniki badań reprezentatywnych są zawsze stwierdzeniami hipotetycznymi, o określonych granicach niepewności Statystyka indukcyjna pozwala kontrolować i oszacować ryzyko popełnienia błędu statystycznego
Dane dotyczące wartości zmiennej (cechy) wprowadzamy w jednej kolumnie. W przypadku większej liczby zmiennych wprowadzamy każdą w oddzielnej kolumnie.
STATISTICA INSTRUKCJA - 1 I. Wprowadzanie danych Podstawowe / Nowy / Arkusz Dane dotyczące wartości zmiennej (cechy) wprowadzamy w jednej kolumnie. W przypadku większej liczby zmiennych wprowadzamy każdą
Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski
Statystyczna analiza danych w programie STATISTICA (wykład ) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Weryfikacja (testowanie) hipotez statystycznych
... i statystyka testowa przyjmuje wartość..., zatem ODRZUCAMY /NIE MA POD- STAW DO ODRZUCENIA HIPOTEZY H 0 (właściwe podkreślić).
Egzamin ze Statystyki Matematycznej, WNE UW, wrzesień 016, zestaw B Odpowiedzi i szkice rozwiązań 1. Zbadano koszt 7 noclegów dla 4-osobowej rodziny (kwatery) nad morzem w sezonie letnim 014 i 015. Wylosowano
Prawdopodobieństwo i rozkład normalny cd.
# # Prawdopodobieństwo i rozkład normalny cd. Michał Daszykowski, Ivana Stanimirova Instytut Chemii Uniwersytet Śląski w Katowicach Ul. Szkolna 9 40-006 Katowice E-mail: www: mdaszyk@us.edu.pl istanimi@us.edu.pl
Statystyka i opracowanie danych - W 4: Wnioskowanie statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407
Statystyka i opracowanie danych - W 4: Wnioskowanie statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Hipotezy i Testy statystyczne Każde badanie naukowe rozpoczyna
ESTYMACJA. Przedział ufności dla średniej
ESTYMACJA Przedział ufności dla średniej W grupie 900 losowo wybranych pracowników przedsiębiorstwa średnia liczba dni nieobecności w pracy wynosiła 30, a odchylenie standardowe 3 dni. a) Przyjmując współczynnik
IV WYKŁAD STATYSTYKA. 26/03/2014 B8 sala 0.10B Godz. 15:15
IV WYKŁAD STATYSTYKA 26/03/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 4 Populacja generalna, próba, losowanie próby, estymatory Statystyka (populacja generalna, populacja próbna, próbka mała, próbka duża, reprezentatywność,
weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja)
PODSTAWY STATYSTYKI. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne (na
Weryfikacja hipotez: Hipoteza statystyczna to dowolne przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji. o prawdziwości którego
Weryfikacja hipotez: Hipoteza statystyczna to dowolne przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji. o prawdziwości którego decyduje się na podstawie losowej próbki. Hipotezy, które
Testowanie hipotez statystycznych. Wprowadzenie
Wrocław University of Technology Testowanie hipotez statystycznych. Wprowadzenie Jakub Tomczak Politechnika Wrocławska jakub.tomczak@pwr.edu.pl 10.04.2014 Pojęcia wstępne Populacja (statystyczna) zbiór,
1. szereg wyliczający (szczegółowy) - wyniki są uporządkowane wyłącznie według wartości badanej cechy, np. od najmniejszej do największej
1 Statystyka opisowa Statystyka opisowa zajmuje się porządkowaniem danych i wstępnym ich opracowaniem. Szereg statystyczny - to zbiór wyników obserwacji jednostek według pewnej cechy 1. szereg wyliczający
BADANIE POWTARZALNOŚCI PRZYRZĄDU POMIAROWEGO
Zakład Metrologii i Systemów Pomiarowych P o l i t e c h n i k a P o z n ańska ul. Jana Pawła II 24 60-965 POZNAŃ (budynek Centrum Mechatroniki, Biomechaniki i Nanoinżynierii) www.zmisp.mt.put.poznan.pl
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych JERZY STEFANOWSKI Instytut Informatyki Politechnika Poznańska Aktualizacja 2017 Plan wykładu 1. Metody wnioskowania statystycznego vs. metody opisu 2. Testowanie hipotez
Zadanie 1 Odp. Zadanie 2 Odp. Zadanie 3 Odp. Zadanie 4 Odp. Zadanie 5 Odp.
Zadanie 1 budżet na najbliższe święta. Podać 96% przedział ufności dla średniej przewidywanego budżetu świątecznego jeśli otrzymano średnią z próby równą 600 zł, odchylenie standardowe z próby równe 30
Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn
Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem
Testowanie hipotez cz. I
Wykład 11 Testowanie hipotez cz. I TESTOWANIE HIPOTEZ STATYSTYCZNYCH Hipoteza statystyczna jest to przypuszczenie dotyczące nieznanej własności rozkładu prawdopodobieństwa badanej cechy populacji. W zadaniach
Statystyka matematyczna Testowanie hipotez dla średnich w rozkładzie normalnym. Wrocław, r
Statystyka matematyczna Testowanie hipotez dla średnich w rozkładzie normalnym Wrocław, 18.03.2016r Testowanie hipotez dla średniej w rozkładzie normalnym dla jednej próby Model 1 Testowanie hipotez dla
Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014
Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu
Wydział Matematyki. Testy zgodności. Wykład 03
Wydział Matematyki Testy zgodności Wykład 03 Testy zgodności W testach zgodności badamy postać rozkładu teoretycznego zmiennej losowej skokowej lub ciągłej. Weryfikują one stawiane przez badaczy hipotezy
Testowanie hipotez statystycznych
9 października 2008 ...czyli definicje na rozgrzewkę n-elementowa próba losowa - wektor n zmiennych losowych (X 1,..., X n ); intuicyjnie: wynik n eksperymentów realizacja próby (X 1,..., X n ) w ω Ω :
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Przykład. Producent pewnych detali twierdzi, że wadliwość jego produkcji nie przekracza 2%. Odbiorca pewnej partii tego produktu chce sprawdzić, czy może wierzyć producentowi.
STATYSTYKA MATEMATYCZNA WYKŁAD 5. 2 listopada 2009
STATYSTYKA MATEMATYCZNA WYKŁAD 5 2 listopada 2009 Poprzedni wykład: przedział ufności dla µ, σ nieznane Rozkład N(µ, σ). Wnioskowanie o średniej µ, gdy σ nie jest znane Testowanie H : µ = µ 0, K : µ
TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności.
TEST STATYSTYCZNY Testem statystycznym nazywamy regułę postępowania rozstrzygająca, przy jakich wynikach z próby hipotezę sprawdzaną H 0 należy odrzucić, a przy jakich nie ma podstaw do jej odrzucenia.
dr hab. Dariusz Piwczyński, prof. nadzw. UTP
dr hab. Dariusz Piwczyński, prof. nadzw. UTP NIEZBĘDNE DO ZROZUMIENIA WYKŁADU POJĘCIA Doświadczenie jednogrupowe (jednopróbkowe), dwugrupowe (dwupróbkowe) Doświadczenie niezależne i wiązane (zależne, sparowane)
WERYFIKACJA HIPOTEZ STATYSTYCZNYCH
WERYFIKACJA HIPOTEZ STATYSTYCZNYCH I. TESTY PARAMETRYCZNE II. III. WERYFIKACJA HIPOTEZ O WARTOŚCIACH ŚREDNICH DWÓCH POPULACJI TESTY ZGODNOŚCI Rozwiązania zadań wykonywanych w Statistice przedstaw w pliku
STATYSTYKA
Wykład 1 20.02.2008r. 1. ROZKŁADY PRAWDOPODOBIEŃSTWA 1.1 Rozkład dwumianowy Rozkład dwumianowy, 0 1 Uwaga: 1, rozkład zero jedynkowy. 1 ; 1,2,, Fakt: Niech,, będą niezależnymi zmiennymi losowymi o jednakowym
Wykład 12 Testowanie hipotez dla współczynnika korelacji
Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 23 maja 2018 Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem
Wyniki badań reprezentatywnych są zawsze stwierdzeniami hipotetycznymi, o określonych granicach niepewności
Wyniki badań reprezentatywnych są zawsze stwierdzeniami hipotetycznymi, o określonych granicach niepewności Statystyka indukcyjna pozwala kontrolować i oszacować ryzyko popełnienia błędu statystycznego
STATYSTYKA wykład 8. Wnioskowanie. Weryfikacja hipotez. Wanda Olech
TATYTYKA wykład 8 Wnioskowanie Weryfikacja hipotez Wanda Olech Co nazywamy hipotezą Każde stwierdzenie o parametrach rozkładu lub rozkładzie zmiennej losowej w populacji nazywać będziemy hipotezą statystyczną
Zawartość. Zawartość
Opr. dr inż. Grzegorz Biesok. Wer. 2.05 2011 Zawartość Zawartość 1. Rozkład normalny... 3 2. Rozkład normalny standardowy... 5 3. Obliczanie prawdopodobieństw dla zmiennych o rozkładzie norm. z parametrami
Wykład 12 Testowanie hipotez dla współczynnika korelacji
Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 24 maja 2017 Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem
Testowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25
Testowanie hipotez Marcin Zajenkowski Marcin Zajenkowski () Testowanie hipotez 1 / 25 Testowanie hipotez Aby porównać ze sobą dwie statystyki z próby stosuje się testy istotności. Mówią one o tym czy uzyskane
Test lewostronny dla hipotezy zerowej:
Poznajemy testowanie hipotez statystycznych w środowisku R Zajęcia z dnia 11 maja 2011 roku Najpierw teoria TESTY ISTOTNOŚCI WARTOŚCI ŚREDNIEJ W POPULACJI GENERALNEJ gdy znana jest wariancja!!! Test prawostronny
Statystyka Matematyczna Anna Janicka
Statystyka Matematyczna Anna Janicka wykład IX, 25.04.2016 TESTOWANIE HIPOTEZ STATYSTYCZNYCH Plan na dzisiaj 1. Hipoteza statystyczna 2. Test statystyczny 3. Błędy I-go i II-go rodzaju 4. Poziom istotności,