ρ siła związku korelacyjnego brak słaba średnia silna bardzo silna

Wielkość: px
Rozpocząć pokaz od strony:

Download "ρ siła związku korelacyjnego brak słaba średnia silna bardzo silna"

Transkrypt

1 Ćwiczenie 4 ANALIZA KORELACJI, BADANIE NIEZALEŻNOŚCI Analiza korelacji jest działem statystyki zajmującym się badaniem zależności pomiędzy rozkładami dwu lub więcej badanych cech w populacji generalnej. Korelacja pomiędzy dwiema zmiennymi losowymi X i Y oznacza zawiązek zależności pomiędzy tymi zmiennymi. Jeśli zmienne są mierzalne to jedną z miar siły tego związku jest współczynnik korelacji Pearsona ρ(x, Y), dany wzorem:, gdzie E( Z ) jest wartością oczekiwaną Z E X σ σ Współczynnik ρ określający stopień zależności pomiędzy dwiema badanymi zmiennymi ma następujące własności: przyjmuje wartości od 1 do +1 jeżeli zmienne są niezależne, to ρ = 0 jeżeli istnieje zależność liniowa między zmiennymi, to ρ = 1 lub ρ = -1 znak współczynnika mówi o kierunku związku: + oznacza związek dodatni, tj. wzrost (spadek) jednej cechy powoduje wzrost (spadek) wartości drugiej (związek wprost proporcjonalny). - oznacza kierunek dodatni, tj. wzrost (spadek) wartości jednej cechy powoduje spadek (wzrost) wartości drugiej (związek odwrotnie proporcjonalny). Przyjmuje się następujące oceny siły związku na podstawie wartości ρ: ρ siła związku korelacyjnego brak słaba średnia silna bardzo silna Czasem w badaniach mamy do czynienia z cechami niemierzalnymi, które jednak można ustawić w szereg uporządkowany. W takim przypadku do badania zależności można wykorzystywać współczynnik korelacji rangowej Spearmana r s. Rangowanie jest

2 ponumerowaniem od 1 do n ciągu n-elementowego ustawionego w kolejności rosnącej. Współczynnik ten ma następujące własności: wartość współczynnika korelacji rangowej należy do przedziału [-1, 1], jeżeli r s = 1 występuje idealna zgodność rang obu zmiennych, jeżeli r s = -1 występuje idealna niezgodność rang, jeżeli r s jest bliskie zeru brak jest zależności między zmiennymi. Dla zbioru danych liczących więcej niż dwie zmienne można obliczyć współczynniki korelacji cząstkowej. Współczynniki te mierzą stopień zależności między dwiema zmiennymi uwzględniając i eliminując efekty liniowego związku między zmiennymi w zbiorze danych. Testowanie niezależności na podstawie współczynnika korelacji 1. Współczynnik korelacji Pearsona Rozpatrujemy hipotezę o braku skorelowania między dwiema cechami X i Y, czyli hipotezę: H 0 : ρ = 0 Hipotezę tę można testować wobec jednej z hipotez alternatywnych: H 1 : ρ 0 H : ρ < 0 H 3 : ρ > 0 Do weryfikacji hipotezy H 0 wykorzystuje się statystykę testującą R t = n R gdzie R jest współczynnikiem korelacji Persona obliczonym na podstawie wartości próbkowych. Zbiory krytyczne tej statystyki są odpowiednio postaci: W 1 =, t W W 3 = = [ n ] (, t ] [ n ] [ t, + ) t [ n ] [ n ], + UWAGA: Jeżeli rozkład (X, Y) jest dwuwymiarowym rozkładem normalnym, to hipoteza H 0 jest równoważna hipotezie o niezależności cech X i Y. Wówczas hipotezą alternatywną jest hipoteza o zależności cech (hipoteza H 1 )

3 . Współczynnik korelacji Spearmana Jeżeli badana próbka nie pochodzi z populacji o dwuwymiarowym rozkładzie normalnym, wówczas do zbadania niezależności cech X i Y wykorzystuje się współczynnik korelacji rangowej Spearmana. Weryfikujemy hipotezę H : cechy X i Y są niezależne wobec hipotezy alternatywnej K : cechy X i Y są zależne a) Jeżeli liczność próbki n 30 to statystyką testującą testu jest r s czyli obliczony na podstawie elementów próby współczynnik korelacji rangowej, natomiast zbiorem krytycznym jest zbiór W =, u u, + n 1 n 1 b) Dla próbek o liczności 8 < n < 30 statystykę testową oblicza się za pomocą rs n wzoru t = r Dla tej statystyki zbiorem krytycznym jest zbiór W =, t s t [ n ] [ n ], + 3. Tablice wielodzielcze W przypadku dużych prób można pogrupować dane i przedstawić je w postaci tablicy wielodzielczej (inaczej zwanej tablicą korelacyjną). Rozpatrujemy dwuwymiarową n-elementową próbkę (X, Y). Załóżmy, że cecha X przyjmuje k wartości x 1, x.x k natomiast cecha Y przyjmuje l wartości y 1, y y l. Tablica korelacyjna zawiera liczności n ij odpowiadające liczbie par (x i, y j ) dla i = 1,.k oraz j = 1, l. Hipotezę o niezależności cech X i Y weryfikuje się za pomocą wartości poziomu krytycznego p-value testu niezależności χ, który jest dostępny w programie Statgraphic następująco: Describe / Categorial Data / Contingency Tables W przypadku odrzucenia hipotezy o niezależności można oceniać stopień zależności cech za pomocą współczynnika zbieżności Cramera V. Współczynnik ten przyjmuje wartości z przedziału [0, 1], przy czym dla cech niezależnych V = 0, dla cech funkcyjnie zależnych V = 1.

4 Dwuwymiarowy rozkład normalny Jednym z ważniejszych rozkładów dwuwymiarowych ciągłych jest dwuwymiarowy rozkład normalny NN(µ 1, µ, σ 1, σ, ρ). Rozkłady brzegowe tego rozkładu są rozkładami jednowymiarowymi: X ma rozkład N(µ 1, σ 1 ), Y ma rozkład N(µ, σ ), ρ jest współczynnikiem korelacji zmiennych X i Y. Do generowania próbek z dwuwymiarowego rozkładu normalnego korzystamy ze wzorów: 1 gdzie U i V są niezależnymi zmiennymi losowymi o rozkładzie N(0, 1). Testowanie normalności rozkładu za pomocą współczynnika korelacji liniowej Pearsona. Współczynnik korelacji Pearsona ma także zastosowanie do weryfikacji hipotezy o normalności rozkładu badanej cechy. Test oparty na współczynniku Pearsona daje bardzo dobre wyniki na tle innych testów normalności. Dana jest próba X = (x 1, x, x n ). Weryfikujemy hipotezę H: próba pochodzi z populacji o rozkładzie normalnym N(µ, σ) wobec hipotezy alternatywnej mówiącej, że próba nie ma rozkładu normalnego. Statystyką testową tego testu jest współczynnik korelacji Pearsona między próbami X i Y, gdzie X jest uporządkowaną niemalejąco próbą wyjściową, natomiast Y = (y 1, y, y n ) jest próbą pomocniczą wyznaczoną według wzoru:, gdzie u p(i) jest kwantylem rzędu p(i) rozkładu normalnego o średniej 0 i odchyleniu standardowym 1 dla i = 1,, 3,... n. Jeżeli hipoteza o normalności rozkładu jest prawdziwa, to współczynnik korelacji R(X, Y) jest bliski wartości 1. Zbiór krytyczny tego testu jest postaci: W = (0; R,n ] gdzie R,n jest wartością krytyczną statystyki R. Wybrane wartości krytyczne podaje tabelka obok: n 0,1 0,05 0,01 5 0,903 0,88 0, ,935 0,918 0, ,951 0,938 0, ,961 0,951 0,99 5 0,966 0,958 0, ,971 0,964 0, ,981 0,977 0, ,989 0,987 0,98

5 Procedury programu Statgraphics W celu obliczenia współczynników korelacji dla dwóch zmiennych korzystamy z narzędzia Describe / Numeric Data / Multiple-Variable Analysis a następnie spośród opcji tekstowych wyświetlonego okna wybieramy Correlations dla wyznaczenia współczynnika korelacji liniowej Pearsona lub Rank Correlations dla wyznaczenia współczynnika korelacji rangowej Spearmana. W oknie wyświetlają się następujące wielkości: wartość współczynnika korelacji, liczność badanej próbki i poziom krytyczny p-value. Jeżeli badane cechy mają dwuwymiarowy rozkład normalny, to wówczas do zweryfikowania hipotezy o niezależności tych cech możemy skorzystać z poziomu krytycznego. Aby zbadać zależność danych przedstawionych w postaci tablicy wielodzielczej korzystamy z polecenia Describe / Categorial Data / Contingency Tables W oknie Chi-Square Tests znajdują się wyniki testu niezależności chi-kwadrat. Weryfikujemy hipotezę o niezależności cech na podstawie wartości poziomu krytycznego p-value. Weryfikacja hipotezy o normalności rozkładu badanej cechy za pomocą współczynnika Pearsona polega na zbadaniu korelacji tej cechy ze zmienną o rozkładzie normalnym. Dokonuje się tego w następujących krokach: 1. posortowanie badanej próby (z menu podręcznego kolumny wybieramy opcję Sort File, następnie wskazujemy opcję Selected Range Only),. wygenerowanie w nowej kolumnie próby pomocniczej o rozkładzie normalnym złożonej z uporządkowanych rosnąco n kwantyli rozkładu normalnego o średniej 0 i odchyleniu standardowym 1, według wzoru: INVNORMAL((COUNT(1;n;1)-3/8)/(n+1/4);0;1) gdzie n jest licznością próby, a funkcja COUNT(1;n;1) generuje ciąg n kolejnych liczb od 1 z krokiem 1, 3. obliczenie współczynnika korelacji Pearsona dla uzyskanych w ten sposób dwóch zmiennych, 4. skonstruowanie obszaru krytycznego na podstawie podanej tablicy wartości krytycznych testu, 5. stwierdzenie, czy współczynnik korelacji zawiera się, czy nie w obszarze krytycznym.

6 ZADANIA Zadanie 1 Wygenerować 00 elementową próbę z rozkładu dwuwymiarowego normalnego z parametrami NN(0; 1; ; 1; 0.6). Następnie dla uzyskanych zmiennych oszacować współczynnik korelacji Pearsona oraz zweryfikować hipotezę o niezależności rozważanych zmiennych. Zadanie Grupę złożona z 11 studentów poddano ocenie dwóch profesorów pod względem ich zdolności. W tabeli podano oceny względne (od oceny najwyższej 1 do oceny najniższej 11) Student A B C D E F G H I J K Ocena prof. X Ocena prof. Y Czy można twierdzić, że oceny obu profesorów są zbieżne? Zweryfikować odpowiednią hipotezę statystyczną. Przyjąć = 0,05. Zadanie 3 Na wylosowanej grupie 10 uczniów przeprowadzono testy oceniające stopień zręczności oraz agresywności, uzyskując wyniki (liczby punktów): Uczeń Zręczność Agresja Ocenić stopień zależności badanych cech. Zweryfikować hipotezę o ich niezależności na poziomie istotności 0,05. Zadanie 4 Używając testu normalności opartego na współczynniku korelacji Pearsona zweryfikować hipotezę o normalności dla zmiennej accel ze zbioru CARDATA. Zadanie 5 W pewnym przedsiębiorstwie analizowano wpływ pracy zmianowej na jakość produkcji, dokonując w pewnym okresie czasu pomiarów liczby braków (cecha X) występujących na różnych zmianach (cecha Y - numer zmiany). Uzyskano wyniki:

7 X / Y Zweryfikować hipotezę o niezależności liczby braków od zmiany ( = 0,03). Określić miarę zależności dla cech X i Y. Zasanie 6 W celu zbadania prawdziwości przypuszczenia, że częste infekcje górnych dróg oddechowych zależą od liczby wypalanych dziennie papierosów, przeprowadzono w pewnym mieście badania wybranych losowo 57 osób, uzyskując wyniki: Liczba wypalanych papierosów i więcej Zachorowalność Nie choruje Choruje rzadko Choruje często Na podstawie tych danych sprawdzić prawdziwość powyższego przypuszczenia, stosując test Niezależności χ na poziomie istotności 0,05.

ZJAZD 4. gdzie E(x) jest wartością oczekiwaną x

ZJAZD 4. gdzie E(x) jest wartością oczekiwaną x ZJAZD 4 KORELACJA, BADANIE NIEZALEŻNOŚCI, ANALIZA REGRESJI Analiza korelacji i regresji jest działem statystyki zajmującym się badaniem zależności i związków pomiędzy rozkładami dwu lub więcej badanych

Bardziej szczegółowo

Korelacja krzywoliniowa i współzależność cech niemierzalnych

Korelacja krzywoliniowa i współzależność cech niemierzalnych Korelacja krzywoliniowa i współzależność cech niemierzalnych Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki Szczecińskiej

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

Weryfikacja hipotez statystycznych za pomocą testów statystycznych

Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej

Bardziej szczegółowo

Wykład 12 Testowanie hipotez dla współczynnika korelacji

Wykład 12 Testowanie hipotez dla współczynnika korelacji Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 23 maja 2018 Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem

Bardziej szczegółowo

Wykład 12 Testowanie hipotez dla współczynnika korelacji

Wykład 12 Testowanie hipotez dla współczynnika korelacji Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 24 maja 2017 Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem

Bardziej szczegółowo

Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych

Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych Statystyka matematyczna. Wykład IV. e-mail:e.kozlovski@pollub.pl Spis treści 1 2 3 Definicja 1 Hipoteza statystyczna jest to przypuszczenie dotyczące rozkładu (wielkości parametru lub rodzaju) zmiennej

Bardziej szczegółowo

LABORATORIUM 9 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

LABORATORIUM 9 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI LABORATORIUM 9 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI 1. Test dla dwóch średnich P.G. 2. Testy dla wskaźnika struktury 3. Testy dla wariancji DECYZJE Obszar krytyczny od pozostałej

Bardziej szczegółowo

Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności. Łączny rozkład cech X, Y jest normalny: Test współczynnika korelacji Pearsona

Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności. Łączny rozkład cech X, Y jest normalny: Test współczynnika korelacji Pearsona Badanie zależności między cechami Obserwujemy dwie cechy: X oraz Y Obiekt (X, Y ) H 0 : Cechy X oraz Y są niezależne Próba: (X 1, Y 1 ),..., (X n, Y n ) Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności

Bardziej szczegółowo

Wykład 3 Hipotezy statystyczne

Wykład 3 Hipotezy statystyczne Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

ĆWICZENIE 1 Statystyka opisowa. Testowanie zgodności STATYSTYKA OPISOWA wstępna analiza danych I. Miary położenia: Mediana Moda

ĆWICZENIE 1 Statystyka opisowa. Testowanie zgodności STATYSTYKA OPISOWA wstępna analiza danych I. Miary położenia: Mediana Moda ĆWICZENIE 1 Statystyka opisowa. Testowanie zgodności Przedmiotem statystyki jest zbieranie, prezentacja oraz analiza danych opisujących zjawiska losowe. Badaniu statystycznemu podlega próbka losowa pobrana

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Agenda Instytut Matematyki Politechniki Łódzkiej 2 stycznia 2012 Agenda Agenda 1 Wprowadzenie Agenda 2 Hipoteza oraz błędy I i II rodzaju Hipoteza alternatywna Statystyka testowa Zbiór krytyczny Poziom

Bardziej szczegółowo

ĆWICZENIE 11 NIEPARAMETRYCZNE TESTY ISTOTNOŚCI

ĆWICZENIE 11 NIEPARAMETRYCZNE TESTY ISTOTNOŚCI ĆWICZENIE 11 NIEPARAMETRYCZNE TESTY ISTOTNOŚCI ANALIZA KORELACJI Korelacja 1. Współczynnik korelacji 2. Współczynnik korelacji liniowej definicja 3. Estymacja współczynnika korelacji 4. Testy istotności

Bardziej szczegółowo

ĆWICZENIE 11 ANALIZA KORELACJI I REGRESJI

ĆWICZENIE 11 ANALIZA KORELACJI I REGRESJI ĆWICZENIE 11 ANALIZA KORELACJI I REGRESJI Korelacja 1. Współczynnik korelacji 2. Współczynnik korelacji liniowej definicja 3. Estymacja współczynnika korelacji 4. Testy istotności współczynnika korelacji

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności. Dr Anna ADRIAN Paw B5, pok407

Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności. Dr Anna ADRIAN Paw B5, pok407 Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Weryfikacja hipotez dotyczących postaci nieznanego rozkładu -Testy zgodności.

Bardziej szczegółowo

Analiza współzależności zjawisk

Analiza współzależności zjawisk Analiza współzależności zjawisk Informacje ogólne Jednostki tworzące zbiorowość statystyczną charakteryzowane są zazwyczaj za pomocą wielu cech zmiennych, które nierzadko pozostają ze sobą w pewnym związku.

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje

Bardziej szczegółowo

STATYSTYKA OPISOWA. Dr Alina Gleska. 12 listopada Instytut Matematyki WE PP

STATYSTYKA OPISOWA. Dr Alina Gleska. 12 listopada Instytut Matematyki WE PP STATYSTYKA OPISOWA Dr Alina Gleska Instytut Matematyki WE PP 12 listopada 2017 1 Analiza współzależności dwóch cech 2 Jednostka zbiorowości - para (X,Y ). Przy badaniu korelacji nie ma znaczenia, która

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych

Bardziej szczegółowo

Zadanie 1 Odp. Zadanie 2 Odp. Zadanie 3 Odp. Zadanie 4 Odp. Zadanie 5 Odp.

Zadanie 1 Odp. Zadanie 2 Odp. Zadanie 3 Odp. Zadanie 4 Odp. Zadanie 5 Odp. Zadanie 1 budżet na najbliższe święta. Podać 96% przedział ufności dla średniej przewidywanego budżetu świątecznego jeśli otrzymano średnią z próby równą 600 zł, odchylenie standardowe z próby równe 30

Bardziej szczegółowo

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie

Bardziej szczegółowo

Uwaga. Decyzje brzmią różnie! Testy parametryczne dotyczące nieznanej wartości

Uwaga. Decyzje brzmią różnie! Testy parametryczne dotyczące nieznanej wartości TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu, z którego pochodzi próbka. Hipotezy dzielimy na parametryczne i nieparametryczne. Parametrycznymi

Bardziej szczegółowo

Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału

Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału Magdalena Frąszczak Wrocław, 22.02.2017r Zasady oceniania Ćwiczenia 2 kolokwia (20 punktów każde) 05.04.2017 oraz 31.05.2017 2 kartkówki

Bardziej szczegółowo

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

Testowanie hipotez statystycznych. Wnioskowanie statystyczne Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy

Bardziej szczegółowo

X WYKŁAD STATYSTYKA. 14/05/2014 B8 sala 0.10B Godz. 15:15

X WYKŁAD STATYSTYKA. 14/05/2014 B8 sala 0.10B Godz. 15:15 X WYKŁAD STATYSTYKA 14/05/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 10 ANALIZA KORELACJI Korelacja 1. Współczynnik korelacji 2. Kowariancja 3. Współczynnik korelacji liniowej definicja 4. Estymacja współczynnika

Bardziej szczegółowo

Estymacja parametrów rozkładu cechy

Estymacja parametrów rozkładu cechy Estymacja parametrów rozkładu cechy Estymujemy parametr θ rozkładu cechy X Próba: X 1, X 2,..., X n Estymator punktowy jest funkcją próby ˆθ = ˆθX 1, X 2,..., X n przybliżającą wartość parametru θ Przedział

Bardziej szczegółowo

Wykład 9 Testy rangowe w problemie dwóch prób

Wykład 9 Testy rangowe w problemie dwóch prób Wykład 9 Testy rangowe w problemie dwóch prób Wrocław, 18 kwietnia 2018 Test rangowy Testem rangowym nazywamy test, w którym statystyka testowa jest konstruowana w oparciu o rangi współrzędnych wektora

Bardziej szczegółowo

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 4 Wrocław, 17 października 2011 Temat. Weryfikacja hipotez statystycznych dotyczących wartości oczekiwanej w dwóch populacjach o rozkładach normalnych. Model 3. Porównanie średnich

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona;

Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona; LABORATORIUM 4 Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona; dwie zmienne zależne mierzalne małe próby duże próby rozkład normalny

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr 4 Temat: Analiza korelacji i regresji dwóch zmiennych

Bardziej szczegółowo

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,

Bardziej szczegółowo

STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE

STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss

Bardziej szczegółowo

Elementarne metody statystyczne 9

Elementarne metody statystyczne 9 Elementarne metody statystyczne 9 Wybrane testy nieparametryczne - ciąg dalszy Test McNemary W teście takim dysponujemy próbami losowymi z dwóch populacji zależnych pewnej cechy X. Wyniki poszczególnych

Bardziej szczegółowo

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych

Bardziej szczegółowo

Wydział Matematyki. Testy zgodności. Wykład 03

Wydział Matematyki. Testy zgodności. Wykład 03 Wydział Matematyki Testy zgodności Wykład 03 Testy zgodności W testach zgodności badamy postać rozkładu teoretycznego zmiennej losowej skokowej lub ciągłej. Weryfikują one stawiane przez badaczy hipotezy

Bardziej szczegółowo

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...

Bardziej szczegółowo

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15 VI WYKŁAD STATYSTYKA 9/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 6 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności, zasady

Bardziej szczegółowo

X Y 4,0 3,3 8,0 6,8 12,0 11,0 16,0 15,2 20,0 18,9

X Y 4,0 3,3 8,0 6,8 12,0 11,0 16,0 15,2 20,0 18,9 Zadanie W celu sprawdzenia, czy pipeta jest obarczona błędem systematycznym stałym lub zmiennym wykonano szereg pomiarów przy różnych ustawieniach pipety. Wyznacz równanie regresji liniowej, które pozwoli

Bardziej szczegółowo

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4. Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ

Bardziej szczegółowo

Testy nieparametryczne

Testy nieparametryczne Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów

Bardziej szczegółowo

Badanie zgodności dwóch rozkładów - test serii, test mediany, test Wilcoxona, test Kruskala-Wallisa

Badanie zgodności dwóch rozkładów - test serii, test mediany, test Wilcoxona, test Kruskala-Wallisa Badanie zgodności dwóch rozkładów - test serii, test mediany, test Wilcoxona, test Kruskala-Wallisa Test serii (test Walda-Wolfowitza) Założenie. Rozpatrywane rozkłady są ciągłe. Mamy dwa uporządkowane

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

Statystyka. Wykład 8. Magdalena Alama-Bućko. 23 kwietnia Magdalena Alama-Bućko Statystyka 23 kwietnia / 38

Statystyka. Wykład 8. Magdalena Alama-Bućko. 23 kwietnia Magdalena Alama-Bućko Statystyka 23 kwietnia / 38 Statystyka Wykład 8 Magdalena Alama-Bućko 23 kwietnia 2017 Magdalena Alama-Bućko Statystyka 23 kwietnia 2017 1 / 38 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia

Bardziej szczegółowo

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0 Testowanie hipotez Każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy nazywamy hipotezą statystyczną. Hipoteza określająca jedynie wartości nieznanych parametrów liczbowych badanej cechy

Bardziej szczegółowo

Badanie zgodności z określonym rozkładem. F jest dowolnym rozkładem prawdopodobieństwa. Test chi kwadrat zgodności. F jest rozkładem ciągłym

Badanie zgodności z określonym rozkładem. F jest dowolnym rozkładem prawdopodobieństwa. Test chi kwadrat zgodności. F jest rozkładem ciągłym Badanie zgodności z określonym rozkładem H 0 : Cecha X ma rozkład F F jest dowolnym rozkładem prawdopodobieństwa Test chi kwadrat zgodności F jest rozkładem ciągłym Test Kołmogorowa F jest rozkładem normalnym

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 5 Analiza współzależności ZADANIE DOMOWE. Strona 1

KURS STATYSTYKA. Lekcja 5 Analiza współzależności ZADANIE DOMOWE.  Strona 1 KURS STATYSTYKA Lekcja 5 Analiza współzależności ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 W analizie współzależności a) badamy

Bardziej szczegółowo

Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28

Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28 Statystyka #5 Testowanie hipotez statystycznych Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik rok akademicki 2016/2017 1 / 28 Testowanie hipotez statystycznych 2 / 28 Testowanie hipotez statystycznych

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 9 Wrocław, 5 grudnia 2011 Temat. Test zgodności χ 2 Pearsona. Statystyka χ 2 Pearsona Rozpatrzmy ciąg niezależnych zmiennych losowych X 1,..., X n o jednakowym dyskretnym rozkładzie

Bardziej szczegółowo

Statystyka matematyczna. Wykład VI. Zesty zgodności

Statystyka matematyczna. Wykład VI. Zesty zgodności Statystyka matematyczna. Wykład VI. e-mail:e.kozlovski@pollub.pl Spis treści 1 Testy zgodności 2 Test Shapiro-Wilka Test Kołmogorowa - Smirnowa Test Lillieforsa Test Jarque-Bera Testy zgodności Niech x

Bardziej szczegółowo

Gdy n jest duże, statystyka ta (zwana statystyką chikwadrat), przy założeniu prawdziwości hipotezy H 0, ma w przybliżeniu rozkład χ 2 (k 1).

Gdy n jest duże, statystyka ta (zwana statystyką chikwadrat), przy założeniu prawdziwości hipotezy H 0, ma w przybliżeniu rozkład χ 2 (k 1). PRZYKŁADY TESTÓW NIEPARAMETRYCZNYCH. Test zgodności χ 2. Ten test służy testowaniu hipotezy, czy rozważana zmienna ma pewien ustalony rozkład, czy też jej rozkład różni się od tego ustalonego. Tym testem

Bardziej szczegółowo

Idea. θ = θ 0, Hipoteza statystyczna Obszary krytyczne Błąd pierwszego i drugiego rodzaju p-wartość

Idea. θ = θ 0, Hipoteza statystyczna Obszary krytyczne Błąd pierwszego i drugiego rodzaju p-wartość Idea Niech θ oznacza parametr modelu statystycznego. Dotychczasowe rozważania dotyczyły metod estymacji tego parametru. Teraz zamiast szacować nieznaną wartość parametru będziemy weryfikowali hipotezę

Bardziej szczegółowo

... i statystyka testowa przyjmuje wartość..., zatem ODRZUCAMY /NIE MA POD- STAW DO ODRZUCENIA HIPOTEZY H 0 (właściwe podkreślić).

... i statystyka testowa przyjmuje wartość..., zatem ODRZUCAMY /NIE MA POD- STAW DO ODRZUCENIA HIPOTEZY H 0 (właściwe podkreślić). Egzamin ze Statystyki Matematycznej, WNE UW, wrzesień 016, zestaw B Odpowiedzi i szkice rozwiązań 1. Zbadano koszt 7 noclegów dla 4-osobowej rodziny (kwatery) nad morzem w sezonie letnim 014 i 015. Wylosowano

Bardziej szczegółowo

Statystyka matematyczna. Wykład V. Parametryczne testy istotności

Statystyka matematyczna. Wykład V. Parametryczne testy istotności Statystyka matematyczna. Wykład V. e-mail:e.kozlovski@pollub.pl Spis treści 1 Weryfikacja hipotezy o równości wartości średnich w dwóch populacjach 2 3 Weryfikacja hipotezy o równości wartości średnich

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

Dane dotyczące wartości zmiennej (cechy) wprowadzamy w jednej kolumnie. W przypadku większej liczby zmiennych wprowadzamy każdą w oddzielnej kolumnie.

Dane dotyczące wartości zmiennej (cechy) wprowadzamy w jednej kolumnie. W przypadku większej liczby zmiennych wprowadzamy każdą w oddzielnej kolumnie. STATISTICA INSTRUKCJA - 1 I. Wprowadzanie danych Podstawowe / Nowy / Arkusz Dane dotyczące wartości zmiennej (cechy) wprowadzamy w jednej kolumnie. W przypadku większej liczby zmiennych wprowadzamy każdą

Bardziej szczegółowo

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych.

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Hipotezy i Testy statystyczne Każde

Bardziej szczegółowo

Testowanie hipotez statystycznych cd.

Testowanie hipotez statystycznych cd. Temat Testowanie hipotez statystycznych cd. Kody znaków: żółte wyróżnienie nowe pojęcie pomarańczowy uwaga kursywa komentarz 1 Zagadnienia omawiane na zajęciach 1. Przykłady testowania hipotez dotyczących:

Bardziej szczegółowo

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zad. 1 Średnia ocen z semestru letniego w populacji studentów socjologii w roku akademickim 2011/2012

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 6 Wrocław, 7 listopada 2011 Temat. Weryfikacja hipotez statystycznych dotyczących proporcji. Test dla proporcji. Niech X 1,..., X n będzie próbą statystyczną z 0-1. Oznaczmy odpowiednio

Bardziej szczegółowo

Korelacja oznacza współwystępowanie, nie oznacza związku przyczynowo-skutkowego

Korelacja oznacza współwystępowanie, nie oznacza związku przyczynowo-skutkowego Korelacja oznacza współwystępowanie, nie oznacza związku przyczynowo-skutkowego Współczynnik korelacji opisuje siłę i kierunek związku. Jest miarą symetryczną. Im wyższa korelacja tym lepiej potrafimy

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI Test zgodności i analiza wariancji Analiza wariancji Test zgodności Chi-kwadrat Sprawdza się za jego pomocą ZGODNOŚĆ ROZKŁADU EMPIRYCZNEGO Z PRÓBY Z ROZKŁADEM HIPOTETYCZNYM

Bardziej szczegółowo

Statystyka i opracowanie danych - W 4: Wnioskowanie statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407

Statystyka i opracowanie danych - W 4: Wnioskowanie statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407 Statystyka i opracowanie danych - W 4: Wnioskowanie statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Hipotezy i Testy statystyczne Każde badanie naukowe rozpoczyna

Bardziej szczegółowo

Testy dla dwóch prób w rodzinie rozkładów normalnych

Testy dla dwóch prób w rodzinie rozkładów normalnych Testy dla dwóch prób w rodzinie rozkładów normalnych dr Mariusz Grządziel Wykład 12; 18 maja 2009 Przykład Rozważamy dane wygenerowane losowo; ( podobne do danych z przykładu 7.2 z książki A. Łomnickiego)

Bardziej szczegółowo

Wykład 12 ( ): Testy dla dwóch prób w rodzinie rozkładów normalnych

Wykład 12 ( ): Testy dla dwóch prób w rodzinie rozkładów normalnych Wykład 12 (21.05.07): Testy dla dwóch prób w rodzinie rozkładów normalnych Przykład Rozważamy dane wygenerowane losowo; ( podobne do danych z przykładu 7.2 z książki A. Łomnickiego) n 1 = 9 poletek w dąbrowie,

Bardziej szczegółowo

KORELACJE I REGRESJA LINIOWA

KORELACJE I REGRESJA LINIOWA KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem

Bardziej szczegółowo

WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH

WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH Było: Estymacja parametrów rozkładu teoretycznego punktowa przedziałowa Przykład. Cecha X masa owocu pewnej odmiany. ZałoŜenie: cecha X ma w populacji rozkład

Bardziej szczegółowo

Wnioskowanie statystyczne Weryfikacja hipotez. Statystyka

Wnioskowanie statystyczne Weryfikacja hipotez. Statystyka Wnioskowanie statystyczne Weryfikacja hipotez Statystyka Co nazywamy hipotezą Każde stwierdzenie o parametrach rozkładu lub rozkładzie zmiennej losowej w populacji nazywać będziemy hipotezą statystyczną

Bardziej szczegółowo

Założenia do analizy wariancji. dr Anna Rajfura Kat. Doświadczalnictwa i Bioinformatyki SGGW

Założenia do analizy wariancji. dr Anna Rajfura Kat. Doświadczalnictwa i Bioinformatyki SGGW Założenia do analizy wariancji dr Anna Rajfura Kat. Doświadczalnictwa i Bioinformatyki SGGW anna_rajfura@sggw.pl Zagadnienia 1. Normalność rozkładu cechy Testy: chi-kwadrat zgodności, Shapiro-Wilka, Kołmogorowa-Smirnowa

Bardziej szczegółowo

Wykład 11 Testowanie jednorodności

Wykład 11 Testowanie jednorodności Wykład 11 Testowanie jednorodności Wrocław, 17 maja 2018 Test χ 2 jednorodności Niech X i, i = 1, 2,..., k będą niezależnymi zmiennymi losowymi typu dyskretnego przyjmującymi wartości z 1, z 2,..., z l,

Bardziej szczegółowo

Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej

Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

WERYFIKACJA HIPOTEZ STATYSTYCZNYCH

WERYFIKACJA HIPOTEZ STATYSTYCZNYCH WERYFIKACJA HIPOTEZ STATYSTYCZNYCH I. TESTY PARAMETRYCZNE II. III. WERYFIKACJA HIPOTEZ O WARTOŚCIACH ŚREDNICH DWÓCH POPULACJI TESTY ZGODNOŚCI Rozwiązania zadań wykonywanych w Statistice przedstaw w pliku

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Zmienna losowa dwuwymiarowa i korelacja

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Zmienna losowa dwuwymiarowa i korelacja WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI Zmienna losowa dwuwymiarowa i korelacja Zmienna losowa dwuwymiarowa Definiujemy ją tak samo, jak zmienną losową jednowymiarową, z tym że poszczególnym zdarzeniom elementarnym

Bardziej szczegółowo

VII WYKŁAD STATYSTYKA. 30/04/2014 B8 sala 0.10B Godz. 15:15

VII WYKŁAD STATYSTYKA. 30/04/2014 B8 sala 0.10B Godz. 15:15 VII WYKŁAD STATYSTYKA 30/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 7 (c.d) WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności,

Bardziej szczegółowo

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas:

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas: ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. Można założyć, że przy losowaniu trzech kul jednocześnie kolejność ich wylosowania nie jest istotna. A więc: Ω = 20 3. a) Niech: - wśród trzech wylosowanych opakowań

Bardziej szczegółowo

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne Wnioskowanie statystyczne obejmuje następujące czynności: Sformułowanie hipotezy zerowej i hipotezy alternatywnej.

Bardziej szczegółowo

Analiza współzależności zjawisk. dr Marta Kuc-Czarnecka

Analiza współzależności zjawisk. dr Marta Kuc-Czarnecka Analiza współzależności zjawisk dr Marta Kuc-Czarnecka Wprowadzenie Prawidłowości statystyczne mają swoje przyczyny, w związku z tym dla poznania całokształtu badanego zjawiska potrzebna jest analiza z

Bardziej szczegółowo

Spis treści. Laboratorium III: Testy statystyczne. Inżynieria biomedyczna, I rok, semestr letni 2013/2014 Analiza danych pomiarowych

Spis treści. Laboratorium III: Testy statystyczne. Inżynieria biomedyczna, I rok, semestr letni 2013/2014 Analiza danych pomiarowych 1 Laboratorium III: Testy statystyczne Spis treści Laboratorium III: Testy statystyczne... 1 Wiadomości ogólne... 2 1. Krótkie przypomnienie wiadomości na temat testów statystycznych... 2 1.1. Weryfikacja

Bardziej szczegółowo

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015 Zmienne losowe, statystyki próbkowe Wrocław, 2 marca 2015 Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20 punktów) aktywność Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20

Bardziej szczegółowo

Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( )

Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( ) Statystyka Rozkład prawdopodobieństwa Testowanie hipotez Wykład III (04.01.2016) Rozkład t-studenta Rozkład T jest rozkładem pomocniczym we wnioskowaniu statystycznym; stosuje się go wyznaczenia przedziału

Bardziej szczegółowo

BADANIE POWTARZALNOŚCI PRZYRZĄDU POMIAROWEGO

BADANIE POWTARZALNOŚCI PRZYRZĄDU POMIAROWEGO Zakład Metrologii i Systemów Pomiarowych P o l i t e c h n i k a P o z n ańska ul. Jana Pawła II 24 60-965 POZNAŃ (budynek Centrum Mechatroniki, Biomechaniki i Nanoinżynierii) www.zmisp.mt.put.poznan.pl

Bardziej szczegółowo

12/30/2018. Biostatystyka, 2018/2019 dla Fizyki Medycznej, studia magisterskie. Estymacja Testowanie hipotez

12/30/2018. Biostatystyka, 2018/2019 dla Fizyki Medycznej, studia magisterskie. Estymacja Testowanie hipotez Biostatystyka, 2018/2019 dla Fizyki Medycznej, studia magisterskie Wyznaczanie przedziału 95%CI oznaczającego, że dla 95% prób losowych następujące nierówności są prawdziwe: X t s 0.025 n < μ < X + t s

Bardziej szczegółowo

Spis treści 3 SPIS TREŚCI

Spis treści 3 SPIS TREŚCI Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe

Bardziej szczegółowo

WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ

WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ Dana jest populacja generalna, w której dwuwymiarowa cecha (zmienna losowa) (X, Y ) ma pewien dwuwymiarowy rozk lad. Miara korelacji liniowej dla zmiennych (X, Y

Bardziej szczegółowo

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności.

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności. TEST STATYSTYCZNY Testem statystycznym nazywamy regułę postępowania rozstrzygająca, przy jakich wynikach z próby hipotezę sprawdzaną H 0 należy odrzucić, a przy jakich nie ma podstaw do jej odrzucenia.

Bardziej szczegółowo

Analiza autokorelacji

Analiza autokorelacji Analiza autokorelacji Oblicza się wartości współczynników korelacji między y t oraz y t-i (dla i=1,2,...,k), czyli współczynniki autokorelacji różnych rzędów. Bada się statystyczną istotność tych współczynników.

Bardziej szczegółowo

Wykład 9 Wnioskowanie o średnich

Wykład 9 Wnioskowanie o średnich Wykład 9 Wnioskowanie o średnich Rozkład t (Studenta) Wnioskowanie dla jednej populacji: Test i przedziały ufności dla jednej próby Test i przedziały ufności dla par Porównanie dwóch populacji: Test i

Bardziej szczegółowo

1 Estymacja przedziałowa

1 Estymacja przedziałowa 1 Estymacja przedziałowa 1. PRZEDZIAŁY UFNOŚCI DLA ŚREDNIEJ (a) MODEL I Badana cecha ma rozkład normalny N(µ, σ) o nieznanym parametrze µ i znanym σ. Przedział ufności: [ ( µ x u 1 α ) ( σn ; x + u 1 α

Bardziej szczegółowo

Badanie normalności rozkładu

Badanie normalności rozkładu Temat: Badanie normalności rozkładu. Wyznaczanie przedziałów ufności. Badanie normalności rozkładu Shapiro-Wilka: jest on najbardziej zalecanym testem normalności rozkładu. Jednak wskazane jest, aby liczebność

Bardziej szczegółowo

Jak sprawdzić normalność rozkładu w teście dla prób zależnych?

Jak sprawdzić normalność rozkładu w teście dla prób zależnych? Jak sprawdzić normalność rozkładu w teście dla prób zależnych? W pliku zalezne_10.sta znajdują się dwie zmienne: czasu biegu przed rozpoczęciem cyklu treningowego (zmienna 1) oraz czasu biegu po zakończeniu

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Temat Testowanie hipotez statystycznych Kody znaków: Ŝółte wyróŝnienie nowe pojęcie pomarańczowy uwaga kursywa komentarz 1 Zagadnienia omawiane na zajęciach 1. Idea i pojęcia teorii testowania hipotez

Bardziej szczegółowo

Porównanie dwóch rozkładów normalnych

Porównanie dwóch rozkładów normalnych Porównanie dwóch rozkładów normalnych Założenia: 1. X 1 N(µ 1, σ 2 1), X 2 N(µ 2, σ 2 2) 2. X 1, X 2 są niezależne Ocena µ 1 µ 2 oraz σ 2 1/σ 2 2. Próby: X 11,..., X 1n1 ; X 21,..., X 2n2 X 1, varx 1,

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo