Chemia teoretyczna 2010/2011
|
|
- Zofia Staniszewska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Ch totcn /
2 Zgdnn I. Podstw kspntln chnk kwntow. Rokłd wdow cł doskonl cngo. Zwsko fotolktcn 3. Efkt Copton 4. Wdo tou wodou II. Podstwow poęc chnk kwntow. Hpot d Bogl. Dul flowo-kopuskuln 3. Zsd nonconośc 4. Funkc flow 5. Nolc funkc flow 6. Gęstość pwdopodobństw 7. Opto położn pędu 8. Opto ng cłkowt 9. Śdn kwntowo-chncn. Równn Schödng
3 Zgdnn III. Post odl ch kwntow. Ruch cąstk swobodn. Cąstk w pudl dnowow ) kstłt potncłu b) swn funkc flow n gnc obsów c) nolc funkc flow d) ng cąstk w pudl ) pwdopodobństwo obswown cąstk w óżnch cęścch pudł potncłu f) oblcn śdn kwntowo-chncn położn pędu g) sd wcn 3. Cąstk w pudl dwuwow ) Spc dwuwowgo ównn Schödng b) Ilocnow postć funkc flow c) Eng cąstk d) Dgnc stnów 4. Pśc p bę potncłu
4 Zgdnn IV. Ato wodou. Opto ng potncln w to wodou. Współędn śodk s 3. Spc uchu tnslcngo od uchów wględnch 4. Ukłd współędnch sfcnch 5. Elnt obętośc dv dl cłk w współędnch sfcnch 6. Scht owąn ównn 7. Zbó lcb kwntowch dl tou wodou 8. Wks gęstośc dln dl stnów s s V. Ato wlolktonow. Dośwdcn Stn-Glch. Zsd noóżnlnośc dnkowch cąstk 3. Podstwow włsnośc boonów fonów 4. Zk Pulgo 5. Hltonn dl tou wlolktonowgo w pblżnu nskońcn cężkgo ąd 6. Ato hlu ) Funkc flow w pblżnu dnolktonow b) Spnobtl toow c) Stn sngltow tpltow tou hlu 7. Ato węc nż dwulktonow ) Wkłdnkow postć funkc flow b) Poo ngtcn tou w to wlolktonow c) Wpdkow spn ukłdu lktonów d) Rguł Hund dl dgnc obtln
5 Zgdnn VI. Cąstck H +. Dfnc cąstck. Hltonn cąstck 3. Obtl olkuln obtl toow 4. Wcn owąn ównn Schödng dl cąstck 5. Cłk nkwn 6. Cłk onnsow 7. Obtl wążąc ntwążąc 8. Eng cłkowt cąstck H + ) odlgłość ównowgow R b) ng wąn D 9. Zstosown tod wcn do cąstck H +. Ato dnocon
6 Zgdnn VII. Cąstck dwutoow. Cąstck wodou ) Hltonn dl cąstck wodou b) Dg kolcn dl cąstck wodou (to dnocon to odlon) c) Cłk kulobowsk wnn. Wąn σ π w cąstcc ch st 3. Odpchn wlncn 4. Cąstck dwutoow htoądow 5. Obtl hbdown 6. Efktwność sn obtl toowch
7 Zgdnn VIII. Oblcn b nto. Mtod Ht-Fock. Wncnkow funkc flow Slt 3. Obtl Gussowsk Sltowsk 4. Mtod lnowch kobnc obtl toowch (LCAO) 5. Cntown obtl toowch 6. Mtod Ht-Fock dl ukłdów knętopowłokowch 7. Mtod pol sougodnongo (SCF LCAO MO) 8. Obtl HOMO LUMO 9. B obtl toowch. Kolc uchów lktonów. Eng kolc. Mtod oddłwn konfguc (CI) 3. Mtod spężonch klstów (CC) 4. Rchunk buń Møll-Plsst (MP)
8 Wdo cł doskonl cngo 5 Gęstość ng ponown: 4 3 u() u T 8 c 3 h h kt u() Hpot Plnck (9): ΔE=hν (kwnt ponown) h = J s c = s - k = J K -
9 Efkt fotolktcn (-) (+) hν Zn sk Wó Enstn (95 ok): hν = ½ v + W Pw Lnd (899 ok) ) Lcb wwlnch lktonów popoconln do ntężn ponown ) Mksln pędkość lktonów lż od cęstośc ponown n od go ntężn
10 Efkt Copton λ θ λ > λ p = v p f = h/λ φ λ v sn h c 4
11 Ato wodou ops klscn F v F c 4 v 4 /. 6 s E T V 3. 6 V 5 T 6. s
12 Zdukown s cł uch dukown (fktwn) s wokół śodk s M N N M N n M M n M M / (H).9997 (D)
13 Ato wodou Ĥ Równn Schödng: ) ( E ) ( Ĥ Współędn sfcn: = snθ cosφ = snθ snφ = cosθ P θ φ
14 Wdo tou wodou n ΔE = T T λ = hc / ΔE
15 Hpot d Bogl p h h p = g v = /s p = kg /s h = J s c = /s λ = / = 33-5 n Dul flowo-kopuskuln
16 Zsd nonconośc p h E t h 93 - Wn Hsnbg
17 Ato wodou ˆ M H Współędn śodk s: M M Z M M Y M M X Współędn wględn: c E H ˆ
18 Ato wodou Z Y X M H ˆ Równn Schödng po spc: ) ( ) ( ˆ ˆ E H Z Y X E Z Y X H t t uch tnslcn tou uch wględn ąd lktonu E c =E t +E Z Y X Z Y X H t H
19 Ato wodou 3 Równn Schödng: ) ( E ) ( Ĥ Współędn sfcn: = snθ cosφ = snθ snφ = cosθ H ˆ < θ π φ<π P θ φ
20 Ato wodou 4 sn sn sn Ĥ ) ( E ) ( Ĥ ) R ( ) ( Po spc ukłd 3 ównń: R E R l l l l sn sn sn nl n nl l l ównn w współędnch sfcnch ównn: utln hoontln dln
21 Ato wodou 5 Wunk bgow gnuąc lcb kwntow Równn utln: Równn hoontln: =± ± ±3 cłkowln kwdt l= 3 =-l-l+ +l Równn dln: R() cłkowln kwdt n= 3 l= n- Eng tou wodou E 4 R n n R c
22 Ato wodou 6 Funkc flow dl tou wodou ) ( ) ( l nl nl Y R Funkc dln: ) ( ) ( ) ( Z Z Z Z R Z Z R Z R = 59 Ǻ = 59 - poń Boh R R R
23 Ato wodou 7 Elnt obętośc : dv = d d d = snθ d dθ dφ Cłk nolc: nl sn d d d R d Y l sn d d Rdln gęstość pwdopodobństw: R () (R*)^ (R*)^. (R*)^ Ckw: Dl l=n- dno dn ksu dl =n *
24 Ato wodou 8 Wstwc obtlu: bó wsstkch punktów w pstn któ odpowd t s dn wtość obtlu ε. Kontu obtlu (powchn gncn obtlu): powchn nns fgu gotcn n wnąt któ wtość obtlu st wsęd ns co do odułu od dn ł dodtn wtośc. Kontu gęstośc pwdopodobństw: powchn nns fgu gotcn n wnąt któ gęstość pwdopodobństw st wsęd ns co do odułu od dn ł dodtn wtośc ε. Dl obtlu s: 3 Z 3 Z Z ln Z 3 3 Gd ε = -3 wówcs: =73 dl tou wodou =38 dl onu H + =3 dl onu L +.
25 Ato wodou 9 Jkoścow kontu obtl tpu s p d d - d d s p p p d d
26 Ato wodou Kobnc lnow obtl toowch Obtl toow Z p Z p s Z p s Z s s Z s N N Z N N Z N Z N Z N N sn sn 4 cos sn sn sn cos sn sn Z p Z p Z p Z p N N p N N p
27 Spn Dośwdcn Stn Glch Wąk toów sb ppuscn p pol gntcn Konfguc lktonow sb Ag: s /s p 6 /3s 3p 6 3d /4s 4p 6 4d /5s s = +½ Stn lktonu α gns s = -½ β Spnobtl nl nl s s
28 Zsd noóżnlnośc dnkowch cąstk b cąstk - dtkto b Pwdopodobństwo stown cąstk óżnch P = φ () φ b () P = φ () φ b () Gd cąstk dnkow P = P t φ () φ b () = ± φ () φ b () Cąstk ntfuą sobą
29 Zsd noóżnlnośc dnkowch cąstk Apltud opsn dnkowch cąstk: Boon φ () φ b () + φ () φ b () spn cłkowt Fon φ () φ b () - φ () φ b () spn połowkow Funkc flow dl fonów st ntstcn: Φ(3 ) = - Φ(3 ) Jżl fon uą t s stn cl = to φ () φ b () - φ () φ b () Jst to tść ku Pulgo. Funkc flow dl boonów st stcn Boon dążą do obsdn tgo sgo stnu stąd ndckłość hlu 4 H
30 Ato wlolktonow 7s 7p 6s 6p 6d 5s 5p 5d 5f 4s 4p 4d 4f 3s 3p 3d s p s Powłok lktonow: n = 3 KLM l = spd Rguł Hund: W wpdku dgnc obtln nnżsą ngę stn o ksln ultpltowośc
31 T wdow S+ L J Ato wlolktonow S+ to ultpltowość gd S to cłkowt spn obtlu Jk wncć L J S? J = L+S L+S- L-S Ato węgl C konfguc lktonow s s p Zpłnon powłok dą S = l l s s M L L M S S +½ -½ ½ ½ +- ½ ½ ½ -½ ½ ½ ½ -½ T: 3 P 3 P 3 P D S
32 Ato hlu ˆ M H ˆ M H ˆ H Hltonn lktonow w pblżnu nskońcn cężkgo ąd Pblżn dnolktonow Spnobtl=obtl*funkc_spnow Antstown funkc wlolktonow E H H n n n ˆ ˆ Hltonn dnolktonow
33 Ato hlu Funkc spnobtln= funkc pstnn* funkc spnow s s s s o snglt t plt s s s s St funkc pstnn St funkc spnow Funkc sngltow (S=) tpltow (S=)
34 Ato wlolktonow Hˆ n n n n Wncnkow postć ntstown funkc flow dl tou hlu... n n! n... n... n n n n Antstown funkc dl ukłdu n lktonów spłnąc k Pulgo podstw pblżn dnolktonowgo E HF : Eng Ht-Fock nnżs ng uskn w ch pblżn dnolktonowgo E kolc = E dokłdn E HF Eng kolc
Chemia kwantowa obliczeniowa
Chi kwtow obliciow / Pof. k Kęglwski Zgdii I. Podstw kstl chiki kwtow. Rokłd widow cił doskol cgo. Zwisko fotolktc. fkt Coto. Wido tou wodou II. Podstwow oęci chiki kwtow. iot d Bogli. Duli flowo-kouskul.
Obliczenia kwantowochemiczne. skondensowanej 2014/2015
Oblz kwtowohz fz skodsow / Zgd I. Podstw kstl hk kwtow II. Podstwow oę hk kwtow III. Post odl h kwtow IV. Ato wodou V. Ato wlolktoow VI. Cząstzk + VII. Cząstzk dwutoow VIII. Oblz b to IX. Oblz kwtow w
Mechanika kwantowa. Mechanika kwantowa. dx dy dz. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Równanie Schrödingera. zasada zachowania energii
Mecnik kwntow Jk opisć tom wodou? Jk opisć inne cąstecki? Mecnik kwntow Równnie Scödinge Ĥ E ψ H ˆψ = Eψ opeto óżnickow Hmilton enegi funkcj flow d d d + + m d d d opeto enegii kinetcn enegi kinetcn elektonu
Cząsteczki. Opis termodynamiczny Opis kwantowy. Dlaczego atomy łącz. 2.Jak atomy łącz. 3.Co to jest wiązanie chemiczne? typy wiąza.
Cząsteczki 1.Dlczego tomy łącz czą się w cząsteczki?.jk tomy łącz czą się w cząsteczki? 3.Co to jest wiąznie chemiczne? Co to jest rząd d wiązni? Dlczego tomy łącz czą się? Opis termodynmiczny Opis kwntowy
= v. T = f. Zagadnienia. dkość. 1 f T = Wielkości charakteryzujące przebiegi okresowe. v = 2πrf. Okres toru. dy dt. dx dt. v y. v x. dy y.
Zgdnen Welośc chtezujące pzebeg oesowe Welośc chtezujące pzebeg oesowe (cl, oes, częstotlwość) uch jednostjn po oęgu (pę lnow, pzspeszene sł dośodow) uch obotow bł sztwnej (zwąze welośc lnowch z ątow)
Ato wodoropodobny Eektron poruszjący się w kuobowski pou jądr o łdunku +Ze posid energię potencjną: z -e, V ( r) Ze 4πε r + Ze φ θ r y x
Ato wodoropodobny z współrzędne w ukłdzie krtezjński r sinθ cosφ x r cosθ φ θ r r sinθ (x,y,z) r sinθ sinφ Biegunowy ukłd współrzędnych y funkcj fow współrzędne w ukłdzie biegunowy ( ) r,θ,φ x r sinθ cosφ
Prędkość i przyspieszenie punktu bryły w ruchu kulistym
Pędkość i pzyspieszenie punktu były w uchu kulistym Położenie dowolnego punktu były okeślmy z pomocą wekto (o stłej długości) któego współzędne możemy podć w nieuchomym ukłdzie osi x y z ) z b) ζ ζ η z
elektrostatyka ver
elektostatka ve-8.6.7 ładunek ładunek elementan asada achowana ładunku sła (centalna, achowawca) e.6 9 C stała absolutna pawo Coulomba: F ~ dwa ładunk punktowe w póżn: F 4πε ε 8.8585 e F m ε stała ł elektcna
Obliczenia kwantowochemiczne. skondensowanej
Oblz kwtowohz fz skodsow /6 Prof. Mrk Kręglwsk Zgd I. Podstw ksrtl hk kwtow. Rozkłd wdow ł doskol zrgo. Zwsko fotolktrz. fkt Coto. Wdo tou wodoru II. Podstwow oę hk kwtow. otz d Brogl. Dulz flowo-koruskulr.
D r. r r r D. Wykład VII. Podstawowe własnow. Źródła a fal elektromagnetycznych. r r. Luminescencja. Natęż. Równania Maxwella. ężenie i indukcja pola
Wyłd VII Fl lomgnyzn włśwoś źódł ównn pw Mxwll ównn flow wypowdzn ozwązn lomgnyzn fl płs wo flowy wo Poynng wdmo fl lomgnyznyh Podswow włsnow snoś fl popzzn popgj w póżn w ośodh mlnyh oślon pędość w póżn
Ę ć ń ż ć Ń ń ż ć ć ń ż ć ń ź ń Ę Ń ń ń ż ć ż ć ć Ń ż ć ń ć ż ń ż ć ć Ń ż ć Ń ż Ń Ń Ń ż ż Ń ż ż Ń ń ź Ń ń Ń ń ń Ą ń ń ź ń Ń Ń ć Ę ż Ń ż ć ć ć Ę ńż ń Ą ć ć Ę ż ż ć ż ć Ń ż Ń ż Ń ż ż ń ć ń Ń ń Ę ż Ł Ń ż
Ą Ż Ł ś ż ńż ż ż ś ź ź ć ź ś ń ż ć ź ź ź ż ź ś ź ń ź Ę ż ź ź ź ż ż ś ń ż ż ś ż ź ż ź źń ż ż ż ź ś ś ż ś ż ż Ż Ł ń ż ś ż ń ź ź ż żń ść ż ż ń ń ń ń ń ż ś ź ż ń ż ś ń ż ć ż ś ż ż ć ń ż ż ź ż ć ż ż ś ż ż ć
Wykład 2: Atom wodoru
Wykład : Ato wodou Równani Schödinga Kwantowani ngii Wida atoow wodou Kwantowani ontu pędu Liczby kwantow Część adialna i kątowa funkcji falowj Radialny ozkład gęstości pawdopodobiństwa Kontuy obitali
Prof. dr hab. Józef Korecki C-1, IIp, pok. 207 Wydział Fizyki i Informatyki Stosowanej Katedra Fizyki Ciała Stałego
Pof. d h. Jóef Koeck C-1, IIp, pok. 07 Wdł Fk Infomk Sosowne Ked Fk Cł Słego Konsulce: cwek, god. 10-1 Fk 1 (I semes hp://slluskk.gh.edu.pl/013-014/pl/mgnese/modules/151 Fk (II semes hp://slluskk.gh.edu.pl/013-014/pl/mgnese/modules/1969
Mechanika kwantowa IV
Mcik kwtow IV Opcowi: Bb Pc Piot Ptl Atom wodou W ukłdi śodk ms ówi Scödig dl tomu wodou i joów wodoopodobc m postć: V [W..] µ E gdi: Z Vˆ [W..] - opto Lplc dfiiow wom [W..7] Sfci smtc potcjł w ówiu [W..]
(4) (b) m. (c) (d) sin α cos α = sin 2 k = sin k sin k. cos 2 m = cos m cos m. (g) (e)(f) sin 2 x + cos 2 x = 1. (h) (f) (i)
(3) (e) sin( θ) sin θ cos( θ) cos θ sin(θ + π/) cos θ cos(θ + π/) sin θ sin(θ π/) cos θ cos(θ π/) sin θ sin(θ ± π) sin θ cos(θ ± π) cos θ sin(θ ± π) sin θ cos(θ ± π) cos θ (f) cos x cos y (g) sin x sin
Ą ź Ż Ź Ź Ż Ż Ż Ż Ż Ź Ż Ź
Ź Ą ź Ż Ź Ź Ż Ż Ż Ż Ż Ź Ż Ź Ź Ż ź ź ź Ż Ż Ż Ą Ź Ź Ź ź Ź Ż Ź ź ź Ź Ź Ź Ż Ź Ź Ż Ź Ą Ź Ż ź Ź Ż Ł Ź Ł Ź Ł Ł Ą Ą Ł Ą ź Ż Ą Ń Ń Ń Ą Ń Ń Ą Ń Ą Ł Ł Ł Ż Ź ź Ź Ą Ż Ą Ą Ą Ź Ź Ź Ź Ź ź ź Ż Ą Ź Ł Ł ź Ż ź Ł Ż Ż Ł Ł
ver wektory
-3.1.7 wko wko (w psni ójwmiowj) długość wko: kiunk wo długość: dodwni: + c + mnożni mnożni p skl: α α wso: 1 n,, - wso nomln - wso scn okłd wko mm:, 1 (nikolinn) możm: α + α 11 α.g. n o 1 α 1 1 u wko
impuls o profilu f(x ) rozchodzący się w kierunku x: harmoniczna fala bieżąca rozchodząca się w kierunku +x: cos
Rów Scrodgr Fucj flow wow rprcj jdo wrow pułp lroów fucj flow sońco sońco sud pocjłu o wodoru rów Scrodgr wprowd rową lro swobod lro w sońcoj sud pocjłu PRZYPOMNINI: Fl bżąc sojąc w pęj sru Hlld, Rsc,
θ = 0 lub = = g l dw dt Przykłady drgań: Wahadło matematyczne (małe wychylenia): Inaczej: m l(1-cosθ) Drgania i fale II rok Fizyki BC
Przykłady drgań: Wahadło ateatyczne (ałe wychyenia): θ ( sinθ) M g && θ gsinθ && θ gθ (1-cosθ) && g θ + θ g g naczej: υ T V W & 1 g T θ υ 1 ( cosθ ) + V & θ dw dt &&& θθ + g & θ sinθ θ ub && g θ + sinθ
Wrocław, dnia 24 czerwca 2016 r. Poz UCHWAŁA NR XXVI/540/16 RADY MIEJSKIEJ WROCŁAWIA. z dnia 16 czerwca 2016 r.
DZE UZĘDY EÓDZA DLŚLĄE, d 24 2016 2966 UCHAŁA XXV/540/16 ADY EE CŁAA d 16 2016 ś g bdó b ó d gó d 18 2 15 d 8 1990 ąd g (D U 2016 446) 12 11 92 1 d 5 1998 ąd (D U 2015 1445 1890), ą 17 4 5 d 7 ś 1991 ś
Równania różniczkowe. y xy (1.1) x y (1.2) z xyz (1.3)
ownn oznczkowe Równn óżnczkowe. Wstę Równne óżnczkow nzw ównne zwejące funkcje newdoe zenne nezleżne oz ocodne funkcj newdoc lu c óżnczk. Pzkłd d 5 d d sn d. d d e d d d. z z z z. ównne óżnczkowe zwczjne
Oddziaływanie elektronu z materią
Oddiaływani lktronu matrią p p X-ray p wt wt A wt p - lktron pirwotny, 0-3000V. wt - lktron wtórny, 0-0 V. A- lktron Augr a, 0-000V. X-ray- proiowani X, 000-000V. - plamon, 0-80 V. - fonon, 0,0-0,5V. Zdrni
Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S i R D Z P I 2 7 1 0 3 62 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A Z a p e w n i e n i e z a s i l a n i ea n e r g e t y c z ne g o
ć Ę ć Ę ć Ę ż ź ż Ą ć Ą ż Ę Ę ć ż ź ż Ę ż ż Ą ż
Ń Ę Ę ć Ę ć Ę ć Ę ż ź ż Ą ć Ą ż Ę Ę ć ż ź ż Ę ż ż Ą ż Ę ż Ę ż ć ż Ę ż Ł ż ć ź Ę Ą ź ż Ź Ę ż Ę ź Ę ż ż ż ć ż ż ź ć Ę ż ż ż ż ź ć ż ż ć ź ż ć ź Ę ż Ę ć ź Ę ź ć Ę ź Ę Ą Ę ź ż ć ź ź ź Ę ż ć ć Ę Ę ż Ł ż ż ż
ż ż ż ż ż ż ż Ś ż ń ż ż Ę ż ż ż ż ń ż ż Ś ż ż ż ż ń Ł
Ś ż Ś Ą ż ż Ą ńż ń ż ż ż ż ż ż Ą ż żń ź Ś ż Ę ż ń ź ń ż Ę ź ń ż ż Ś ż ń ż ż ż ż ż ż ż Ś ż ń ż ż Ę ż ż ż ż ń ż ż Ś ż ż ż ż ń Ł Ś ż ż ż ż ż ż ż ń ń żń ż ż Ę ż Ś ż ż ż ż ć ń Ą ż ż ń ż ż ż ń ż ż ż ż ć Ł ż
Układ okresowy. Przewidywania teorii kwantowej
Przewidywania teorii kwantowej Chemia kwantowa - podsumowanie Cząstka w pudle Atom wodoru Równanie Schroedingera H ˆ = ˆ T e Hˆ = Tˆ e + Vˆ e j Chemia kwantowa - podsumowanie rozwiązanie Cząstka w pudle
r i m r Fwyp R CM Dynamika ruchu obrotowego bryły sztywnej
Dynamka ruchu obrotowego bryły sztywnej Bryła sztywna - zbór punktów materalnych (neskończene welu), których wzajemne położene ne zmena sę po wpływem załających sł F wyp R C O r m R F wyp C Śroek masy
, , , , 0
S T E R O W N I K G R E E N M I L L A Q U A S Y S T E M 2 4 V 4 S E K C J I G B 6 9 6 4 C, 8 S E K C J I G B 6 9 6 8 C I n s t r u k c j a i n s t a l a c j i i o b s ł u g i P r z e d r o z p o c z ę
(EN 10270:1-SH oraz DIN 17223, C; nr mat ) (EN 10270:3-NS oraz DIN 17224, nr mat )
(EN 10270:1-SH orz DIN 17223, C; nr mt. 1.1200) (EN 10270:3-NS orz DIN 17224, nr mt. 1.4310) d Fn K Dm k Dz L1 Ln L0 Legend d - Dm - Dz - L0 - n - czynn zwoi Ln - Fn - c - K - k - Fn stl nierdzewn = 1kg
f(g(x))g (x)dx = 6) x 2 1
Mtemtyk -. rok Trnsport, stcjonrne. stopie«przykªdowe zdni n kolokwium nr.cªki nieoznczone - cªkownie przez cz ±ci, cªkownie przez podstwienie Denicj F () = f(), f()d = F () + C Cªkownie przez cz ±ci:
Podstawy mechaniki kwantowej
Podstawy mechaniki kwantowej Jak opisać świat w małej skali? Czy świat jest realny? 1 Promieniowanie elektromagnetyczne gamma X ultrafiolet podczerwień mikrofale radiowe widzialne Wavelength in meters
Podstawy mechaniki kwantowej
Podstawy mechaniki kwantowej Jak opisać świat w małej skali? Czy świat jest realny? Promieniowanie elektromagnetyczne gamma X ultrafiolet podczerwień mikrofale radiowe widzialne Wavelength in meters 0-0
dr inż. Zbigniew Szklarski
Wkłd 3: Kinemtk d inż. Zbigniew Szklski szkl@gh.edu.pl http://le.uci.gh.edu.pl/z.szklski/ Wstęp Opis uchu KINEMATYKA Dlczego tki uch? Pzczn uchu DYNAMIKA MECHANIKA 08.03.018 Wdził Infomtki, Elektoniki
Obliczenia kwantowomechaniczne. skondensowanej. Prof. Marek Kręglewski
Oblcz kwtowochcz fz skodsowj Prof. Mrk Kręglwsk Zgd I. Podstw ksprtl chk kwtowj. Rozkłd wdow cł doskol czrgo. Zjwsko fotolktrcz. fkt Copto 4. Wdo tou wodoru II. Podstwow pojęc chk kwtowj. potz d Brogl.
2 7k 0 5k 2 0 1 5 S 1 0 0 P a s t w a c z ł o n k o w s k i e - Z a m ó w i e n i e p u b l i c z n e n a u s ł u g- i O g ł o s z e n i e o z a m ó w i e n i u - P r o c e d u r a o t w a r t a P o l
Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy
Dziś: Pełna tabela loterii państwowej z poniedziałkowego ciągnienia
Dś: l l ń C D O 0 Ol : Z l N 40 X C R : D l ś 0 R 3 ń 6 93 Oź l ę l ę -H O D ę ź R l ś l R C - O ś ę B l () N H śl ź ę - H l ę ć " Bl : () f l N l l ś 9! l B l R Dl ę R l f G ęś l ś ę ę Y ń (l ) ę f ęś
w7 58 Prąd zmienny Generator Napięcie skuteczne Moc prądu Dodawanie prądów zmiennych Opór bierny
58 Prąd zienny Generator Napięcie skuteczne Moc prądu Dodawanie prądów ziennych Opór bierny Prąd zienny Prąd zienny 3 Prąd zienny 4 Prąd zienny 5 Prąd zienny Przy stałej prędkości kątowej ω const pola
w5 58 Prąd d zmienny Generator Napięcie skuteczne Moc prądu Dodawanie prądów w zmiennych Opór r bierny Podstawy elektrotechniki
58 Prąd d zienny Generator Napięcie skuteczne Moc prądu Dodawanie prądów w ziennych Opór r bierny Prąd d zienny Prąd d zienny 3 Prąd d zienny 4 Prąd d zienny 5 Prąd d zienny Przy stałej prędkości kątowej
ą ą Ą ł ą Ą Ł ÓŁ Ą ę ą ż ę łą ą łą
Ą ł Ą Ł ÓŁ Ą ę ę ł ł ń ęść ł ł ę ęść źć ć ł ń ś ń ć ń ń ń Ż ł ć ść ń ń Ę ę ĘŚĆ Ó Ł Ł ę ł ś ł Ę ę ń ń ś ś ź ę ś Ę ś ć ś ę Ę ę ć ń ś ś ę ę ć ś Ę ń ź ć ś ś Ł ś Ł ź ł ę Ż ń Ę ń Ę ń ś ę ń ś ś ń ł ś ć ź ń ś
Metoda prądów obwodowych
Metod prądów owodowyh Zmenmy wszystke rzezywste źródł prądowe n npęowe, Tworzymy kłd równń lnowyh opsjąyh poszzególne owody. Dowolną seć lnową skłdjąą sę z elementów skponyh możn opsć z pomoą kłd równń
q (s, z) = ( ) (λ T) ρc = q
M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X W Y Z N A C Z A N I E O D K S Z T A C E T O W A R Z Y S Z Ą C Y C H H A R T O W A N I U P O W I E R Z C H N I O W Y M W I E
S T A T U T. s z k ó ł ( D z. U. N r 3 5, p o z. 2 2 2 ),
S T A T U T Z e s p o ł u S z k ó ł C e n t r u m E d u k a c j i i m. I g n a c e g o Ł u k a s i e w i c z a 1 Z e s p ó ł S z k ó ł C e n t r u m E d u k a c j i i m. I g n a c e g o Ł u k a s i e w
= r. Będziemy szukać takiego rozkładu, który jest najbardziej prawdopodobny, tzn. P=P max. Możemy napisać:
Rokład Boltmaa Roważm odosobo układ cąstek (cost Ucost Załóżm że cąstk układu mogą meć tlko ścśle okeśloe eege (eega cąstek est skwatowaa ech ( oaca lcbę cąstek maącch eegę Możem wted apsać: (* U cost
Ś Ą Ś Ą Ś Ą Ą Ś Ą Ą ŚĆ Ą Ą Ś Ś ć ź ź Ń Ś Ą ć Ź Ą Ą Ś ć Ą Ą Ą Ś Ą ć Ą Ą ć Ą ć ć Ć Ź ć Ś Ź Ź ć Ź Ź ć Ź ź Ź Ś ź Ź ć ć Ń ź ć ć Ń Ć ź ć ć Ś ć ć ć Ź Ń ć Ź ć ć ź Ą Ś Ć Ź ź ź Ź ć ć Ś ź Ń ć ć ć ź Ą Ś Ń Ś ć ć Ź
Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 5 32 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e p r z e g l» d ó w k o n s e r w a c y j n o -
Plan wykładu. Literatura. Układ odniesienia. Współrzędne punktu na płaszczyźnie XY. Rozkład wektora na składowe
Leu. D. Hlld, R. Resnc, J. Wle, Podsw f, om -5, PWN, 7. D. Hlld, R. Resnc F om,, PWN, 974. 3. J. Blnows, J. Tls F dl nddów n wŝse ucelne PWN 986 4. P. W. Ans Chem fcn, PWN, 3. Pln włdu ) Podswowe wdomośc
Podstawy mechaniki kwantowej. Jak opisać świat w małej skali?
Podstawy mechaniki kwantowej Jak opisać świat w małej skali? 1 Promieniowanie elektromagnetyczne gamma X ultrafiolet podczerwień mikrofale radiowe widzialne Wavelength in meters 10-1 10-10 10-8 4 x 10-7
(0) Rachunek zaburzeń
Wyłd XII Rch zbzń Mchi wtow Rch zbzń st podstwową mtodą zdowi pzybliżoych ozwiązń óżgo odz ówń występących w fizyc Tt zsti pzdstwioy ch zbzń w zstosowi do ówi Schödig bz czs Ogiczymy się pzy tym do tzw
Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkow Hamiltona energia funkcja falowa h d d d + + m d d dz
Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji.
Zad. 1.1. Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1.a. Funkcja: ϕ = sin2x Zad. 1.1.b. Funkcja: ϕ = e x 2 2 Operator: f = d2 dx
II.3 Rozszczepienie subtelne. Poprawka relatywistyczna Sommerfelda
. akad. 004/005 II.3 Rozszczepienie subtelne. Popawka elatywistyczna Sommefelda Jan Kólikowski Fizyka IVBC . akad. 004/005 II.3. Mechanizmy fizyczne odpowiedzialne za ozszczepienie subtelne Istnieją dwie
n p 2 i = R 2 (8.1) i=1
8.9 Rozkład Maxwella Jest to rozkład prędkości cząstek w gazie doskonałym. Wielkość f (p) jest gęstością prawdopodobieństwa znalezienia cząstki o pędzie p. Różnica pomiędzy rozkładem Maxwella i rozkładem
Metody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 6 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład
ver magnetyzm cd.
ver-10.01.12 magnetyzm cd. praca przemieszczenia obwodu w polu B B F F=ΙlB B j (siła Ampere a) dw =Fdx=Ι lbdx=ι BdS Φ B = B d S= BdS dφ B =BdS dw =ΙdΦ B =Ι B d S strumień dx dla obwodu: W =Ι dφ B =Ι Φ
ć Ń
ć Ń ć ź Ł Ń Ń ź Ł Ń Ń Ń Ń ź ź ć Ń ź Ń Ń ź Ś Ś ź Ś Ś Ń Ń Ń Ę Ś Ę ć ź ź Ę Ś ź Ą ź ź Ś Ś Ę ć Ń Ń Ń Ń Ń ć Ń Ń ć Ł Ł Ń Ę Ę ć Ę Ę Ę ź Ą ć Ł Ę Ę Ś ć ć Ę Ł Ę Ż Ą ź Ł Ą ź Ę ź ć Ę Ł Ę ćł Ł Ł Ą ź Ł Ę ź ć Ę Ę
Światło widzialne a widmo elektromagnetyczne
Światło widzialne a widmo elektromagnetyczne 10 3 λ [nm] λ 10 6 10 12 fale radiowe 1 mm 10 9 10 12 10 9 10 6 mikrofale 100 µm 10 µm 10 15 10 18 10 21 10 3 1 10 3 widmo optyczne prom. X promienie gamma
cz. 2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321
Wkład 7: Bła stwna c.. D nż. Zbgnew Sklask Kateda Elektonk, paw. C-1, pok.1 skla@agh.edu.pl http://lae.uc.agh.edu.pl/z.sklask/..17 Wdał nfoatk, Elektonk Telekounkacj - Telenfoatka 1 6..17 Wdał nfoatk,
0 ( 1 ) Q = Q T W + Q W + Q P C + Q P R + Q K T + Q G K + Q D M =
M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X O P T Y M A L I Z A C J A K O N S T R U K C J I F O R M Y W T R Y S K O W E J P O D K Ą T E M E F E K T Y W N O C I C H O D
ILOCZYNY WEKTORÓW. s równoległe wtedy i tylko wtedy. b =
St Kowls Włd mtemt dl studentów erunu Mehn włd ILOZYNY WEKTORÓW 3 { : } trówmrow prestre tór mon nterpretow n tr sposo: Jo ór puntów W te nterpret element prestren 3 nw s puntm Nps on e punt m współrdne
Podstawy Procesów i Konstrukcji Inżynierskich. Ruch obrotowy INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA
Podstawy Pocesów Konstukcj Inżyneskch Ruch obotowy Keunek Wyóżnony pzez PKA 1 Ruch jednostajny po okęgu Ruch cząstk nazywamy uchem jednostajnym po okęgu jeśl pousza sę ona po okęgu lub kołowym łuku z pędkoścą
VI.5 Zderzenia i rozpraszanie. Przekrój czynny. Wzór Rutherforda i odkrycie jądra atomowego
VI.5 Zderzenia i rozpraszanie. Przekrój czynny. Wzór Rutherforda i odkrycie jądra atomowego Jan Królikowski Fizyka IBC 1 Przekrój czynny Jan Królikowski Fizyka IBC Zderzenia Oddziaływania dwóch (lub więcej)
Zastosowania całki oznaczonej
Przkłd 9 Nie kd funkcj okrelon i ogrniczon n [, b] jes cłkowln n [, b], np funkcj Dirichle nie jes cłkowln n przedzile [, ], gd f ( ), gd liczb wmiern odcink [,] liczb niewmiern odcink [,] Gdbm dl kdego
Hipotezy ortogonalne
Sttytyk Wykłd d Ćl -4 cl@gh.du.pl Hpotzy otogol ozwży odl lowy: Xϕ gdz X jt wkto obwcj ϕ Ω jt wkto śdch (wtośc oczkwych) o któy wdoo lży w pwj włścwj podpztz lowj Ω pztz tz. Ω d(ω)< jt loowy wkto błędów
1 Definicja całki oznaczonej
Definicj cłki oznczonej Niech dn będzie funkcj y = g(x) ciągł w przedzile [, b]. Przedził [, b] podzielimy n n podprzedziłów punktmi = x < x < x
Atom wodoropodobny. Biegunowy układ współrzędnych. współrzędne w układzie. kartezjańskim. współrzędne w układzie. (x,y,z) biegunowym.
Atom wodoropodobny z współrzędne w układzie kartezjańskim r sinθ cosφ x r cosθ φ θ r r sinθ (x,y,z) r sinθ sinφ Biegunowy układ współrzędnych y funkcja faowa współrzędne w układzie biegunowym ( ) r,θ,φ
Władcy Skandynawii opracował
W Ł~ D C Y S K~ N D Y N~ W I I K R Ó L O W I E D ~ N I IW. K J S O L D U N G O W I E 1 K R Ó L O W I E D ~ N I IW. K J S O L D U N G O W I E 2 Władcy Skandynawii G E N E~ L O G I~ K R Ó L Ó W D~ N O R
Analiza matematyczna v.1.6 egzamin mgr inf niestacj 1. x p. , przy założeniu, że istnieją lim
Anliz mtemtyczn v..6 egzmin mgr inf niestcj Oznczeni: f, g, h : J R funkcje rzeczywiste określone n J R J przedził, b),, b], [, b), [, b], półprost, b),, b],, ), [, ) lub prost R α, β [min{α, β}, m{α,
ź ń ń
ń ź ń ń Ś Ł ń ń ż ź Ść ż Ść ż ż Ł ż ń ń Ę Ś Ś Ś Ę ń ż Ł Ś Ł ń Ś Ś ń ć Ść ż Ę ż Ć Ę ż ź ń Ł Ę Ę ź ż Ę Ś Ę ż ż ż Ę Ś ż ż ż Ść Ą ż ż ż Ę Ś Ę ż ż Ś ż ż ż Ś Ł ż ż ż Ę ż ż ż Ą Ę Ę ć ż ż ć ń Ą Ą ź Ę ńź ż Ę Ę
Ś ź ć ź ć Ź ć ź ć Ą ć ć ć Ą ć ź ć ź ć Ś ć ć ć ć Ą Ą ć ć ć ć ć ć Ś ć Ź ć ć Ą ć ó ń ć ć ó ć ó ń ć ć ć ó ó ń ć ó Śń ó ó ć ó ó ó ó ć ó ń ó ó ó ó Ą ć ź ó ó ó ń ó ó ń ó ó ó ź ó ó ó ó Ść ć Ą ź ć ć ć ć Ś Ą ć ć
podsumowanie (E) E l Eds 0 V jds
e-8.6.7 fale podsumowanie () Γ dl 1 ds ρ d S ε V D ds ρ d S ( ϕ ) 1 ρ ε D ρ D ρ V D ( D εε ) εε S jds V ρ d t j ρ t j σ podsumowanie (H) Bdl Γ μ S jds B μ j S Bds B ( B A) Hdl Γ S jds H j ( B μμ H ) ε
Obliczanie indukcyjności cewek
napisał Michał Wierzbicki Obliczanie indukcyjności cewek Indukcyjność dla cewek z prądem powierzchniowym Energia zgromadzona w polu magnetycznym dwóch cewek, przez uzwojenia których płyną prądy I 1 i I
dz istnieje, e f V obszar jak w definicji całki potrójnej (ograniczony powierzchniami o mierze 0) T prostopadłościan nakrywający V ( V T )
Cłi potróje Niech 3 : R R ędie cją oreśloą ogricom osre domiętm o reg mir Jord cli osre mjącm ojętość. Podoie j ostrcji cłi podójej dielim osr poierchimi o ojętości osr or torm logicą smę cłoą: ξ i ηi
Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów
Z n a k s p r a w y G C S D Z P I 2 7 1 0 4 52 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A W y k o n a n i e p o m i a r ó w i n s t a l a c j i e l e k t r y c
Całkowanie. dx d) x 3 x+ 4 x. + x4 big)dx g) e x 4 3 x +a x b x. dx k) 2x ; x 0. 2x 2 ; x 1. (x 2 +3) 6 j) 6x 2. x 3 +3 dx k) xe x2 dx l) 6 1 x dx
Wydził Mtemtyki Stosownej Zestw zdń nr 5 Akdemi Górniczo-Hutnicz w Krkowie WFiIS, informtyk stosown, I rok Elżbiet Admus 3 listopd 6r. Cłk nieoznczon Cłkownie. Podstwowe metody cłkowni Zdnie. Oblicz cłki:
Ł ź Ż Ń Ł ż ż ź Ą
Ł Ł Ń Ń Ł ź Ż Ń Ł ż ż ź Ą Ł Ł Ś Ń ż ż ż żń ż ż ż ć Ż ć ć ć Ż ż ż ż ż ż ż ż ż ż ż ż ć ź ż ż ż ż ć Ś ż ż ż ż ż ć ż ż ć ż ć ż ź ż ż ż ż ż ż ć ć ż ż Ś ć ż ć ż ć Ś ż ż ż ż ż ż ż ć ż ż ż ż ż ć ć ż ż ż Ś ż ż
OBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOKACH ZBIORNIKÓW OSIOWO SYMETRYCZNYCH
OBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOKACH ZBIORNIKÓW OSIOWO SYMETRYCZNYCH Sporządził: Bartosz Pregłowski Grupa : II Rok akadem: 2004/2005 OBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOKACH ZBIORNIKÓW OSIOWO SYMETRYCZNYCH
Mechanika teoretyczna
ktestki geometcze Mecik teoetcz Wkłd 9, i ktestki geometcze figu płskic. Główe cetle osie ezwłdości. Pole powiezci Momet sttcz współzęde śodk ciężkości. Momet ezwłdości Momet odśodkow główe cetle osie
Rezonansowe tworzenie molekuł mionowych helu i wodoru oraz ich rotacyjna deekscytacja
zonanow twozn molkuł monowych hlu wodou oaz ch otacyjna dkcytacja Wlhlm Czaplńk Katda Zatoowań Fzyk ądowj w wpółpacy z N.Popovm W.Kamńkm Itnj 6 odzajów molkuł monowych hlu wodou: 4 H µ p Hµ d Hµ t 4 H
Dwie lub więcej cząstek poza zamkniętą powłoką
Dwie lub więcej cząstek poza zamkniętą powłoką Rozważmy dwa (takie same) nukleony (lub dwie dziury) na orbitalu j poza zamkniętymi powłokami. Te dwie cząstki mogą sprzęgać się do momentu pędu J = j + j,
Ź
Ź Ł Ł ź ź Ł Ł Ź Ą Ó ź ń ź Ń ź ź ź ź Ź Ą ź Ć Ź Ń ź Ą ź Ł Ł Ł ź Ą Ą Ą ź ź ź ź ź Ś Ą Ź Ą ź ź Ł Ł ź Ł Ś ź ź Ł ź Ś ź Ń Ź ź Ł Ł ź ź Ś Ł ź Ł Ł Ł Ł ź ź Ł Ł Ł Ł ź Ł ź Ł Ł Ł Ł ź Ą ź Ś Ł Ą ź Ś ź ź ń ź ź Ą ź ź Ą
Ę ś Ł ń ś ś ć ć ś ś ś ń ń ń ść ń ść ś Ł ć ź ć Ę Ą ś ś ś ś ś ś ń ń źń ś ń ń ś ń ń ś ź ń Ę ń Ą Ę ś ś ć ń ś ń ń Ł ś ś ń ś ź ś ś ń ć ść ść ść ń ś ź ś ń ś ś ść ś ń ń ń ś Ę Ł ń Ą ś Ś Ę ń Ś Ę ść ś ś ń Ę ń ś ź
Prawo Coulomba i pole elektryczne
Prwo Coulomb i pole elektryczne Mciej J. Mrowiński 4 pździernik 2010 Zdnie PE1 2R R Dwie młe kulki o msie m, posidjące ten sm łdunek, umieszczono w drewninym nczyniu, którego przekrój wygląd tk jk n rysunku
ż ń ź ń Ł ń Ż ż ż ż ż Ż ń ń ń ń ć
Ó ź ż ń ć Ą ż ń ź ń Ł ń Ż ż ż ż ż Ż ń ń ń ń ć Ó ń Ź ć Ą ć ń ń ż ń ż Ż ż ń ż ń ń ń ń Ź Ż ń Ż ż ń Ż ć ć ż Ś ń Ż ż ń ż Ę ż ń ń ć Ę ż ć ż ć ż ć ż ż ć Ź ć Ż Ó ż ń ń ź Ł ń ć Ó ż Ż ń ń ż ń ż ć ż ń Ź ń ń ń ń ż
SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA
Z n a k s p r a w y G C S D Z P I 2 7 1 0 1 12 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A D o s t a w a ( u d o s t p n i e n i e ) a g r e g a t u p r» d o t w
Ł ń ń ć ź Ą ć Ń ć Źń Ą ć ź ź ń ź ń ń ń Ą ń ź Ą ć Ą ń Ą ń ń Źń ń ć ń ń ć ń ć ń ź ź ź ź ć Źń ń Ń ć ć ć ń ć ń ź ń ć Ł ć ć Ł Ń ć Ń ć ń ć ć ć ź ć ć ńń ź ź ć ń ć ć Źń ń ź ć ń ń źć ć ń ć ń ć ć ń ń ć ć ź ń ć ć
Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej