Podstawy fizyczne informatyki kwantowej
|
|
- Daria Antczak
- 9 lat temu
- Przeglądów:
Transkrypt
1 Podstawy fizyczne informatyki kwantowej Arkadiusz Wójs Instytut Fizyki Politechnika Wrocławska Spotkanie rozliczeniowe użytkowników KDM WCSS
2 Plan Prawo Moore a, współczesne (super)komputery Problemy obliczeniowe o wykładniczej złożoności Idea komputera kwantowego Problem utraty informacji kwantowej Wykorzystanie egzotycznych cząstek kwantowych Kwantowy efekt Halla Obliczenia numeryczne (na KDM WCSS)
3 Prawo Moore a Prawo empiryczne - obserwacja (1965), że liczba tranzystorów w układzie scalonym w kolejnych latach rośnie wykładniczo (podwaja się co miesiące). Przez analogię,prawo Moore'a stosuje się też do innych parametrów sprzętu komputerowego (pojemności dysków, wielkości pamięci, itp.) Dla porównania: średnie zużycie energii na osobę: Bangladesz - 200W Polska - 3.3kW USA kW Norwegia kW ludzka praca fizyczna ~ 10W Gordon Earle Moore (1929-) współzałożyciel Intela
4 Współczesne procesory Miniaturyzacja: wymiar tranzystora 180nm szerokość ścieżki 32nm (=59 atomów krzemu) Złożoność: liczba tranzystorów >500M (>1B) Szybkość: częstość taktowania min. 3GHz (liczba operacji/sekundę = , czas 1 operacji = s = 0.3 ns = 10 cm świetlnych) Równoległość: kilka rdzeni/wątków (obecnie - 6/12; wkrótce: 22nm Knight s Corner - 50) Intel Core i7-3960x (15M Cache, 3.30 GHz) data wprowadzenia: IV kwartał 2011 Moc 130W; rozmiar ~15mm problem chłodzenia
5 Lista top-500 (superkomputery) Kei Tianhe Jaguar Nebulae Tsubame Japonia Chiny USA Chiny Japonia R max (Pflop) Pamięć (TB) Liczba rdzeni Moc (kw)
6 Problem o dużej złożoności: Rozkład liczby całkowitej na dzielniki pierwsze Mnożenie pary liczb: log p d p 2 2 n pq wymaga liczby operacji o log p log q 2 2 = długość (liczba cyfr) p w przedstawieniu dwójkowym; o d p d q Znalezienie dzielników wymaga nadwielomianowej liczby operacji: o n rośnie szybciej niż jakakolwiek potęga Liczba operacji dla najlepszego znanego algorytmu (sito ciała liczbowego): 2 3 o e d ln d log n Algorytm kwantowy Shora (1994) o n ~ d (Są też inne problemy/algorytmy kwantowe) 3 Peter Williston Shor (1959-)
7 Inne problemy o dużej złożoności Faktoryzacja liczb pierwszych jest istotna dla kryptografii. Inne klasycznie nierozwiązywalne problemy: Symulacje układów kwantowych ogólna inżynieria materiałów złożone cząsteczki (leki) dynamika białek życie świadomość Problem fizyki klasycznej jest efektywnie nierozwiązywalny jeśli czas obliczeń jest rzędu czasu trwania zjawiska: o ~ t (zamiast, np.: o ~ log t) np. chaos
8 Mechanika kwantowa Dwa istotne nieintuicyjne elementy rzeczywistości Superpozycja 0 1 hybrydyzacja sp3 Splątanie Dwie cząstki, każda w stanie* 0 lub 1 Np. w takim stanach wyniki są losowe i skorelowane: różne momenty pędu (0 lub ℏ 10-34Js) Louis V. P. R. de Broglie ( ) John Stewart Bell ( )
9 Informacja kwantowa qubit bit (binary digit) podstawowa jednostka informacji (klasycznej) qubit (quantum bit) jednostka informacji kwantowej i cos 0 e sin dowolna superpozycja pary klasycznych stanów logicznych (umownie: 0 i 1) sfera Blocha Felix Bloch ( ) szwajcarski fizyk
10 Obliczenia kwantowe Informacja wejściowa (dane) superpozycja stanów 0 i Obliczenie proces fizyczny, przebiegający inaczej dla 0 i 1 (ewolucja układu w czasie opisywana prawami mechaniki kwantowej) 0 F 0, 1 F 1 Wynik superpozycja (nie średnia!) wyników dla danych 0 i 1 F 0 F 1 Obliczenie równolegle na obu bitach (0 i 1) Dla liczby K-bitowej zrównoleglenie wykładnicze (2 K )
11 David P. DiVincenzo (1959-) Problemy, przeszkody 1. Odczytanie wyniku = pomiar (probabilistyczny) dla niektórych zagadnień konieczność powtarzania obliczenia 2. Nietrwałość informacji kwantowej dekoherencja - spontaniczna utrata informacji przez nieuniknione oddziaływanie z otoczeniem 3. Fizyczna implementacja qubitu fotony, elektrony, jądra atomowe, atomy, kropki kwantowe, 4. Konstrukcja uniwersalnego zestawu bramek logicznych np.: Hadamard + R + CNOT
12 Cząstki o ułamkowej nieprzemiennej statystyce K. von Klitzing R. B. Laughlin H. L. Störmer D. C. Tsui Nobel 1985 Nobel 1998 ciecz Elektrony w dwóch wymiarach w silnym polu magnetycznym B Przy odpowiedniej kombinacji natężenia pola B i koncentracji elektronowej (liczba/powierzchnia) gaz elektronów kondensuje do nowego stanu skupienia cieczy elektronowej
13 Cząstki o ułamkowej nieprzemiennej statystyce kwantowej elektron (ładunek = e) kwazicząstki (ładunek = e/3) Elektron dodany do cieczy elektronowej rozpada się na kilka ułamkowo naładowanych kwazicząstek (elektrony rozsuwają w cieczy się wzajemnie pozostawiając trzy zgrubienia obdarzone m.in. ładunkiem elektrycznym i poruszające się niezależnie od siebie)
14 czas Cząstki o ułamkowej nieprzemiennej statystyce kwantowej Zamiana w lewo 2 wymiary (płaszczyzna) Zamiana w prawo Linie świata cząstek w 2+1 wymiarach tworzą warkocze
15 Cząstki o ułamkowej nieprzemiennej statystyce kwantowej Konwencjonalne cząstki kwantowe (np. elektrony): zamiana pary cząstek miejscami stan nieodróżnialny od wyjściowego stan kwantowy (wektor) co najwyżej zmienia znak: fermiony (-1; elektrony, kwarki) lub bozony (+1; fotony) Kwazicząstki cieczy elektronowej: zamiana pary miejscami zmiana wektora stanu o e i (statystyka ułamkowa), lub zmiana wektora stanu na całkiem inny (jeśli cząstki mają pamięć statystyka nieprzemienna) Qubit w postaci określonego nawinięcia kwazicząstek (historii) a nie ich położeń jest odporny na utratę informacji!
16 Ułamkowy kwantowy efekt Halla (stan =5/2) 5/2 FQHE: 2D gaz elektronowy, silne pole magnet. Kwantowanie efektu Hall w =2+1/2=5/2 Nieściśliwość (stan podstawowy z przerwą) Willet et al. Phys. Rev. Lett Funkcja falowa Pfaffian : gdzie (Pf) 2 det: z z Pf z z exp z 4 Pf i j i j i j i i 1 1 Pf z z A z z i j i i 1 odd Konforemna teoria pola kwazidziury e/4, nieabelowa statystyka 2 n-1 topologiczna degeneracja dla 2n zlokalizowanych kwazidziur wielowymiarowa reprezentacja grupy warkoczowej Topologiczany komputer kwantowy
17 Oddziaływanie konfiguracji (CI) Many-electron Hamiltonian H 1 Model extended 2DEG by N< Haldane spherical geometry 2D symmetry (rotations) radial field B (Dirac monopole LL = shell of l = Q LL degeneracy = 2Q+1 2 e p A V r r i i i j i 2 c i j High magnetic field large cyclotron gap fractional LL occupation =2Q) Single particle states: monopole harmonics Interaction: e 2 /r, chord distance (or model repulsions) CI basis: N-electron determinants c c vac 1 N Hamiltonian (2- or 3-body), sparse H V 2 body ijkl ij ; kl V ij ; kl m C m ij C Lanczos diagonalization E(L) m kl V c i c m j c k c l, m
18 Zagnieżdżony Lanczos Problem: Calculate energy spectrum vs angular momentum, E(L) L on a sphere interpreted as M (angular momentum, for charged excitations) or k (momentum, for neutral excitations) in real/planar geometry 1. For excited states ghosts eliminated by full orthogonalization 2. Lanczos for H started with an L-eigenstate 3. Random initial L-eigenstate obtained from Lanczos for =L + L (in L z =L subspace) 4. Leakage outside of L-subspace by accumulation of errors during consecutive H-iterations avoided by nesting Lanczos for inside Lanczos for H (more efficient than solving for H+ L 2 ) 5. Slow convergence of Lanczos for because of quadratic spectrum, L 2 =L(L+1) untreated
19 Szybkie mnożenie macierz-wektor Problem: Compute H (or ) times vector on the fly (efficiently) Matrix-vector product = dominant cost (time/memory) in Lanczos Storing matrix (despite sparsity) infeasible (and unnecessary) Computing matrix elements on the fly: 1. Generate & store basis: index i configuration s; s(i) = binary, ordered 2. For each row i, generate matrix elements by action of H: i s(i) s = c + c + c c s (or c + c + c + c c c s, for 3-body) 3. Determine columns j from bisection s(j) = s 4. Use partial knowledge of inverse basis i(s) to speed bisection: classify s by q leading bits, i.e.: divide range of s into 2 q segments and store i(s/2 q ) 5. Use binary operations wherever possible
20 Maksymalne wymiary, prędkość Memory: 2 Lanczos vectors = 2 dim 8B (double precision) basis = dim 8B (long integer) inverse basis = 2 q 4B (integer; typically: 2 q ~ dim) Example: N=16, N =42, L z =0, dim= memory=63gb, speed=5.5h/iteration *Dual quad-core Intel Xeon E GHz (8 threads), Q1/2009
21 Publikacje
22
Komputer kwantowy. Arkadiusz Wójs. idea i perspektywy realizacji. Instytut Fizyki Politechnika Wrocławska
Komputer kwantowy idea i perspektywy realizacji Arkadiusz Wójs Instytut Fizyki Politechnika Wrocławska Wykład otwarty Oddziału PTF w Szczecinie 9 stycznia 2012 http://themillerminute.wordpress.com Plan
W5. Komputer kwantowy
W5. Komputer kwantowy Komputer klasyczny: Informacja zapisana w postaci bitów (binary digit) (sygnał jest albo go nie ma) W klasycznych komputerach wartość bitu jest określona przez stan pewnego elementu
Informatyka kwantowa. Zaproszenie do fizyki. Zakład Optyki Nieliniowej. wykład z cyklu. Ryszard Tanaś. mailto:tanas@kielich.amu.edu.
Zakład Optyki Nieliniowej http://zon8.physd.amu.edu.pl 1/35 Informatyka kwantowa wykład z cyklu Zaproszenie do fizyki Ryszard Tanaś Umultowska 85, 61-614 Poznań mailto:tanas@kielich.amu.edu.pl Spis treści
Historia. Zasada Działania
Komputer kwantowy układ fizyczny do opisu którego wymagana jest mechanika kwantowa, zaprojektowany tak, aby wynik ewolucji tego układu reprezentował rozwiązanie określonego problemu obliczeniowego. Historia
Wstęp do algorytmiki kwantowej
Koło naukowe fizyków Migacz, Uniwersytet Wrocławski Komputer kwantowy - co to właściwie jest? Komputer kwantowy Komputer, którego zasada działania nie może zostać wyjaśniona bez użycia formalizmu mechaniki
Informatyka kwantowa. Karol Bartkiewicz
Informatyka kwantowa Karol Bartkiewicz Informacja = Wielkość fizyczna Jednostka informacji: Zasada Landauera: I A =log 2 k B T ln 2 1 P A R. Landauer, Fundamental Physical Limitations of the Computational
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 07 - Podstawy obliczeń kwantowych Jarosław Miszczak IITiS PAN Gliwice 27/10/2016 1 / 29 1 Wprowadzenie Obliczanie Motywacja fizyczna Motywacja kryptograficzna 2 2 /
bity kwantowe zastosowania stanów splątanych
bity kwantowe zastosowania stanów splątanych Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW Bit kwantowy zawiera więcej informacji niż bit klasyczny
Efekt Halla i konforemna teoria pola
Efekt Halla i konforemna teoria pola 19.01.2012 / Seminarium UJ O czym będziemy mówić? Efekt Halla Wstępne informacje Klasycznie i kwantowo Rozwiazanie Laughlina Mini wprowadzenie Laughlin w Dalsza perspektywa
Kwantowe stany splątane. Karol Życzkowski Instytut Fizyki, Uniwersytet Jagielloński 25 kwietnia 2017
B l i ż e j N a u k i Kwantowe stany splątane Karol Życzkowski Instytut Fizyki, Uniwersytet Jagielloński 25 kwietnia 2017 Co to jest fizyka? Kopnij piłkę! Co to jest fizyka? Kopnij piłkę! Kup lody i poczekaj
interpretacje mechaniki kwantowej fotony i splątanie
mechaniki kwantowej fotony i splątanie Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW Twierdzenie o nieklonowaniu Jak sklonować stan kwantowy? klonowanie
bity kwantowe zastosowania stanów splątanych
bity kwantowe zastosowania stanów splątanych Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW Bit jest jednostką informacji tzn. jest "najmniejszą możliwą
2013 02 27 2 1. Jakie warstwy zostały wyhodowane w celu uzyskania 2DEG? (szkic?) 2. Gdzie było domieszkowanie? Dlaczego jako domieszek użyto w próbce atomy krzemu? 3. Jaki kształt miała próbka? 4. W jaki
Informatyka kwantowa
VI Festiwal Nauki i Sztuki na Wydziale Fizyki UAM Informatyka kwantowa Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas 16 października 2003 Spis treści 1 Rozwój komputerów 4 1.1 Początki..................
Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 13
Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 13 Spis treści 19 Algorytmy kwantowe 3 19.1 Bit kwantowy kubit (qubit)........... 3 19. Twierdzenie
dr inż. Andrzej Skorupski Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska
dr inż. Andrzej Skorupski Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska Zasilacz pierwszego polskiego komputera UMC1 produkowanego seryjnie w ELWRO opracowanego w katedrze kierowanej
Budowa komputera. Magistrala. Procesor Pamięć Układy I/O
Budowa komputera Magistrala Procesor Pamięć Układy I/O 1 Procesor to CPU (Central Processing Unit) centralny układ elektroniczny realizujący przetwarzanie informacji Zmiana stanu tranzystorów wewnątrz
Peter W. Shor - Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. 19 listopada 2004 roku
Peter W. Shor - Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. 19 listopada 2004 roku Wstęp czyli (próba) odpowiedzi na pewne pytania (Silna) Teza Church
II.6 Atomy w zewnętrznym polu magnetycznym
II.6 Atomy w zewnętrznym polu magnetycznym 1. Kwantowanie przestrzenne w zewnętrznym polu magnetycznym. Model wektorowy raz jeszcze 2. Zjawisko Zeemana Normalne zjawisko Zeemana i jego wyjaśnienie w modelu
fotony i splątanie Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW
fotony i splątanie Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW wektory pojedyncze fotony paradoks EPR Wielkości wektorowe w fizyce punkt zaczepienia
Budowa komputera. Magistrala. Procesor Pamięć Układy I/O
Budowa komputera Magistrala Procesor Pamięć Układy I/O 1 Procesor to CPU (Central Processing Unit) centralny układ elektroniczny realizujący przetwarzanie informacji Zmiana stanu tranzystorów wewnątrz
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6
Teoria pasmowa ciał stałych
Teoria pasmowa ciał stałych Poziomy elektronowe atomów w cząsteczkach ulegają rozszczepieniu. W kryształach zjawisko to prowadzi do wytworzenia się pasm. Klasyfikacja ciał stałych na podstawie struktury
Sprzęt komputerowy 2. Autor prezentacji: 1 prof. dr hab. Maria Hilczer
Sprzęt komputerowy 2 Autor prezentacji: 1 prof. dr hab. Maria Hilczer Budowa komputera Magistrala Procesor Pamięć Układy I/O 2 Procesor to CPU (Central Processing Unit) centralny układ elektroniczny realizujący
Stara i nowa teoria kwantowa
Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż
IX. MECHANIKA (FIZYKA) KWANTOWA
IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji
Mody sprzężone plazmon-fonon w silnych polach magnetycznych
Mody sprzężone plazmon-fonon w silnych polach magnetycznych Mody sprzężone w półprzewodnikach polarnych + E E pl η = st α = E E pl ξ = p B.B. Varga,, Phys. Rev. 137,, A1896 (1965) A. Mooradian and B. Wright,
Metody rozwiązania równania Schrödingera
Metody rozwiązania równania Schrödingera Równanie Schrödingera jako algebraiczne zagadnienie własne Rozwiązanie analityczne dla skończonej i nieskończonej studni potencjału Problem rozwiązania równania
Sprzęt komputerowy 2. Autor prezentacji: 1 prof. dr hab. Maria Hilczer
Sprzęt komputerowy 2 Autor prezentacji: 1 prof. dr hab. Maria Hilczer Budowa komputera Magistrala Procesor Pamięć Układy I/O 2 Procesor to CPU (Central Processing Unit) centralny układ elektroniczny realizujący
Fizyka dla wszystkich
Fizyka dla wszystkich Wykład popularny dla młodzieży szkół średnich Splątane kubity czyli rzecz o informatyce kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas 21 kwietnia 2004 Spis treści 1
ZASADY ZALICZANIA PRZEDMIOTU:
WYKŁADOWCA: dr hab. inż. Katarzyna ZAKRZEWSKA, prof. AGH KATEDRA ELEKTRONIKI, paw. C-1, p. 317, III p. tel. 617 29 01, tel. kom. 0 601 51 33 35 zak@agh.edu.pl http://home.agh.edu.pl/~zak 2012/2013, zima
Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych
Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Klasyczny przykład pośredniego oddziaływania pola magnetycznego na wzbudzenia fononowe Schemat: pole magnetyczne (siła Lorentza) nośniki (oddziaływanie
Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych
Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Mody sprzęŝone w półprzewodnikach polarnych + E E pl η = st α = E E pl ξ = p B.B. Varga, Phys. Rev. 137,, A1896 (1965) A. Mooradian and B. Wright,
Informatyka Kwantowa Sekcja Informatyki Kwantowej prezentacja
Informatyka Kwantowa Sekcja Informatyki Kwantowej prezentacja Robert Nowotniak Wydział FTIMS, Politechnika Łódzka XV konferencja SIS, 26 października 2007 Streszczenie Informatyka kwantowa jest dziedziną
FALOWA I KWANTOWA HASŁO :. 1 F O T O N 2 Ś W I A T Ł O 3 E A I N S T E I N 4 D Ł U G O Ś C I 5 E N E R G I A 6 P L A N C K A 7 E L E K T R O N
OPTYKA FALOWA I KWANTOWA 1 F O T O N 2 Ś W I A T Ł O 3 E A I N S T E I N 4 D Ł U G O Ś C I 5 E N E R G I A 6 P L A N C K A 7 E L E K T R O N 8 D Y F R A K C Y J N A 9 K W A N T O W A 10 M I R A Ż 11 P
Podstawy informatyki kwantowej
Wykład 6 27 kwietnia 2016 Podstawy informatyki kwantowej dr hab. Łukasz Cywiński lcyw@ifpan.edu.pl http://info.ifpan.edu.pl/~lcyw/ Wykłady: 6, 13, 20, 27 kwietnia oraz 4 maja (na ostatnim wykładzie będzie
Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics)
Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Koniec XIX / początek XX wieku Lata 90-te XIX w.: odkrycie elektronu (J. J. Thomson, promienie katodowe), promieniowania Roentgena
XIII Poznański Festiwal Nauki i Sztuki. Wydziale Fizyki UAM
XIII Poznański Festiwal Nauki i Sztuki na Wydziale Fizyki UAM XIII Poznański Festival Nauki i Sztuki na Wydziale Fizyki UAM Od informatyki klasycznej do kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas
Atomy w zewnętrznym polu magnetycznym i elektrycznym
Atomy w zewnętrznym polu magnetycznym i elektrycznym 1. Kwantowanie przestrzenne momentów magnetycznych i rezonans spinowy 2. Efekt Zeemana (normalny i anomalny) oraz zjawisko Paschena-Backa 3. Efekt Starka
O ruchu. 10 m. Założenia kinematyki. Najprostsza obserwowana zmiana. Opis w kategoriach przestrzeni i czasu ( geometria fizyki ).
O ruchu Założenia kinematyki Najprostsza obserwowana zmiana. Ignorujemy czynniki sprawcze ruchu, rozmiar, kształt, strukturę ciała (punkt materialny). Opis w kategoriach przestrzeni i czasu ( geometria
III. EFEKT COMPTONA (1923)
III. EFEKT COMPTONA (1923) Zjawisko zmiany długości fali promieniowania roentgenowskiego rozpraszanego na swobodnych elektronach. Zjawisko to stoi u podstaw mechaniki kwantowej. III.1. EFEKT COMPTONA Rys.III.1.
Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu skaroll@fizyka.umk.pl
Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu skaroll@fizyka.umk.pl Plan ogólny Kryształy, półprzewodniki, nanotechnologie, czyli czym będziemy się
Wykłady z Fizyki. Kwanty
Wykłady z Fizyki 10 Kwanty Zbigniew Osiak OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej K komentarz
Tomasz Szumlak WFiIS AGH 03/03/2017, Kraków
Oddziaływanie Promieniowania Jonizującego z Materią Tomasz Szumlak WFiIS AGH 03/03/2017, Kraków Labs Prowadzący Tomasz Szumlak, D11, p. 111 Konsultacje Do uzgodnienia??? szumlak@agh.edu.pl Opis przedmiotu
Plan Zajęć. Ćwiczenia rachunkowe
Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin
na dnie (lub w szczycie) pasma pasmo jest paraboliczne, ale masa wyznaczona z krzywizny niekoniecznie = m 0
Koncepcja masy efektywnej swobodne elektrony k 1 1 E( k) E( k) =, = m m k krzywizna E(k) określa masę cząstek elektrony prawie swobodne - na dnie pasma masa jest dodatnia, ale niekoniecznie = masie swobodnego
Technika cyfrowa Inżynieria dyskretna cz. 2
Sławomir Kulesza Technika cyfrowa Inżynieria dyskretna cz. 2 Wykład dla studentów III roku Informatyki Wersja 5.0, 10/10/2015 Generacje układów scalonych Stopień scalenia Liczba elementów aktywnych Zastosowania
Kwantowe stany splątane w układach wielocząstkowych. Karol Życzkowski (UJ / CFT PAN) 44 Zjazd PTF Wrocław, 12 września 2017
Kwantowe stany splątane w układach wielocząstkowych Karol Życzkowski (UJ / CFT PAN) 44 Zjazd PTF Wrocław, 12 września 2017 Otton Nikodym oraz Stefan Banach rozmawiają na ławce na krakowskich plantach
algorytm przepis rozwiązania przedstawionego zadania komputer urządzenie, za pomocą którego wykonywane są algorytmy
Podstawowe pojęcia związane z informatyką: informatyka dziedzina wiedzy i działalności zajmująca się gromadzeniem, przetwarzaniem i wykorzystywaniem informacji, czyli różnego rodzaju danych o otaczającej
GAZ ELEKTRONOWY W KWANTUJĄCYM POLU MAGNETYCZNYM
Nauczanie Fizyki w Uczelniach Technicznych XV Konferencja, Kraków 2-4 lipca 2007 GAZ ELEKTRONOWY W KWANTUJĄCYM POLU MAGNETYCZNYM Arkadiusz Wójs Instytut Fizyki, Politechnika Wrocławska arkadiusz.wojs@pwr.wroc.pl
Atomowa budowa materii
Atomowa budowa materii Wszystkie obiekty materialne zbudowane są z tych samych elementów cząstek elementarnych Cząstki elementarne oddziałują tylko kilkoma sposobami oddziaływania wymieniając kwanty pól
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 24, Radosław Chrapkiewicz, Filip Ozimek
odstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 4, 5.05.0 wykład: pokazy: ćwiczenia: Michał Karpiński Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 3 - przypomnienie argumenty
Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe
Wykład 4 29 kwietnia 2015 Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe Łukasz Cywiński lcyw@ifpan.edu.pl http://info.ifpan.edu.pl/~lcyw/ Dobra lektura: Michel Le Bellac
II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym
II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym Jan Królikowski Fizyka IVBC 1 II.4.1 Ogólne własności wektora kwantowego momentu pędu Podane poniżej własności kwantowych wektorów
Atom wodoru w mechanice kwantowej. Równanie Schrödingera
Fizyka atomowa Atom wodoru w mechanice kwantowej Moment pędu Funkcje falowe atomu wodoru Spin Liczby kwantowe Poprawki do równania Schrödingera: struktura subtelna i nadsubtelna; przesunięcie Lamba Zakaz
Co ma piekarz do matematyki?
Instytut Matematyki i Informatyki Politechnika Wrocławska Dolnośląski Festiwal Nauki Wrzesień 2009 x x (x 1, x 2 ) x (x 1, x 2 ) (x 1, x 2, x 3 ) x (x 1, x 2 ) (x 1, x 2, x 3 ) (x 1, x 2, x 3, x 4 ). x
Nowoczesne technologie przetwarzania informacji
Projekt Nowe metody nauczania w matematyce Nr POKL.09.04.00-14-133/11 Nowoczesne technologie przetwarzania informacji Mgr Maciej Cytowski (ICM UW) Lekcja 1: Obliczenia naukowe na systemach wieloprocesorowych
Algorytm Grovera. Kwantowe przeszukiwanie zbiorów. Robert Nowotniak
Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej Politechnika Łódzka 13 listopada 2007 Plan wystapienia 1 Informatyka Kwantowa podstawy 2 Opis problemu (przeszukiwanie zbioru) 3 Intuicyjna
Wstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 13 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, OA UAM Wstęp do astrofizyki I, Wykład
Światło ma podwójną naturę:
Światło ma podwójną naturę: przejawia własności fal i cząstek W. C. Roentgen ( Nobel 1901) Istnieje ciągłe przejście pomiędzy tymi własnościami wzdłuż spektrum fal elektromagnetycznych Dla niskich częstości
Wykład FIZYKA II. 3. Magnetostatyka. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 3. Magnetostatyka Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ POLE MAGNETYCZNE Elektryczność zaobserwowana została
- nowe wyzwanie. Feliks Kurp
INFORMATYKA KWANTOWA - nowe wyzwanie Feliks Kurp 2006 2 Plan wystąpienia: 1. Dlaczego informatyka kwantowa? 2. Grupy i ludzie zajmujący się informatyką kwantową 3. Fenomeny mechaniki kwantowej 4. Podstawy
Światło fala, czy strumień cząstek?
1 Światło fala, czy strumień cząstek? Teoria falowa wyjaśnia: Odbicie Załamanie Interferencję Dyfrakcję Polaryzację Efekt fotoelektryczny Efekt Comptona Teoria korpuskularna wyjaśnia: Odbicie Załamanie
Podejścia do realizacji modelu obliczeń kwantowych
Podejścia do realizacji modelu obliczeń kwantowych Instytut Informatyki Uniwersytetu Wrocławskiego 18 maja 2007 Jak reprezentować qubit? Główne zasady Warunki dla obliczeń kwantowych Spin Oscylator harmoniczny
Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.
Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale
Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).
Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). 1925r. postulat Pauliego: Na jednej orbicie może znajdować się nie więcej
dr inż. Zbigniew Szklarski
Wykład 13: Pole magnetyczne dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Wektor indukcji pola magnetycznego, siła Lorentza v v L Jeżeli na dodatni ładunek q poruszający
Rysunek 1: Schemat doświadczenia Sterna-Gerlacha. Rysunek 2: Schemat doświadczenia Sterna-Gerlacha w różnych rzutach przestrzennych.
VII. SPIN 1 Rysunek 1: Schemat doświadczenia Sterna-Gerlacha. Rysunek 2: Schemat doświadczenia Sterna-Gerlacha w różnych rzutach przestrzennych. 1 Wstęp Spin jest wielkością fizyczną charakteryzującą cząstki
o pomiarze i o dekoherencji
o pomiarze i o dekoherencji Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW pomiar dekoherencja pomiar kolaps nieoznaczoność paradoksy dekoherencja Przykładowy
Fizyka 3. Konsultacje: p. 329, Mechatronika
Fizyka 3 Konsultacje: p. 329, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 2 sprawdziany (10 pkt każdy) lub egzamin (2 części po 10 punktów) 10.1 12 3.0 12.1 14 3.5 14.1 16 4.0 16.1 18 4.5 18.1 20 5.0
Rola superkomputerów i modelowania numerycznego we współczesnej fzyce. Gabriel Wlazłowski
Rola superkomputerów i modelowania numerycznego we współczesnej fzyce Gabriel Wlazłowski Podział fizyki historyczny Fizyka teoretyczna Fizyka eksperymentalna Podział fizyki historyczny Ogólne równania
Informacje ogólne. 45 min. test na podstawie wykładu Zaliczenie ćwiczeń na podstawie prezentacji Punkty: test: 60 %, prezentacja: 40 %.
Informacje ogólne Wykład 28 h Ćwiczenia 14 Charakter seminaryjny zespołu dwuosobowe ~20 min. prezentacje Lista tematów na stronie Materiały do wykładu na stronie: http://urbaniak.fizyka.pw.edu.pl Zaliczenie:
Wykład Budowa atomu 3
Wykład 14. 12.2016 Budowa atomu 3 Model atomu według mechaniki kwantowej Równanie Schrödingera dla atomu wodoru i jego rozwiązania Liczby kwantowe n, l, m l : - Kwantowanie energii i liczba kwantowa n
Jak TO działa? Co to są półprzewodniki? TRENDY: Prawo Moore a. Google: Jacek Szczytko Login: student Hasło: *******
Co to są półprzewodniki? Jak TO działa? http://www.fuw.edu.pl/~szczytko/ Google: Jacek Szczytko Login: student Hasło: ******* Jacek.Szczytko@fuw.edu.pl Wydział Fizyki UW 2 TRENDY: Prawo Moore a TRENDY:
FIZYKA-egzamin opracowanie pozostałych pytań
FIZYKA-egzamin opracowanie pozostałych pytań Andrzej Przybyszewski Michał Witczak Marcin Talarek. Definicja pracy na odcinku A-B 2. Zdefiniować różnicę energii potencjalnych gdy ciało przenosimy z do B
Mechanika. Fizyka I (B+C) Wykład I: dr hab. Aleksander Filip Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej
Fizyka I (B+C) Mechanika Wykład I: Informacje ogólne Wprowadzenie Co to jest fizyka? Czym zajmuje się fizyka? dr hab. Aleksander Filip Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki
Wstęp do Modelu Standardowego
Wstęp do Modelu Standardowego Plan Wstęp do QFT (tym razem trochę równań ) Funkcje falowe a pola Lagranżjan revisited Kilka przykładów Podsumowanie Tomasz Szumlak AGH-UST Wydział Fizyki i Informatyki Stosowanej
Kwantowa kooperacja. Robert Nowotniak. Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej Politechnika Łódzka
Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej Politechnika Łódzka Sekcja Informatyki Kwantowej, 17 maja 2007 Materiały źródłowe Prezentacja oparta jest na publikacjach: Johann Summhammer,
Wstęp do komputerów kwantowych
Obwody kwantowe Uniwersytet Łódzki, Wydział Fizyki i Informatyki Stosowanej 2008/2009 Obwody kwantowe Bramki kwantowe 1 Algorytmy kwantowe 2 3 4 Algorytmy kwantowe W chwili obecnej znamy dwie obszerne
Wykład 12. Rozkład wielki kanoniczny i statystyki kwantowe
Wykład 12 Rozkład wielki kanoniczny i statystyki kwantowe dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy
Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia, pierwszy poziom Sylabus modułu: Chemia kwantowa 021 Nazwa wariantu modułu (opcjonalnie): 1. Informacje ogólne koordynator modułu
POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny
POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny Funkcja Falowa Postulat 1 Dla każdego układu istnieje funkcja falowa (funkcja współrzędnych i czasu), która jest ciągła, całkowalna w kwadracie,
P R A C O W N I A
P R A C O W N I A www.tremolo.pl M E T O D Y B A D A Ń M A T E R I A Ł Ó W (WŁAŚCIWOŚCI ELEKTRYCZNE, MAGNETYCZNE I AKUSTYCZNE) Ewelina Broda Robert Gabor ĆWICZENIE NR 3 WYZNACZANIE ENERGII AKTYWACJI I
IV.4.4 Ruch w polach elektrycznym i magnetycznym. Siła Lorentza. Spektrometry magnetyczne
r. akad. 005/ 006 IV.4.4 Ruch w polach elektrycznym i magnetycznym. Siła Lorentza. Spektrometry magnetyczne Jan Królikowski Fizyka IBC 1 r. akad. 005/ 006 Pole elektryczne i magnetyczne Pole elektryczne
Fizyka 3. Konsultacje: p. 329, Mechatronika
Fizyka 3 Konsultacje: p. 39, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 1 sprawdzian 30 pkt 15.1 18 3.0 18.1 1 3.5 1.1 4 4.0 4.1 7 4.5 7.1 30 5.0 http:\\adam.mech.pw.edu.pl\~marzan Program: - elementy
Algorytm faktoryzacji Petera Shora dla komputera kwantowego
Algorytm faktoryzacji Petera Shora dla komputera kwantowego Peter Shor (ur. 14 sierpnia 1959 roku w USA Matematyk oraz informatyk teoretyk Autor kwantowego Algorytmu Shora Pracuje w AT&T Bell Laboratories
h λ= mv h - stała Plancka (4.14x10-15 ev s)
Twórcy podstaw optyki elektronowej: De Broglie LV. 1924 hipoteza: każde ciało poruszające się ma przyporządkowaną falę a jej długość jest ilorazem stałej Plancka i pędu. Elektrony powinny więc mieć naturę
Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła
W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy
Komputery Kwantowe. Sprawy organizacyjne Literatura Plan. Komputery Kwantowe. Ravindra W. Chhajlany. 27 listopada 2006
Sprawy organizacyjne Literatura Plan Ravindra W. Chhajlany 27 listopada 2006 Ogólne Sprawy organizacyjne Literatura Plan Współrzędne: Pokój 207, Zakład Elektroniki Kwantowej. Telefon: (0-61)-8295005 Email:
Podstawy fizyki kwantowej i budowy materii
Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 12 9 stycznia 2017 A.F.Żarnecki Podstawy
VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale.
VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale. Światło wykazuje zjawisko dyfrakcyjne. Rys.VII.1.Światło padające na
Architektury komputerów Architektury i wydajność. Tomasz Dziubich
Architektury komputerów Architektury i wydajność Tomasz Dziubich Przetwarzanie potokowe Przetwarzanie sekwencyjne Przetwarzanie potokowe Architektura superpotokowa W przetwarzaniu potokowym podczas niektórych
PROGRAMOWANIE WSPÓŁCZESNYCH ARCHITEKTUR KOMPUTEROWYCH DR INŻ. KRZYSZTOF ROJEK
1 PROGRAMOWANIE WSPÓŁCZESNYCH ARCHITEKTUR KOMPUTEROWYCH DR INŻ. KRZYSZTOF ROJEK POLITECHNIKA CZĘSTOCHOWSKA 2 Trendy rozwoju współczesnych procesorów Budowa procesora CPU na przykładzie Intel Kaby Lake
Wykład Atom o wielu elektronach Laser Rezonans magnetyczny
Wykład 21. 12.2016 Atom o wielu elektronach Laser Rezonans magnetyczny Jeszcze o atomach Przypomnienie: liczby kwantowe elektronu w atomie wodoru, zakaz Pauliego, powłoki, podpowłoki, orbitale, Atomy wieloelektronowe
Dydaktyka Informatyki budowa i zasady działania komputera
Dydaktyka Informatyki budowa i zasady działania komputera Instytut Matematyki Uniwersytet Gdański System komputerowy System komputerowy układ współdziałania dwóch składowych: szprzętu komputerowego oraz
VIII. VIII.1. ORBITALNY MOMENT MAGNETYCZNY ELEKTRONU, L= r p (VIII.1.1) p=m v (VIII.1.2) L= L =mvr (VIII.1.1a) r v. r=v (VIII.1.3)
VIII. VIII.1. ORBITALNY MOMENT MAGNETYCZNY ELEKTRONU, L= r p (VIII.1.1) p=m v (VIII.1.2) Z (VIII.1.1) i (VIII.1.2) wynika (VIII.1.1a): L= L =mvr (VIII.1.1a) r v r=v (VIII.1.3) Z zależności (VIII.1.1a)
Chemia ogólna - część I: Atomy i cząsteczki
dr ab. Wacław Makowski Cemia ogólna - część I: Atomy i cząsteczki 1. Kwantowanie. Atom wodoru 3. Atomy wieloelektronowe 4. Termy atomowe 5. Cząsteczki dwuatomowe 6. Hybrydyzacja 7. Orbitale zdelokalizowane
Komputery, obliczenia, algorytmy Tianhe-2 (MilkyWay-2), system Kylin Linux, 33862.7 Tflops, 17808.00 kw
Komputery, obliczenia, algorytmy Tianhe-2 (MilkyWay-2), system Kylin Linux, 33862.7 Tflops, 17808.00 kw Michał Rad 08.10.2015 Co i po co będziemy robić Cele zajęć informatycznych: Alfabetyzacja komputerowa
kondensat Bosego-Einsteina
kondensat Bosego-Einsteina Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW Podziękowania dla Dr. M. Zawady (Krajowe Laboratorium Fizyki Atomowej, Molekularnej
Statystyki kwantowe. P. F. Góra
Statystyki kwantowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2016 Statystyki kwantowe Rozpatrujemy gaz doskonały o Hamiltonianie H = N i=1 p i 2 2m. (1) Zamykamy czastki w bardzo dużym pudle o idealnie