Praktyczne badania aktywności katalizatorów uwodornienia
|
|
- Ksawery Maciej Cichoń
- 6 lat temu
- Przeglądów:
Transkrypt
1 Praktyczne badania aktywności katalizatorów uwodornienia
2 Charakterystyka procesu uwodornienia [1] Uwodornienie jest procesem polegającym na przyłączeniu cząsteczki wodoru do cząsteczki związku organicznego zawierającego wiązania nienasycone (Rys 1). + 2 C 3 CO + 2 C 2 5 O CO C 3 O Rys. 1. Przykładowe reakcje uwodornienia Proces ten wykorzystywany jest w przemyśle w celu otrzymania produktów przedstawionych w Tabeli 1. Tabela 1 Substraty i produkty procesu uwodornienia Uwodorniane ugrupowanie Substrat Produkt C C do C C acetylen etylen alkohol propargilowy alkohol allilowy C C do C 2 C 2 butyn-2-diol-1,4 butanodiol-1,4 C C do C 2 C 2 aldehyd krotonowy alkohol allilowy kwas oleinowy furan oleje roślinne i zwierzęce aldehyd n-masłowy n-propanol kwas stearynowy tetrahydrofuran do C O do C C O do C O C C do O C 2 C 2 benzen fenol anilina naftalen aldehyd n-masłowy aldehyd izomasłowy aldehyd octowy aceton akroleina aldehyd benzoesowy furfural gaz syntezowy gaz syntezowy + olefiny dinitryl kwasu adypinowego utwardzone oleje roślinne i zwierzęce cykloheksan cykloheksanol cykloheksyloanilina dekalina, tetralina n-butanol izobutanol etanol alkohol izopropylowy alkohol allilowy alkohol benzylowy alkohol furfurylowy metanol aldehydy okso heksametylenodiamina 2
3 Jest to reakcja odwracalna, egzotermiczna, zachodząca ze zmianą (zmniejszeniem) objętości, dlatego też procesowi uwodornienia sprzyja podwyższone ciśnienie i niższa temperatura. Przemysłowe procesy uwodornienia prowadzi się w zakresie temperatury od 25 do 250 o C. W niższych temperaturach uwodornia się wiązania nienasycone w alkinach, alkenach oraz grupy karbonylowe, w wyższych zaś przeprowadza się uwodornienie pierścieni aromatycznych, przy czym benzen ulega tej reakcji trudniej niż naftalen oraz fenol. Podczas uwodornienia pożądane jest stosowanie możliwie jak najmniejszej temperatury, w której szybkość reakcji jest jeszcze zadowalająca, gdyż praktycznie każda reakcja uwodornienia może być odwrócona przez podwyższenie temperatury. Jej wzrost powyżej 350 o C podczas uwodorniania związków aromatycznych powoduje reakcję odwrotną - odwodornienie cykloalkanów). W celu zwiększenia szybkości reakcji w stosunkowo niedużej temperaturze stosowane są katalizatory metaliczne (np. Ni, Pd, Pt, Cu, Co, Fe) oraz tlenkowe (tlenki Zn, Cr, Mn, Cu, W), które pod względem aktywności można podzielić na dwie grupy: 1. "mocne" katalizatory uwodornienia (Ni, Co, Fe) sprzyjają reakcji całkowitego uwodornienia, np. mogą powodować uwodornienie aldehydu poprzez alkohol aż do węglowodoru nasyconego. Aktywność tych katalizatorów może być modyfikowana przez odpowiednią technikę ich sporządzania oraz dobór odpowiednich parametrów reakcji uwodornienia 2. "łagodne" katalizatory uwodornienia (Pd, Pt, Cu, większość katalizatorów tlenkowych) - charakteryzują się wysoką aktywnością, jednakże doprowadzają reakcję uwodornienia jedynie do określonego stadium, np. katalizują uwodornienie aldehydów lub ketonów do alkoholi, tlenku węgla do metanolu, nie pozwalając reakcji dojść do stadium węglowodoru nasyconego. Przykładem jest katalizator zawierający ZnO, który charakteryzuje się tym, że w jego obecności wodór nie atakuje wiązań nienasyconych w łańcuchu węglowym, reaguje zaś z grupami karbonylowymi Katalizatory metaliczne stosuje się w postaci: dyspersji koloidalnej metalu osadzonego na nośniku o rozwiniętej powierzchni (żel krzemionkowy, tlenek glinu, sita molekularne) katalizatora szkieletowego typu Raneya Katalizatory z metali szlachetnych (Pt, Pd) stosowane są w zakresie o C, katalizatory niklowe od 150 do 250 o C, natomiast katalizatory tlenkowe w zakresie o C. Ciśnienie w procesach uwodornienia wynosi na ogół 0,5-20 MPa W przemyśle procesy uwodornienia prowadzi się zarówno w fazie gazowej jak i ciekłej. Podczas pracy w fazie gazowej stosuje się reaktory z wypełnieniem nieruchomym, jak i reaktory fluidyzacyjne. Podczas pracy w fazie ciekłej katalizator najczęściej ma postać zawiesiny w mieszaninie reakcyjnej. Uwodornienie przeprowadza sie w sposób periodyczny (w autoklawach), lub ciągły (w reaktorach przepływowych). 3
4 Uwodornienie benzenu Mechanizmowi i kinetyce reakcji uwodornienia benzenu w różnych układach katalitycznych, w tym w obecności katalizatorów opartych na nośnikach węglowych (np. Pd/sadza) poświęcono wiele uwagi [2, 3]. Doświadczenia uwodornienia benzenu prowadzono w urządzeniach periodycznych (autoklawach), w układach: dwufazowych (olej reagenty) lub jednofazowych (woda reagenty), pod ciśnieniem wodoru do 5 MPa [3], lub w mikroreaktorowych układach przepływowych ze stacjonarnym złożem katalizatora pod ciśnieniem atmosferycznym [4]. W zależności od stosowanych układów katalitycznych i reakcyjnych badania uwodornienia benzenu prowadzono w dość szerokim zakresie temperatur, o C. Uwodornienie benzenu do cykloheksanu biegnie w myśl poniższego schematu (Rys. 2), w którym w pierwszym etapie reakcji benzen ulega uwodornieniu do 1,3-cykloheksadienu jako produktu pośredniego. Z uwagi na dużą szybkość przemiany 1,3-cykloheksadienu do cykloheksenu nie obserwuje się obecności jego śladów w końcowych produktach reakcji. benzen 1,3-cykloheksadien cykloheksen cykloheksan Rys. 2. Model przemiany benzenu do cykloheksanu w reakcji uwodornienia [4]. W rozważaniach nad kinetyką i mechanizmem uwodornienia pierścienia aromatycznego Smeds i współpracownicy dowodzą jednak niemożliwości, z termodynamicznego punktu widzenia, tworzenia się cykloheksadienu [5]. Kinetyka chemiczna [6] Badania szybkości i mechanizmu danej reakcji polegają na określeniu jej stechiometrii, identyfikacji wszystkich możliwych reakcji ubocznych oraz zbadaniu zależności pomiędzy stężeniami substratów i produktów, a czasem trwania reakcji. Ze względu na zależność szybkości reakcji od temperatury szczególne znaczenie ma utrzymywanie stałej temperatury podczas całego doświadczenia. Badania przeprowadzone pod koniec XIX wieku przez S. Arrheniusa wykazały istotną zależność stałej szybkości reakcji od temperatury procesu i energii aktywacji: gdzie: k - stała szybkości reakcji A - tzw. czynnik przedwykładniczy charakterystyczny dla danej reakcji, E a - energia aktywacji [kj/mol] T - temperatura [K] R - stała gazowa 8,314 [J/mol K] 4
5 Reakcje o dużej wartości energii aktywacji bardzo silnie zależą od temperatury procesu, natomiast mała wartość energii aktywacji wskazuje, ze szybkość reakcji zmienia się nieznacznie wraz ze zmianą temperatury. Jeżeli energia aktywacji jest równa zeru (jak np. w reakcjach rekombinacji rodników w fazie gazowej), to szybkość reakcji jest od temperatury prawie niezależna. Doświadczalne metody badań kinetycznych [7] W celu określenia stałej szybkości reakcji konieczna jest obserwacja zmian stężenia substratów i produktów w miarę upływu czasu. W tym celu wykorzystuje się różnorakie metody analityczne zależne zarówno od charakteru badanych reakcji (np. fazy w jakiej ona zachodzi) jak i czasu osiągania stanu równowagi termodynamicznej. Do najbardziej rozpowszechnionych należą metody fizykochemiczne, które umożliwiają obserwację układu reakcyjnego bez naruszania jego składu. Bieg reakcji gazowych, w których zmianie ulega liczna moli cząsteczek gazu, śledzi się często przez manometryczne pomiary zmian całkowitego ciśnienia reagujących gazów w stałej objętości. Zmiany składu reagującej mieszaniny gazowej bada się też przez obserwację zmian jej przewodnictwa cieplnego, lepkości, gęstości itp., po uprzednim wykonaniu odpowiednich pomiarów kalibrujących. Możliwa jest też analiza mieszaniny reakcyjnej metodą spektrometrii mas, chromatografii gazowej czy też oznaczanie stężenia reagentów spektrofotometrycznie (często w zakresie podczerwieni). Jeszcze więcej różnorodnych metod fizykochemicznych stosuje się do badania szybkości reakcji w roztworach. Szczególnie wygodne są metody pozwalające na śledzenie biegu reakcji w sposób ciągły, bez pobierania próbek; reakcja może przy tym przebiegać bezpośrednio w naczyniu pomiarowym (np. w rurce polarymetru, czy kuwecie spektrofotometru), bądź też naczynie to jest połączone bezpośrednio z reaktorem, a mała objętość mieszaniny reagującej jest ustawicznie przez nie przepompowywana. Przebieg niezbyt szybkich reakcji, w których biorą udział jony (np. hydrolizy różnych związków organicznych), bada się często metodami elektrochemicznymi - konduktometrycznie lub potencjometrycznie. Bardzo szerokie możliwości dają metody polarograficzne pozwalające na szybkie oznaczanie wszelkich substancji ulegających redukcji czy utlenieniu na mikrokatodzie. Metodą szczególnie odpowiednią do badania szybkości bardzo powolnych reakcji jest mikrokalorymetria. O postępie reakcji wnioskujemy tu na podstawie ilości wydzielonego, albo pochłoniętego ciepła w zależności od czasu. W przypadku reakcji, które stan równowagi termodynamicznej osiągają w ułamkach sekund stosuje się bardziej zaawansowane techniki śledzenia zmian stężeń substratów, do których należą m.in. metody przepływowe, relaksacyjne, NMR i EPR, metoda fal uderzeniowych, czy też fotoliza błyskowa. Stosując w/w techniki możliwe jest badanie stałych szybkości reakcji biegnących w czasie sekundy. 5
6 Wyznaczanie postaci równania kinetycznego [6] Równaniem kinetycznym nazywamy równanie, które przedstawia szybkość reakcji jako funkcję stężeń molowych reagentów (w tym ewentualnie również produktów) sumarycznej reakcji. Równanie kinetyczne stanowi podstawę klasyfikacji reakcji ze względu na ich kinetykę. Zaletą tej klasyfikacji jest to, że grupuje ona razem reakcje wykazujące podobne zachowanie: ich szybkości zmieniają się w podobny sposób, gdy zmienia się stężenie reagentów. Podział reakcji jest oparty na pojęciu "rzędu", jaki wykazuje reakcja. Rzędem reakcji ze względu na którykolwiek z reagentów nazywamy wykładnik potęgi, w której występuje stężenie tego reagenta w równaniu kinetycznym reakcji. Na przykład reakcja o równaniu: szybkość reakcji = k[a][b] jest pieszego rzędu ze względu na A i pierwszego rzędu ze względu na B. Natomiast reakcja o równaniu kinetycznym jest drugiego rzędu ze względu na A. szybkość reakcji =k[a] 2 Całkowitym rzędem reakcji nazywamy sumę rzędów ze względu na wszystkie poszczególne reagenty. Oba przedstawione powyżej równania kinetyczne są równaniami o rzędzie równym dwa. Rząd reakcji nie musi być liczbą całkowitą (np. wiele reakcji przebiegających w fazie gazowej charakteryzuje się rzędem będącym ułamkiem). Jeżeli szybkości reakcji nie można przedstawić jako proporcjonalnej do iloczynu [A] x [B] y [C] z..., to nie przypisujemy jej rzędu. Przykładem takiej reakcji jest tworzenie Br w fazie gazowej. Wyznaczanie postaci równania kinetycznego ułatwia tzw. metoda izolacyjna, w której wszystkie substraty, poza jednym, wprowadza się w dużym nadmiarze. Jeżeli sporządzając mieszaninę reakcyjną wprowadzimy do niej w dużym nadmiarze np. substrat B, to możemy z dobrym przybliżeniem przyjąć, że jego stężenie pozostaje stałe przez cały czas reakcji. Wówczas, chociażby równanie kinetyczne miało postać: szybkość reakcji = k[a][b] 2 możemy zastąpić stężenie B (które w trakcie reakcji prawie się nie zmienia) jego wartością początkową [B] 0 i napisać szybkość reakcji = k ' [A], przy czym k ' = k[b] 2 0 Równanie to ma postać równania kinetycznego reakcji pierwszego rzędu. Ponieważ jednak przyjęcie przez rzeczywiste równanie kinetyczne takiej postaci zostało wymuszone narzuconym warunkiem stałości stężenia B, otrzymane równanie określa się jako równanie reakcji pseudopierwszego rzędu Ponieważ równania kinetyczne są równaniami różniczkowymi (tj. równaniami wiążącymi szybkość d[a]/dt ze stężeniem [A]), aby móc na ich podstawie obliczać stężenia w zależności od 6
7 czasu, należy je scałkować. Postać całkowa równania kinetycznego jest równaniem podającym stężenie jakiegoś reagenta jako funkcję czasu. Obecnie, dzięki rozpowszechnieniu komputerów, nawet najbardziej złożone równania kinetyczne można scałkować numerycznie. Jednak w wielu prostych przypadkach można łatwo otrzymać również rozwiązania analityczne i okazuje się to bardzo przydatne. Równanie w tej postaci znajduje dwa zastosowania. Po pierwsze, rozwiązanie analityczne pozwala łatwo przewidywać stężenie wybranego reagenta w dowolnym czasie od momentu zapoczątkowania reakcji. Po drugie, pomaga ono znaleźć rząd i stałą szybkości reakcji. W przypadku reakcji pierwszego rzędu, której szybkość jest wprost proporcjonalna do pierwszej potęgi chwilowego stężenia [A] pewnego substratu A, całkowe równanie kinetyczne możemy zapisać w postaci gdzie: [A] - chwilowe stężenie substratu A [A] 0 - stężenie substratu A w czasie t=0 t - czas k - stała szybkości reakcji W celu potwierdzenia przypuszczalnego rzędu reakcji (w omawianym przypadku reakcji pierwszego rzędu) oraz wyznaczenia stałej szybkości reakcji, sporządza się wykres zależności ln([a] 0 /[A]) od t. Jeżeli wartości doświadczalne przedstawione na takim wykresie układają się w linii prostej, wówczas wnosimy, że reakcja jest rzeczywiście rzędu pierwszego; gdy tworzą linię zakrzywioną, nie mamy do czynienia z reakcją rzędu pierwszego. W pierwszym przypadku nachylenie linii prostej jest równe k i możemy wyznaczyć tę ważną wielkość wprost z wykresu (Rys. 3). Rys. 3. Zależność logarytmu stężenia substratu od czasu dla reakcji pierwszego rzędu [7]. 7
8 Znając stałą szybkości reakcji k możliwe jest oznaczenie czasu połowicznego zaniku (czasu połowicznej przemiany), t 1/2 - czyli czasu potrzebnego, aby stężenie substratu zmalało do połowy swej początkowej wartości. W przypadku reakcji pierwszego rzędu czas połowicznego zaniku substratu dany jest wzorem: i jest niezależny od jego początkowego stężenia. W przeciwieństwie do reakcji pierwszego rzędu w reakcjach rzędu drugiego czas połowicznego zaniku zależy od początkowego stężenia substratu. Nie jest więc wielkością charakterystyczną dla reakcji i z tego powodu rzadko odwołujemy się do niego w opisie reakcji. Jedną z konsekwencji niezależności czasu połowicznego zaniku od stężenia w reakcjach pierwszego rzędu jest możliwość wykorzystania go do identyfikacji takich reakcji. Tak więc, gdy śledząc stężenie substratu w zależności od czasu stwierdzimy, że zmalało ono do połowy po pewnym czasie t ' i że taki sam czas t ' potrzebny był, by dwukrotnie zmniejszyło się inne stężenie początkowe, możemy wnosić, że badana reakcja jest pierwszego rzędu. Wniosek ten można następnie potwierdzić, kreśląc zależność ln [A] od czasu i stwierdzając, że przedstawia ona linię prostą. Literatura cytowana: [1] R. Bogoczek, E. Kociołek-Balawajder. Technologia chemiczna organiczna. Surowce i półprodukty. Wydawnictwo Akademii Ekonomicznej we Wrocławiu ISBN [2] N. Krishnankutty, M.A. Vannice. The effect of pretreatment on Pd/C catalysts: II. Catalytic behaviour. J. Catal. 1995; 155: [3] P-. Jen, Y-. su, S.D. Lin. The activity and stability of Pd/C catalysts in benzene hydrogenation. Catal. Today 2007; 123: [4] F. Döbert, J. Gaube. Kinetics and reaction engineering of selective hydrogenation of benzene towards cyclohexene. Chem. Eng. Sci. 1996; 51: [5] S. Smeds, T. Salami, D.Y. Murzin. On the kinetic coupling and mechanism of aromatic ring hydrogenation. React. Kinet. Catal. Lett. 1998; 63: [6] P.W. Atkins. Podstawy chemii fizycznej. WN PWN Warszawa ISBN [7] K. Pigoń, Z. Ruziewicz. Chemia fizyczna T.1 Podstawy fenomenologiczne. WN PWN Warszawa ISBN X. 8
Uwodornienie węglowodorów aromatycznych w układzie periodycznym lub ciągłym
Uwodornienie węglowodorów aromatycznych w układzie periodycznym lub ciągłym Uwodornienie jest procesem polegającym na przyłączeniu cząsteczki wodoru do cząsteczki związku organicznego zawierającego wiązania
Ćwiczenie IX KATALITYCZNY ROZKŁAD WODY UTLENIONEJ
Wprowadzenie Ćwiczenie IX KATALITYCZNY ROZKŁAD WODY UTLENIONEJ opracowanie: Barbara Stypuła Celem ćwiczenia jest poznanie roli katalizatora w procesach chemicznych oraz prostego sposobu wyznaczenia wpływu
1. Zaproponuj doświadczenie pozwalające oszacować szybkość reakcji hydrolizy octanu etylu w środowisku obojętnym
1. Zaproponuj doświadczenie pozwalające oszacować szybkość reakcji hydrolizy octanu etylu w środowisku obojętnym 2. W pewnej chwili szybkość powstawania produktu C w reakcji: 2A + B 4C wynosiła 6 [mol/dm
ZADANIE 1 W temperaturze 700 K gazowa mieszanina dwutlenku węgla i wodoru reaguje z wytworzeniem pary wodnej i tlenku węgla. Stała równowagi reakcji
ZADANIE 1 W temperaturze 700 K gazowa mieszanina dwutlenku węgla i wodoru reaguje z wytworzeniem pary wodnej i tlenku węgla. Stała równowagi reakcji w tej temperaturze wynosi K p = 0,11. Reaktor został
Odwracalność przemiany chemicznej
Odwracalność przemiany chemicznej Na ogół wszystkie reakcje chemiczne są odwracalne, tzn. z danych substratów tworzą się produkty, a jednocześnie produkty reakcji ulegają rozkładowi na substraty. Fakt
Kinetyka. Kinetyka. Stawia dwa pytania: 1)Jak szybko biegną reakcje? 2) W jaki sposób przebiegają reakcje? energia swobodna, G. postęp reakcji.
Kinetyka energia swobodna, G termodynamika stan 1 kinetyka termodynamika stan 2 postęp reakcji 1 Kinetyka Stawia dwa pytania: 1)Jak szybko biegną reakcje? 2) W jaki sposób przebiegają reakcje? 2 Jak szybko
Kinetyka. energia swobodna, G. postęp reakcji. stan 1 stan 2. kinetyka
Kinetyka postęp reakcji energia swobodna, G termodynamika kinetyka termodynamika stan 1 stan 2 Kinetyka Stawia dwa pytania: 1) Jak szybko biegną reakcje? 2) W jaki sposób przebiegają reakcje? 1) Jak szybko
Przedmiot: Chemia budowlana Zakład Materiałoznawstwa i Technologii Betonu
Przedmiot: Chemia budowlana Zakład Materiałoznawstwa i Technologii Betonu Ćw. 4 Kinetyka reakcji chemicznych Zagadnienia do przygotowania: Szybkość reakcji chemicznej, zależność szybkości reakcji chemicznej
Repetytorium z wybranych zagadnień z chemii
Repetytorium z wybranych zagadnień z chemii Mol jest to liczebność materii występująca, gdy liczba cząstek (elementów) układu jest równa liczbie atomów zawartych w masie 12 g węgla 12 C (równa liczbie
KINETYKA INWERSJI SACHAROZY
Dorota Warmińska, Maciej Śmiechowski Katedra Chemii Fizycznej, Wydział Chemiczny, Politechnika Gdańska KINETYKA INWERSJI SACHAROZY Wstęp teoretyczny Kataliza kwasowo-zasadowa Kataliza kwasowo-zasadowa
PRACOWNIA CHEMII. Kinetyka reakcji chemicznych (Fiz1)
PRACOWNIA CHEMII Ćwiczenia laboratoryjne dla studentów II roku kierunku Zastosowania fizyki w biologii i medycynie Biofizyka molekularna Projektowanie molekularne i bioinformatyka Kinetyka reakcji chemicznych
Materiał powtórzeniowy do sprawdzianu - reakcje egzoenergetyczne i endoenergetyczne, szybkość reakcji chemicznych
Materiał powtórzeniowy do sprawdzianu - reakcje egzoenergetyczne i endoenergetyczne, szybkość reakcji chemicznych I. Reakcje egzoenergetyczne i endoenergetyczne 1. Układ i otoczenie Układ - ogół substancji
Kinetyka reakcji chemicznych. Dr Mariola Samsonowicz
Kinetyka reakcji chemicznych Dr Mariola Samsonowicz 1 Czym zajmuje się kinetyka chemiczna? Badaniem szybkości reakcji chemicznych poprzez analizę eksperymentalną i teoretyczną. Zdefiniowanie równania kinetycznego
KI + Pb(NO 3 ) 2 PbI 2 + KNO 3. fermentacja alkoholowa
Kinetyka chemiczna KI + Pb(NO 3 ) 2 PbI 2 + KNO 3 fermentacja alkoholowa czynniki wpływaj ywające na szybkość reakcji chemicznych stęż ężenie reagentów w (lub ciśnienie gazów w jeżeli eli reakcja przebiega
Zagadnienia do pracy klasowej: Kinetyka, równowaga, termochemia, chemia roztworów wodnych
Zagadnienia do pracy klasowej: Kinetyka, równowaga, termochemia, chemia roztworów wodnych 1. Równanie kinetyczne, szybkość reakcji, rząd i cząsteczkowość reakcji. Zmiana szybkości reakcji na skutek zmiany
Ćwiczenie 8 Wyznaczanie stałej szybkości reakcji utleniania jonów tiosiarczanowych
CHEMI FIZYCZN Ćwiczenie 8 Wyznaczanie stałej szybkości reakcji utleniania jonów tiosiarczanowych W ćwiczeniu przeprowadzana jest reakcja utleniania jonów tiosiarczanowych za pomocą jonów żelaza(iii). Przebieg
KATALITYCZNY ROZKŁAD WODY UTLENIONEJ
Dorota Warmińska, Maciej Śmiechowski Katedra Chemii Fizycznej, Wydział Chemiczny, Politechnika Gdańska KATALITYCZNY ROZKŁAD WODY UTLENIONEJ Wstęp teoretyczny Kataliza homo- i heterogeniczna Zwiększenie
KI + Pb(NO 3 ) 2 PbI 2 + KNO 3. fermentacja alkoholowa
Kinetyka chemiczna KI + Pb(NO 3 ) 2 PbI 2 + KNO 3 fermentacja alkoholowa czynniki wpływaj ywające na szybkość reakcji chemicznych stęż ężenie reagentów w (lub ciśnienie gazów w jeżeli eli reakcja przebiega
Kinetyka chemiczna jest działem fizykochemii zajmującym się szybkością i mechanizmem reakcji chemicznych w różnych warunkach. a RT.
Ćwiczenie 12, 13. Kinetyka chemiczna. Kinetyka chemiczna jest działem fizykochemii zajmującym się szybkością i mechanizmem reakcji chemicznych w różnych warunkach. Szybkość reakcji chemicznej jest związana
Węglowodory poziom podstawowy
Węglowodory poziom podstawowy Zadanie 1. (2 pkt) Źródło: CKE 2010 (PP), zad. 19. W wyniku całkowitego spalenia 1 mola cząsteczek węglowodoru X powstały 2 mole cząsteczek wody i 3 mole cząsteczek tlenku
Inżynieria Biomedyczna
1.Obliczyć przy jakim stężeniu kwasu octowego stopień dysocjacji osiągnie wartość 3.%, jeżeli wiadomo, że stopień dysocjacji 15.%-wego roztworu (d=1.2 g/cm 3 ) w 2. Do 1 cm 3 2% (d=1.2 g/cm 3 ) roztworu
Inżynieria procesów przetwórstwa węgla, zima 15/16
Inżynieria procesów przetwórstwa węgla, zima 15/16 Ćwiczenia 1 7.10.2015 1. Załóżmy, że balon ma kształt sfery o promieniu 3m. a. Jaka ilość wodoru potrzebna jest do jego wypełnienia, aby na poziomie morza
EFEKT SOLNY BRÖNSTEDA
EFEKT SLNY RÖNSTED Pojęcie eektu solnego zostało wprowadzone przez rönsteda w celu wytłumaczenia wpływu obojętnego elektrolitu na szybkość reakcji zachodzących między jonami. Założył on, że reakcja pomiędzy
a) 1 mol b) 0,5 mola c) 1,7 mola d) potrzebna jest znajomość objętości zbiornika, aby można było przeprowadzić obliczenia
1. Oblicz wartość stałej równowagi reakcji: 2HI H 2 + I 2 w temperaturze 600K, jeśli wiesz, że stężenia reagentów w stanie równowagi wynosiły: [HI]=0,2 mol/dm 3 ; [H 2 ]=0,02 mol/dm 3 ; [I 2 ]=0,024 mol/dm
1 Kinetyka reakcji chemicznych
Podstawy obliczeń chemicznych 1 1 Kinetyka reakcji chemicznych Szybkość reakcji chemicznej definiuje się jako ubytek stężenia substratu lub wzrost stężenia produktu w jednostce czasu. ν = c [ ] 2 c 1 mol
Chemia fizyczna 2 - wykład
Chemia fizyczna 2 - wykład Dr hab. inż. Aneta Pobudkowska-Mirecka Konsultacje: środa 12.15 14.00 (p.149) Chemia Fizyczna 2 - wykład Chemia kwantowa (prof. dr hab. Andrzej Sporzyński) Procesy (dr hab. inż.
Kinetyka i równowaga reakcji chemicznej
Kinetyka i równowaga reakcji chemicznej W przebiegu reakcji chemicznych interesujące są dwa aspekty zachodzących przemian: 1. rodzaj substratów i otrzymanych z nich produktów, 2. szybkość, z jaką substraty
Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 2, zadanie nr 1 1
Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 2, zadanie nr 1 1 [Imię, nazwisko, grupa] prowadzący Uwaga! Proszę stosować się do następującego sposobu wprowadzania tekstu w ramkach : pola szare
Plan dydaktyczny z chemii klasa: 2TRA 1 godzina tygodniowo- zakres podstawowy. Dział Zakres treści
Anna Kulaszewicz Plan dydaktyczny z chemii klasa: 2TRA 1 godzina tygodniowo- zakres podstawowy lp. Dział Temat Zakres treści 1 Zapoznanie z przedmiotowym systemem oceniania i wymaganiami edukacyjnymi z
57 Zjazd PTChem i SITPChem Częstochowa, Promotowany miedzią niklowy katalizator do uwodornienia benzenu
57 Zjazd PTChem i SITPChem Częstochowa, 14-18.09.2014 Promotowany miedzią niklowy katalizator do uwodornienia benzenu Kamila Michalska Kazimierz Stołecki Tadeusz Borowiecki Uwodornienie benzenu do cykloheksanu
Wykład z Chemii Ogólnej i Nieorganicznej
Wykład z Chemii Ogólnej i Nieorganicznej Część 5 ELEMENTY STATYKI CHEMICZNEJ Katedra i Zakład Chemii Fizycznej Collegium Medicum w Bydgoszczy Uniwersytet Mikołaja Kopernika w Toruniu Prof. dr hab. n.chem.
SZYBKOŚĆ REAKCJI CHEMICZNYCH. RÓWNOWAGA CHEMICZNA
SZYBKOŚĆ REAKCJI CHEMICZNYCH. RÓWNOWAGA CHEMICZNA Zadania dla studentów ze skryptu,,obliczenia z chemii ogólnej Wydawnictwa Uniwersytetu Gdańskiego 1. Reakcja między substancjami A i B zachodzi według
Inżynieria Biomedyczna
1.Obliczyć przy jakim stężeniu kwasu octowego stopień dysocjacji osiągnie wartość 3.%, jeżeli wiadomo, że stopień dysocjacji 15.%-wego roztworu (d=1.2 g/cm 3 ) w 2. Do 1 cm 3 2% (d=1.2 g/cm 3 ) roztworu
Chemia - laboratorium
Chemia - laboratorium Wydział Geologii, Geofizyki i Ochrony Środowiska Studia stacjonarne, Rok I, Semestr zimowy 013/14 Dr hab. inż. Tomasz Brylewski e-mail: brylew@agh.edu.pl tel. 1-617-59 Katedra Fizykochemii
Wpływ wybranych czynników na efektywność procesu
POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA TECHNOLOGII CHEMICZNEJ ORGANICZNEJ I PETROCHEMII INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH: Wpływ wybranych czynników na efektywność procesu Laboratorium z przedmiotu:
CZYNNIKI WPŁYWAJĄCE NA SZYBKOŚĆ REAKCJI CHEMICZNYCH. ILOŚCIOWE ZBADANIE SZYBKOŚCI ROZPADU NADTLENKU WODORU.
CZYNNIKI WPŁYWAJĄCE NA SZYBKOŚĆ REAKCJI CHEMICZNYCH. ILOŚCIOWE ZBADANIE SZYBKOŚCI ROZPADU NADTLENKU WODORU. Projekt zrealizowany w ramach Mazowieckiego programu stypendialnego dla uczniów szczególnie uzdolnionych
Badanie kinetyki katalitycznego rozkładu H 2 O 2
Badanie kinetyki katalitycznego rozkładu H 2 O 2 (opracowanie: Barbara Krajewska) Celem ćwiczenia jest zapoznanie się z prawami kinetyki chemicznej, sposobem wyznaczenia stałej szybkości i rzędu reakcji
fermentacja alkoholowa erozja skał lata dni KI + Pb(NO 3 ) 2 PbI 2 + KNO 3 min Karkonosze Pielgrzymy (1204 m n.p.m.)
Kinetyka chemiczna lata erozja skał Karkonosze Pielgrzymy (1204 m n.p.m.) fermentacja alkoholowa dni min KI + Pb(NO 3 ) 2 PbI 2 + KNO 3 s ms fs http://www2.warwick.ac.uk/fac/sci/chemistry/research/stavros/stavrosgroup/overview/
Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali
Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali Wymagane wiadomości Podstawy korozji elektrochemicznej, wykresy E-pH. Wprowadzenie Główną przyczyną zniszczeń materiałów metalicznych
Zadanie 1. [ 3 pkt.] Uzupełnij zdania, wpisując brakującą informację z odpowiednimi jednostkami.
Zadanie 1. [ 3 pkt.] Uzupełnij zdania, wpisując brakującą informację z odpowiednimi jednostkami. I. Gęstość propanu w warunkach normalnych wynosi II. Jeżeli stężenie procentowe nasyconego roztworu pewnej
Wyznaczanie stałej szybkości reakcji wymiany jonowej
Wyznaczanie stałej szybkości reakcji wymiany jonowej Ćwiczenie laboratoryjne nr 4 Elementy termodynamiki i kinetyki procesowej Anna Ptaszek Elementy kinetyki chemicznej Pojęcie szybkości reakcji Pojęcie
Zagadnienia z chemii na egzamin wstępny kierunek Technik Farmaceutyczny Szkoła Policealna im. J. Romanowskiej
Zagadnienia z chemii na egzamin wstępny kierunek Technik Farmaceutyczny Szkoła Policealna im. J. Romanowskiej 1) Podstawowe prawa i pojęcia chemiczne 2) Roztwory (zadania rachunkowe zbiór zadań Pazdro
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wpływ stężenia kwasu na szybkość hydrolizy estru
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Wpływ stężenia kwasu na szybkość hydrolizy estru ćwiczenie nr 25 opracowała dr B. Nowicka, aktualizacja D. Waliszewski Zakres zagadnień obowiązujących do
WYKAZ NAJWAŻNIEJSZYCH SYMBOLI
SPIS TREŚCI WYKAZ NAJWAŻNIEJSZYCH SYMBOLI...7 PRZEDMOWA...8 1. WSTĘP...9 2. MATEMATYCZNE OPRACOWANIE WYNIKÓW POMIARÓW...10 3. LEPKOŚĆ CIECZY...15 3.1. Pomiar lepkości...16 3.2. Lepkość względna...18 3.3.
VIII Podkarpacki Konkurs Chemiczny 2015/2016
III Podkarpacki Konkurs Chemiczny 015/016 ETAP I 1.11.015 r. Godz. 10.00-1.00 Uwaga! Masy molowe pierwiastków podano na końcu zestawu. Zadanie 1 (10 pkt) 1. Kierunek której reakcji nie zmieni się pod wpływem
ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa
Prawo zachowania energii: ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa Ogólny zasób energii jest niezmienny. Jeżeli zwiększa się zasób energii wybranego układu, to wyłącznie kosztem
Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).
Spis treści 1 Stan gazowy 2 Gaz doskonały 21 Definicja mikroskopowa 22 Definicja makroskopowa (termodynamiczna) 3 Prawa gazowe 31 Prawo Boyle a-mariotte a 32 Prawo Gay-Lussaca 33 Prawo Charlesa 34 Prawo
X / \ Y Y Y Z / \ W W ... imię i nazwisko,nazwa szkoły, miasto
Zadanie 1. (3 pkt) Nadtlenek litu (Li 2 O 2 ) jest ciałem stałym, występującym w temperaturze pokojowej w postaci białych kryształów. Stosowany jest w oczyszczaczach powietrza, gdzie ważna jest waga użytego
a) jeżeli przedstawiona reakcja jest reakcją egzotermiczną, to jej prawidłowy przebieg jest przedstawiony na wykresie za pomocą linii...
1. Spośród podanych reakcji wybierz reakcję egzoenergetyczną: a) Redukcja tlenku miedzi (II) wodorem b) Otrzymywanie tlenu przez rozkład chloranu (V) potasu c) Otrzymywanie wapna palonego w procesie prażenia
Podstawowe pojęcia i prawa chemiczne
Podstawowe pojęcia i prawa chemiczne Pierwiastki, nazewnictwo i symbole. Budowa atomu, izotopy. Przemiany promieniotwórcze, okres półtrwania. Układ okresowy. Właściwości pierwiastków a ich położenie w
relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach
1 STECHIOMETRIA INTERPRETACJA ILOŚCIOWA ZJAWISK CHEMICZNYCH relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach
POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ
ZALEŻNOŚĆ STAŁEJ SZYBKOŚCI REAKCJI OD TEMPERATURY WSTĘP Szybkość reakcji drugiego rzędu: A + B C (1) zależy od stężenia substratów A oraz B v = k [A][B] (2) Gdy jednym z reagentów jest rozpuszczalnik (np.
erozja skał lata KI + Pb(NO 3 ) 2 PbI 2 + KNO 3 min Karkonosze Pielgrzymy (1204 m n.p.m.)
Kinetyka chemiczna erozja skał Karkonosze Pielgrzymy (1204 m n.p.m.) fermentacja alkoholowa lata min KI + Pb(NO 3 ) 2 PbI 2 + KNO 3 s ms fs http://www2.warwick.ac.uk/fac/sci/chemistry/research/stavros/stavrosgroup/overview/
1. Określ, w którą stronę przesunie się równowaga reakcji syntezy pary wodnej z pierwiastków przy zwiększeniu objętości zbiornika reakcyjnego:
1. Określ, w którą stronę przesunie się równowaga reakcji syntezy pary wodnej z pierwiastków przy zwiększeniu objętości zbiornika reakcyjnego: 2. Określ w którą stronę przesunie się równowaga reakcji rozkładu
Wykład 4. Anna Ptaszek. 27 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 4. Anna Ptaszek 1 / 31
Wykład 4 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 27 października 2015 1 / 31 Podstawy kinetyki chemicznej pochodna funkcji i jej interpretacja, pojęcie szybkości i prędkości, stechiometria
Rzeszów, 27 listopada, 2012 r.
Rzeszów, 27 listopada, 2012 r. OPINIA o całokształcie dorobku naukowego dr inż. Marii MADEJ- LACHOWSKIEJ ze szczególnym uwzględnieniem rozprawy habilitacyjnej pt. Reforming metanolu parą wodną termodynamika,
Wskaż grupy reakcji, do których można zaliczyć proces opisany w informacji wstępnej. A. I i III B. I i IV C. II i III D. II i IV
Informacja do zadań 1. i 2. Proces spalania pewnego węglowodoru przebiega według równania: C 4 H 8(g) + 6O 2(g) 4CO 2(g) + 4H 2 O (g) + energia cieplna Zadanie 1. (1 pkt) Procesy chemiczne można zakwalifikować
KATALITYCZNE ODWODORNIENIE HEPTANU
Zakład Technologii Chemicznej Pracownia z Technologii Chemicznej Ćwiczenie 12 KATALITYCZNE ODWODORNIENIE HEPTANU WARSZAWA 2012 Prowadzi dr inż. Jadwiga Skupińska Ćwiczenie 12 KATALITYCZNE ODWODORNIENIE
Terminy. Omówienie kolokwium I. Poprawa kolokwium I. Poprawa kolokwium II g. 15, s g. 15, s g. 15, s.
Tomasz Lubera Omówienie kolokwium I 14.05 g. 15, s. 402 Poprawa kolokwium I 21.05 g. 15, s. 402 Poprawa kolokwium II 28.05 g. 15, s. 402 Terminy Ćwiczenia rachunkowe z chemii fizycznej - Kolokwium II 2
Opracował: dr inż. Tadeusz Lemek
Materiały dydaktyczne na zajęcia wyrównawcze z chemii dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Opracował:
POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ
POLITECHNIA POZNAŃSA ZAŁAD CHEMII FIZYCZNEJ ATALIZA HOMOGENICZNA WSTĘP ataliza: Jest to zjawisko przyspieszenia reakcji w obecności katalizatora. atalizator to substancja, która choć uczestniczy w reakcji
1. Stechiometria 1.1. Obliczenia składu substancji na podstawie wzoru
1. Stechiometria 1.1. Obliczenia składu substancji na podstawie wzoru Wzór związku chemicznego podaje jakościowy jego skład z jakich pierwiastków jest zbudowany oraz liczbę atomów poszczególnych pierwiastków
Termochemia efekty energetyczne reakcji
Termochemia efekty energetyczne reakcji 1. Podstawowe pojęcia termodynamiki chemicznej a) Układ i otoczenie Układ, to wyodrębniony obszar materii, oddzielony od otoczenia wyraźnymi granicami (np. reagenty
dla której jest spełniony warunek równowagi: [H + ] [X ] / [HX] = K
RÓWNOWAGI W ROZTWORACH Szwedzki chemik Svante Arrhenius w 1887 roku jako pierwszy wykazał, że procesowi rozpuszczania wielu substancji towarzyszy dysocjacja, czyli rozpad cząsteczek na jony naładowane
PRÓBNY EGZAMIN MATURALNY Z CHEMII
Wpisuje zdający przed rozpoczęciem pracy PESEL ZDAJĄ CEGO Miejsce na nalepkę z kodem szkoły Instrukcja dla zdającego PRÓBNY EGZAMIN MATURALNY Z CHEMII Arkusz II (dla poziomu rozszerzonego) Czas pracy 120
3. Badanie kinetyki enzymów
3. Badanie kinetyki enzymów Przy stałym stężeniu enzymu, a przy zmieniającym się początkowym stężeniu substratu, zmiany szybkości reakcji katalizy, wyrażonej jako liczba moli substratu przetworzonego w
POLITECHNIKA WARSZAWSKA WYDZIAŁ CHEMICZNY. Katedra Technologii Chemicznej. Technologia Chemiczna laboratorium
POLITECHNIKA WARSZAWSKA WYDZIAŁ CHEMICZNY Katedra Technologii Chemicznej Technologia Chemiczna laboratorium Kataliza heterogeniczna w zielonej chemii dr hab. inż., prof. PW Marek Gliński dr inż. Urszula
Kinetyka reakcji hydrolizy sacharozy katalizowanej przez inwertazę
Kinetyka reakcji hydrolizy sacharozy katalizowanej przez inwertazę Prowadzący: dr hab. inż. Ilona WANDZIK mgr inż. Sebastian BUDNIOK mgr inż. Marta GREC mgr inż. Jadwiga PASZKOWSKA Miejsce ćwiczenia: sala
WNIOSEK REKRUTACYJNY NA ZAJĘCIA KÓŁKO OLIMPIJSKIE Z CHEMII - poziom PG
WNIOSEK REKRUTACYJNY NA ZAJĘCIA KÓŁKO OLIMPIJSKIE Z CHEMII - poziom PG Imię i nazwisko: Klasa i szkoła*: Adres e-mail: Nr telefonu: Czy uczeń jest już uczestnikiem projektu Zdolni z Pomorza - Uniwersytet
Wykład 10 Równowaga chemiczna
Wykład 10 Równowaga chemiczna REAKCJA CHEMICZNA JEST W RÓWNOWADZE, GDY NIE STWIERDZAMY TENDENCJI DO ZMIAN ILOŚCI (STĘŻEŃ) SUBSTRATÓW ANI PRODUKTÓW RÓWNOWAGA CHEMICZNA JEST RÓWNOWAGĄ DYNAMICZNĄ W rzeczywistości
WYKŁAD 3 TERMOCHEMIA
WYKŁAD 3 TERMOCHEMIA Termochemia jest działem termodynamiki zajmującym się zastosowaniem pierwszej zasady termodynamiki do obliczania efektów cieplnych procesów fizykochemicznych, a w szczególności przemian
Laboratorium 5. Wpływ temperatury na aktywność enzymów. Inaktywacja termiczna
Laboratorium 5 Wpływ temperatury na aktywność enzymów. Inaktywacja termiczna Prowadzący: dr inż. Karolina Labus 1. CZĘŚĆ TEORETYCZNA Szybkość reakcji enzymatycznej zależy przede wszystkim od stężenia substratu
Kryteria oceniania z chemii kl VII
Kryteria oceniania z chemii kl VII Ocena dopuszczająca -stosuje zasady BHP w pracowni -nazywa sprzęt laboratoryjny i szkło oraz określa ich przeznaczenie -opisuje właściwości substancji używanych na co
WYMAGANIA EDUKACYJNE na poszczególne oceny śródroczne i roczne. Z CHEMII W KLASIE III gimnazjum
WYMAGANIA EDUKACYJNE na poszczególne oceny śródroczne i roczne Z CHEMII W KLASIE III gimnazjum Program nauczania chemii w gimnazjum autorzy: Teresa Kulawik, Maria Litwin Program realizowany przy pomocy
Ćwiczenie 14. Maria Bełtowska-Brzezinska KINETYKA REAKCJI ENZYMATYCZNYCH
Ćwiczenie 14 aria Bełtowska-Brzezinska KINETYKA REAKCJI ENZYATYCZNYCH Zagadnienia: Podstawowe pojęcia kinetyki chemicznej (szybkość reakcji, reakcje elementarne, rząd reakcji). Równania kinetyczne prostych
Zidentyfikuj związki A i B. w tym celu podaj ich wzory półstrukturalne Podaj nazwy grup związków organicznych, do których one należą.
Zadanie 1. (2 pkt) Poniżej przedstawiono schemat syntezy pewnego związku. Zidentyfikuj związki A i B. w tym celu podaj ich wzory półstrukturalne Podaj nazwy grup związków organicznych, do których one należą.
LABORATORIUM Z KATALIZY HOMOGENICZNEJ I HETEROGENICZNEJ WYZNACZANIE STAŁEJ SZYBKOŚCI REAKCJI UTLENIANIA POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY
POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW WYZNACZANIE STAŁEJ SZYBKOŚCI REAKCJI UTLENIANIA JONÓW TIOSIARCZANOWYCH Miejsce ćwiczenia: Zakład Chemii Fizycznej, sala
Praca objętościowa - pv (wymiana energii na sposób pracy) Ciepło reakcji Q (wymiana energii na sposób ciepła) Energia wewnętrzna
Energia - zdolność danego układu do wykonania dowolnej pracy. Potencjalna praca, którą układ może w przyszłości wykonać. Praca wykonana przez układ jak i przeniesienie energii może manifestować się na
WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII DLA UCZNIÓW GIMNAZJÓW - rok szkolny 2016/2017 eliminacje rejonowe
kod ŁÓDZKIE CENTRUM DOSKONALENIA NAUCZYCIELI I KSZTAŁCENIA PRAKTYCZNEGO Uzyskane punkty.. WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII DLA UCZNIÓW GIMNAZJÓW - rok szkolny 2016/2017 eliminacje rejonowe Zadanie
OCENIANIE ARKUSZA POZIOM ROZSZERZONY
Próbny egzamin maturalny z chemii OCENIANIE ARKUSZA POZIOM ROZSZERZONY Zdający otrzymuje punkty tylko za poprawne rozwiązania, precyzyjnie odpowiadające poleceniom zawartym w zadaniach. Odpowiedzi niezgodne
Zagadnienia. Budowa atomu a. rozmieszczenie elektronów na orbitalach Z = 1-40; I
Nr zajęć Data Zagadnienia Budowa atomu a. rozmieszczenie elektronów na orbitalach Z = 1-40; I 9.10.2012. b. określenie liczby cząstek elementarnych na podstawie zapisu A z E, również dla jonów; c. określenie
Laboratorium Inżynierii Bioreaktorów
Laboratorium Inżynierii Bioreaktorów Ćwiczenie nr 1 Reaktor chemiczny: Wyznaczanie równania kinetycznego oraz charakterystyka reaktorów o działaniu ciągłym Cele ćwiczenia: 1 Wyznaczenie równania kinetycznego
Opracowała: mgr inż. Ewelina Nowak
Materiały dydaktyczne na zajęcia wyrównawcze z chemii dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Opracowała: mgr
Procentowa zawartość sodu (w molu tej soli są dwa mole sodu) wynosi:
Stechiometria Każdą reakcję chemiczną można zapisać równaniem, które jest jakościową i ilościową charakterystyką tej reakcji. Określa ono bowiem, jakie pierwiastki lub związki biorą udział w danej reakcji
Chemia klasa VII Wymagania edukacyjne na poszczególne oceny Semestr II
Chemia klasa VII Wymagania edukacyjne na poszczególne oceny Semestr II Łączenie się atomów. Równania reakcji Ocena dopuszczająca [1] Ocena dostateczna [1 + 2] Ocena dobra [1 + 2 + 3] Ocena bardzo dobra
OCENIANIE ARKUSZA POZIOM ROZSZERZONY
OCENIANIE ARKUSZA POZIOM ROZSZERZONY Zdający otrzymuje punkty tylko za poprawne rozwiązania, precyzyjnie odpowiadające poleceniom zawartym w zadaniach. Odpowiedzi niezgodne z poleceniem (nie na temat)
POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ
KALORYMETRIA - CIEPŁO ZOBOJĘTNIANIA WSTĘP Według pierwszej zasady termodynamiki, w dowolnym procesie zmiana energii wewnętrznej, U układu, równa się sumie ciepła wymienionego z otoczeniem, Q, oraz pracy,
Termodynamika techniczna i chemiczna, 2015/16, zadania do kol. 1, zadanie nr 1 1
Termodynamika techniczna i chemiczna, 2015/16, zadania do kol. 1, zadanie nr 1 1 [Imię, nazwisko, grupa] prowadzący 1. Obliczyć zmianę entalpii dla izobarycznej (p = 1 bar) reakcji chemicznej zapoczątkowanej
Zadanie 2. (1 pkt) Uzupełnij tabelę, wpisując wzory sumaryczne tlenków w odpowiednie kolumny. CrO CO 2 Fe 2 O 3 BaO SO 3 NO Cu 2 O
Test maturalny Chemia ogólna i nieorganiczna Zadanie 1. (1 pkt) Uzupełnij zdania. Pierwiastek chemiczny o liczbie atomowej 16 znajduje się w.... grupie i. okresie układu okresowego pierwiastków chemicznych,
WYZNACZANIE STAŁEJ SZYBKOŚCI REAKCJI I ENERGII AKTYWACJI
Ćwiczenie nr 4 WYZNACZANIE STAŁEJ SZYBKOŚCI REAKCJI I ENERGII AKTYWACJI I. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie stałej szybkości reakcji zmydlania estru etylowego w dwóch różnych temperaturach,
Temat 7. Równowagi jonowe w roztworach słabych elektrolitów, stała dysocjacji, ph
Temat 7. Równowagi jonowe w roztworach słabych elektrolitów, stała dysocjacji, ph Dysocjacja elektrolitów W drugiej połowie XIX wieku szwedzki chemik S.A. Arrhenius doświadczalnie udowodnił, że substancje
chemia wykład 3 Przemiany fazowe
Przemiany fazowe Przemiany fazowe substancji czystych Wrzenie, krzepnięcie, przemiana grafitu w diament stanowią przykłady przemian fazowych, które zachodzą bez zmiany składu chemicznego. Diagramy fazowe
II Podkarpacki Konkurs Chemiczny 2009/10. ETAP II r. Godz Zadanie 1 (10 pkt.)
II Podkarpacki Konkurs Chemiczny 2009/10 ETAP II 19.12.2009 r. Godz. 10.00-12.00 KPKCh Zadanie 1 (10 pkt.) 1. Gęstość 22% roztworu kwasu chlorowodorowego o stężeniu 6,69 mol/dm 3 wynosi: a) 1,19 g/cm 3
1. PIERWSZA I DRUGA ZASADA TERMODYNAMIKI TERMOCHEMIA
. PIERWSZA I DRUGA ZASADA ERMODYNAMIKI ERMOCHEMIA Zadania przykładowe.. Jeden mol jednoatomowego gazu doskonałego znajduje się początkowo w warunkach P = 0 Pa i = 300 K. Zmiana ciśnienia do P = 0 Pa nastąpiła:
PRZYKŁADOWE ZADANIA ALKOHOLE I FENOLE
PRZYKŁADOWE ZADANIA ALKOHOLE I FENOLE INFORMACJA DO ZADAŃ 864 865 Poniżej przedstawiono cykl reakcji zachodzących z udziałem związków organicznych. 1 2 cykloheksen cykloheksan chlorocykloheksan Zadanie
TEST PRZYROSTU KOMPETENCJI Z CHEMII DLA KLAS II
TEST PRZYROSTU KOMPETENCJI Z CHEMII DLA KLAS II Czas trwania testu 120 minut Informacje 1. Proszę sprawdzić czy arkusz zawiera 10 stron. Ewentualny brak należy zgłosić nauczycielowi. 2. Proszę rozwiązać
Chemia fizyczna (2013/2014) kinetyka chemiczna
Chemia fizyczna (01/014) kinetyka chemiczna Zadanie 1. Dla reakcji rozkładu N O 5 4NO +O w roztworze CCl 4, w warunkach T,V=const w temperaturze 45 o C otrzymano następującą zależność stężenia N O 5 (A)
Opracowała: mgr inż. Ewelina Nowak
Materiały dydaktyczne na zajęcia wyrównawcze z chemii dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Opracowała: mgr
MODEL ODPOWIEDZI I SCHEMAT OCENIANIA ARKUSZA II
MDEL DPWIEDZI I SEMAT ENIANIA ARKUSZA II. Zdający otrzymuje punkty tylko za całkowicie prawidłową odpowiedź.. Gdy do jednego polecenia są dwie odpowiedzi (jedna prawidłowa, druga nieprawidłowa), to zdający
Ćwiczenie 12 KATALITYCZNE ODWODORNIENIE HEPTANU
Ćwiczenie 12 KATALITYCZNE ODWODORNIENIE HEPTANU Cel ćwiczenia Celem ćwiczenia jest zapoznanie z procesem heterogenicznej katalizy oraz z metodami określania parametrów procesu takich jak: stopień przemiany,