Monte Carlo w model checkingu
|
|
- Martyna Górecka
- 6 lat temu
- Przeglądów:
Transkrypt
1 Niezawodność systemów współbieżnych i obiektowych 28 kwietnia 2010
2
3 Cel Cel Weryfikacja systemów komputerowych sprawdzenie, czy formuła LTL zachodzi dla danego systemu Problemy: Problem weryfikacji LTL jest PSPACE-zupełny Eksplozja stanów nie dysponujemy zasobami wystarczajacymi do sprawdzenia całego systemu przez proste wyliczenie stanów.
4 Techniki i heurystyki Cel weryfikacja symboliczna (SMC) weryfikacja z ograniczona głębokościa (BMC) redukcje częściowo-porzadkowe
5 Monte Carlo Cel Sprawdzenie własności systemu bez wyliczania całego modelu. losowe próbkowanie ścieżek w celu znalezienia błędu symulacja losowego wykonania programu ograniczenie prawdopodobieństwa wystapienia błędu
6 Podejście tradycyjne Analiza Dane: automat Büchiego B S reprezentujacy system formuła LTL ϕ: ϕ ::= p ϕ ϕ ϕ ϕ ϕ ϕuϕ Xϕ
7 Automat Büchiego przypomnienie Podejście tradycyjne Analiza B = (Σ, Q, Q 0, δ, F) Σ alfabet wejściowy Q skończony zbiór stanów Q 0 stan poczatkowy δ Q Σ Q relacja przejścia F stany akceptujace W skrócie: skończony automat dla nieskończonych słów akceptuje język ω-regularny
8 Podejście tradycyjne Podejście tradycyjne Analiza dla zaprzeczenia ϕ tworzymy automat Büchiego B ϕ Mnożymy oba automaty: B = B S B ϕ sprawdzamy pustość języka L(B)
9 Podejście tradycyjne Analiza Iloczyn automatów Büchiego przypomnienie B 1 = (Σ, Q 1, Q 1 0, δ 1, F 1 ) B 2 = (Σ, Q 2, Q 2 0, δ 2, F 2 ) B = B 1 B 2 = (Σ, Q, Q 0, δ, F) Q = Q 1 Q 2 {0, 1, 2} Q 0 = Q 1 0 Q2 0 {0} F = Q 1 Q 2 {2} (s 1, s 2, x) a(t 1, t 2, y) s 1 at 1 s 2 at 2 x y 0 1 jeżeli t 1 F jeżeli t 2 F 2
10 Podejście tradycyjne DDFS Podejście tradycyjne Analiza DFS1(s): T T (s, 0); S.push(s); for t next(s) do if (t, 0) T DFS1(t) then return true; end if end for if s F (s, 1) T DFS2(s) then return true; end if S.pop; return false;
11 Podejście tradycyjne DDFS Podejście tradycyjne Analiza DFS2(s): T T (s, 1); for t next(s) do if t S then return true; end if if (t, 1) T DFS2(t) then return true; end if end for return false;
12 Podejście tradycyjne DDFS Podejście tradycyjne Analiza Poszukiwanie lassa ze stanem akceptujacym w cyklu. DFS1 q 0 t s DFS2
13 Monte Carlo Podejście tradycyjne Analiza Zamiast przegladać kolejne krawędzie wychodzace z każdego stanu, próbkujemy losowe wykonania programu (ścieżki w automacie B) w poszukiwaniu akceptujacego cyklu.
14 Przestrzeń lass Podejście tradycyjne Analiza Uwaga Prawdopodobieństwo przebiegu skończonego σ = s 0 s 1... s n P(s 0 ) = 1 Q 0 P(s 0 s 1... s n ) = P(s 0... s n 1 ) 1 m, gdzie m = {t a (s, a, t) δ} Każda tranzycję z danego stanu uważamy za równie prawdopodobna.
15 Przestrzeń lass Podejście tradycyjne Analiza Zmienna losowa akceptacji Z Wartość oczekiwana Z : p Z = P(Z = 1) = σ L a P(σ) Interpretacja p Z jest prawdopodobieństwem, że losowe lasso w B jest akceptujace.
16 Przestrzeń lass przykład Podejście tradycyjne Analiza cztery lassa: 1-1, , , prawdopodobieństwa lass: 1 2, 1 4, 1 8, 1 8 p Z = 1 8
17 Algorytm pojedyncza próbka Podejście tradycyjne Analiza T =, i = 0, f = 0; s losowy stan z Q 0 ; while (s, ) T do i i + 1; T T (s, i); if s F then f i; end if s losowy następnik s; end while if (s, i) T i < f then return kontrprzykład T; end if
18 Liczba próbek Podejście tradycyjne Analiza Jak wielu próbek potrzebujemy? Schemat Bernoulliego: N niezależnych prób prawdopodobieństwo sukcesu p Z prawdopodobieństwo porażki q Z = 1 p Z X - liczba prób do sukcesu zmienna losowa z rozkładem geometrycznym
19 Liczba próbek Podejście tradycyjne Analiza X - liczba prób do sukcesu zmienna losowa z rozkładem geometrycznym P(X = k) = q k 1 Z p Z P(X k) = k i=0 P(X = i) = 1 qk Z
20 Liczba próbek Podejście tradycyjne Analiza Żadamy, aby P(X N) 1 δ: 1 q N Z 1 δ, N Zakładamy ponadto, że p Z ε: N ln(δ) ln(1 p Z ) ln(δ) ln(1 ε) ln(δ) ln(1 p Z )
21 Złożoność algorytmu Podejście tradycyjne Analiza Aby stwierdzić, że P(p Z ε) δ należy przeanalizować N = ln(δ) ln(1 ε) próbek. Jeżeli przez D oznaczymy długość najdłuższej ścieżki prostej w B, to algorytm działa w czasie O(N D) i pamięci O(D)
22 Porównanie: k filozofów Podejście tradycyjne Analiza zakleszczenie zagłodzenie δ = 0.1, ε = , N = 1257
23 Podejście tradycyjne Analiza Porównanie: protokół Needhama-Schrödera δ = 10 3
24 Warianty Podejście tradycyjne Analiza Oszacowanie p Z z obu stron: P(p Z (1 ε) p Z p Z (1 + ε)) 1 δ Multi-lasso: ignorowanie lass nieakceptujacych
25 Podejście tradycyjne Analiza Zalety Niewielki koszt obliczeniowy i pamięciowy Świetna do szybkiego wyszukiwania błędów Wady Brak pewności!
26 Randomizacja DDFS Randomizacja DDFS Redukcja pamięci stanów
27 Randomizacja DDFS Randomizacja DDFS Redukcja pamięci stanów
28 Przykład Randomizacja DDFS Redukcja pamięci stanów c := 0; i := 0; while i < 1000 do if true -> c := c + 1 true -> c := c + 2 fi i := i + 1 od G(c < 2000 d) G(i < 1000 c 1500)
29 Randomizacja spamiętywania stanów Randomizacja DDFS Redukcja pamięci stanów Motywacja: dla zatrzymania się i poprawności algorytmu DDFS nie potrzeba tablicy haszujacej odwiedzonych stanów w tablicy można utrzymywać tylko niektóre stany Problem: które stany zapamiętać? nie wiemy, które będa często odwiedzane wybierzmy losowo!
30 Randomizacja DDFS Redukcja pamięci stanów Spamiętywanie stanów: strategia dynamiczna Wada przy każdym wycofaniu się DDFS ze stanu jest on usuwany z tablicy z prawdopodobieństwem P Del, w przeciwnym wypadku jest zapamiętywany na zawsze. po k odwiedzinach prawdopodobieństwo spamiętania wynosi P ESt = 1 P k Del odwlekanie spamiętywania często odwiedzanych stanów
31 Randomizacja DDFS Redukcja pamięci stanów Spamiętywanie stanów: strategia dynamiczna Prawdopodobieństwo, że stan zostanie spamiętany przy i-tym odwiedzeniu: P i 1 Del P Sto Średnia liczba odwiedzin do spamiętania: P Sto Redukcja pamięci, o ile każdy stan jest odwiedzany k razy: 1 P k Del M Wniosek kompromis między szybkościa działania a wielkościa użytej pamięci
32 Randomizacja DDFS Redukcja pamięci stanów Spamiętywanie stanów: strategia statyczna Wada Stany do spamiętania sa znane z góry Każdy stan zostaje albo spamiętany z prawdopodobieństwem P Sto albo zapomniany na zawsze Niewrażliwość na liczbę odwiedzin
33 Strategie spamiętywania: wyniki Randomizacja DDFS Redukcja pamięci stanów Algorytm Petersona
34 Metody weryfikacji Aproksymacja Monte Carlo Łańcuch Markowa z czasem dyskretnym M = (S, s 0, P) S zbiór stanów, s 0 stan poczatkowy, P : S 2 [0; 1] rozkład prawdopodobieństw przejścia taki, że: s S P(s, t) = 1 t S
35 PLTL Metody weryfikacji Aproksymacja Monte Carlo Rozszerzenie LTL o więzy dla prawdopodobieństwa spełnienia formuły w losowym przebiegu: ψ ::= P b [φ] P =? [φ], φ formuła LTL, {<, >,, } b ograniczenie na prawdopodobieństwo
36 Macierze rzadkie Metody weryfikacji Aproksymacja Monte Carlo Interpretujemy P jako macierz (stochastyczna) prawdopodobieństw przejść Badamy zachowanie ciagu: P, P P, P P P,..., P k,... w celu weryfikacji własności ψ
37 Macierze rzadkie: przykład Metody weryfikacji Aproksymacja Monte Carlo P = 1 1/3 2/3 1/4 3/4 1
38 Weryfikacja symboliczna Metody weryfikacji Aproksymacja Monte Carlo Analogicznie do SMC, reprezentujemy formułę i zachowanie modelu jako BDD W wierzchołkach terminalnych zamiast {0, 1} znajduja się prawdopodobieństwa Multi-Terminal Binary Decision Diagram reprezentuje funkcję {0, 1} m R
39 MTBDD przykład Metody weryfikacji Aproksymacja Monte Carlo x1 x2 x2 x3 x3 x3 x4 x4 x4 x
40 Aproksymacja Monte Carlo Metody weryfikacji Aproksymacja Monte Carlo Będziemy rozpatrywać tylko podzbiór EPF LTL: zmienne zdaniowe i ich negacje, alternatywa, koniunkcja, operatory temporalne U i X. Monotoniczność Formuły EPF sa monotoniczne: k>0 πk π = M φ π + = M φ, gdzie π + jest dowolna ścieżka o prefiksie π
41 Aproksymacja Monte Carlo Metody weryfikacji Aproksymacja Monte Carlo Sprawdzanie własności przez próbkowanie ścieżek w łańcuchu Markowa. połaczenie BMC i aproksymacji Monte Carlo: próbkowanie tylko ścieżek długości k
42 Aproksymacja Monte Carlo Metody weryfikacji Aproksymacja Monte Carlo Weryfikujemy własność P b [φ]: dobieramy k log( S ) próbkujemy N ścieżek długości k obliczajac oszacowanie prawdopodobieństwa spełnienia formuły: A N P k[φ] jeżeli P k [φ] b, to z monotoniczności również P[φ] b, w przeciwnym wypadku zwiększamy k
43 Poprawność aproksymacji Metody weryfikacji Aproksymacja Monte Carlo Chcemy uzyskać prawdopodobnie dokładna aproksymację p P k [φ] ozn. = p: P (p ε p p + ε) 1 δ Aby tak było, należy wziać O ( ln 1 δ 1 ) ε próbek (ścieżek).
44 Poprawność aproksymacji Metody weryfikacji Aproksymacja Monte Carlo Nierówność Chernoffa-Hoeffdinga Dla m niezależnych zmiennych losowych o tym samym rozkładzie Bernoulliego (z prawdopodobieństwem sukcesu p), dla dowolnego ε [0; 1]: ( ) 1 P ε = P X i > p + ε e mθ(ε) m i
45 Metody weryfikacji Aproksymacja Monte Carlo Zalety niskie zużycie pamięci możliwe zrównoleglenie obliczeń Wady stosunkowo powolne dla niewielkich systemów z natury niedokładne
46 Zastosowania Zastosowania Monte Carlo Bibliografia Model checking systemów deterministycznych: szybkie odnajdywanie błędów niemożliwa pełna weryfikacja : efektywne znajdowanie dobrych oszacowań na prawdopodobieństwo zastosowania w bioinformatyce, m.in.: symulacje reakcji chemicznych kaskady sygnałowe w błonach komórkowych
47 Bibliografia Zastosowania Monte Carlo Bibliografia Sistla A. P., Clarke E. M., The complexity of propositional linear temporal logics, Journal of the ACM, vol. 32 n. 3, pp , 1985 Vardi, M. Y., Wolper, P., An automata-theoretic approach for automatic program verification, Proc. IEEE Symposium on Logic in Computer Science, pp , Brim L., Černá I., Nečesal M., Randomization helps in LTL model checking, Proc. Joint International Workshop, PAPM-PROBMIV 2001, pp , Springer 2001.
48 Bibliografia Zastosowania Monte Carlo Bibliografia Guirado G., Herault T., Lassaigne R., Peyronnet S., Distribution, Approximation and Probabilistic Model Checking, ENTCS, Vol. 135, n. 2, pp , Elsevier 2006 Donaldson R., Gilbert D., A Monte Carlo model checker for probabilistic LTL with numerical constraints, DCS Technical Report, Uniwersytet w Glasgow, 2008.
Weryfikacja modelowa. Protokoły komunikacyjne 2006/2007. Paweł Kaczan
Weryfikacja modelowa Protokoły komunikacyjne 2006/2007 Paweł Kaczan pk209469@students.mimuw.edu.pl Plan Wstęp Trzy kroki do weryfikacji modelowej Problemy Podsumowanie Dziedziny zastosowań Weryfikacja
Analiza Algorytmów 2018/2019 (zadania na laboratorium)
Analiza Algorytmów 2018/2019 (zadania na laboratorium) Wybór lidera (do 9 III) Zadanie 1 W dowolnym języku programowania zaimplementuj symulator umożliwiający przetestowanie algorytmu wyboru lidera ELECT
ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW
ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW RELACJE MIEDZY KLASAMI ZŁOŻONOŚCI Bartosz Zieliński Katedra Fizyki Teoretycznej i Informatyki Zima 2011-2012 KLASY ZŁOŻONOŚCI KLASE ZŁOŻONOŚCI OPISUJE SIE PODAJAC: Model
Praktyczne metody weryfikacji
Praktyczne metody weryfikacji Sławomir Lasota Uniwersytet Warszawski semestr zimowy 06/07. p.1/?? I. Motywacja czyli po co?. p.2/?? czerwiec 1996. p.3/?? nieobsłużony wyjatek szacunkowy koszt: 600 mln
Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania
Prognozowanie i Symulacje. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Szeregi czasowe 1 Szeregi czasowe 2 3 Szeregi czasowe Definicja 1 Szereg czasowy jest to proces stochastyczny z czasem dyskretnym
Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova
Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova M. Czoków, J. Piersa 2010-12-21 1 Definicja Własności Losowanie z rozkładu dyskretnego 2 3 Łańcuch Markova Definicja Własności Losowanie z rozkładu
Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa
Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa M. Czoków, J. Piersa 2012-01-10 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego 3 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego
Generowanie liczb o zadanym rozkładzie. ln(1 F (y) λ
Wprowadzenie Generowanie liczb o zadanym rozkładzie Generowanie liczb o zadanym rozkładzie wejście X U(0, 1) wyjście Y z zadanego rozkładu F (y) = 1 e λy y = ln(1 F (y) λ = ln(1 0,1563 0, 5 0,34 Wprowadzenie
Metody Rozmyte i Algorytmy Ewolucyjne
mgr inż. Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Uniwersytet Kardynała Stefana Wyszyńskiego Podstawowe operatory genetyczne Plan wykładu Przypomnienie 1 Przypomnienie Metody generacji liczb
Prawdopodobieństwo i statystyka
Wykład XIV: Metody Monte Carlo 19 stycznia 2016 Przybliżone obliczanie całki oznaczonej Rozważmy całkowalną funkcję f : [0, 1] R. Chcemy znaleźć przybliżoną wartość liczbową całki 1 f (x) dx. 0 Jeden ze
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 01 Modele obliczeń Jarosław Miszczak IITiS PAN Gliwice 05/10/2016 1 / 33 1 2 3 4 5 6 2 / 33 Co to znaczy obliczać? Co to znaczy obliczać? Deterministyczna maszyna Turinga
Techniki optymalizacji
Techniki optymalizacji Symulowane wyżarzanie Maciej Hapke maciej.hapke at put.poznan.pl Wyżarzanie wzrost temperatury gorącej kąpieli do takiej wartości, w której ciało stałe topnieje powolne zmniejszanie
Logika Temporalna i Automaty Czasowe
Modelowanie i Analiza Systemów Informatycznych Logika Temporalna i Automaty Czasowe (7) Automaty czasowe NuSMV Paweł Głuchowski, Politechnika Wrocławska wersja 2.3 Treść wykładu NuSMV NuSMV symboliczny
Metody probabilistyczne
Metody probabilistyczne. Twierdzenia graniczne Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 20.2.208 / 26 Motywacja Rzucamy wielokrotnie uczciwą monetą i zliczamy
ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW
ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW MASZYNY O DOSTEPIE SWOBODNYM (RAM) Bartosz Zieliński Katedra Fizyki Teoretycznej i Informatyki Zima 2011-2012 INSTRUKCJE MASZYNY RAM Instrukcja Argument Znaczenie READ
Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa
Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa Wojciech Niemiro 1 Uniwersytet Warszawski i UMK Toruń XXX lat IMSM, Warszawa, kwiecień 2017 1 Wspólne prace z Błażejem Miasojedowem,
Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017
Logika Stosowana Wykład 1 - Logika zdaniowa Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 30 Plan wykładu 1 Język
Wprowadzenie Logiki temporalne Przykłady użycia Bibliografia. Logiki temporalne. Andrzej Oszer. Seminarium Protokoły Komunikacyjne
Seminarium Protokoły Komunikacyjne Spis treści 1 2 PLTL - Propositional Linear Temporal Logic CTL - Computation Tree Logic CTL* - uogólnienie 3 4 rozszerzaja logikę pierwszego rzędu o symbole określajace
Logika Temporalna i Automaty Czasowe
Modelowanie i Analiza Systemów Informatycznych Logika Temporalna i Automaty Czasowe (7) Automaty czasowe NuSMV Paweł Głuchowski, Politechnika Wrocławska wersja 2.4 Treść wykładu NuSMV NuSMV symboliczny
Model-checking programów w Javie
Niezawodność systemów współbieżnych i obiektowych 20 stycznia 2010 1 O model-checkingu raz jeszcze 2 Modelowanie Translacja 3 w działaniu 4 Porównanie metod Bibliografia Cel O model-checkingu raz jeszcze
Modele zapisane w przestrzeni stanów
Modele zapisane w przestrzeni stanów Modele Przestrzeni Stanów (State Space Models) sa to modele, w których część parametrów jest nieobserwowalna i losowa. Zachowanie wielowymiarowej zmiennej y t zależy
Wykład 6. Wyszukiwanie wzorca w tekście
Wykład 6 Wyszukiwanie wzorca w tekście 1 Wyszukiwanie wzorca (przegląd) Porównywanie łańcuchów Algorytm podstawowy siłowy (naive algorithm) Jak go zrealizować? Algorytm Rabina-Karpa Inteligentne wykorzystanie
Spacery losowe generowanie realizacji procesu losowego
Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z
Zmienna losowa. Rozkład skokowy
Temat: Zmienna losowa. Rozkład skokowy Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga * - materiał nadobowiązkowy Anna Rajfura, Matematyka i statystyka matematyczna na kierunku Rolnictwo SGGW 1 Zagadnienia
Minimalizacja automatów niedeterministycznych na słowach skończonych i nieskończonych
Szczepan Hummel Minimalizacja automatów niedeterministycznych na słowach skończonych i nieskończonych 24.11.2005 1. Minimalizacja automatów deterministycznych na słowach skończonych (DFA) [HU] relacja
Typy algorytmów losowych. ALP520 - Wykład z Algorytmów Probabilistycznych p.2
Typy algorytmów losowych ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Typy algorytmów losowych Las Vegas - zawsze daje prawidłowa odpowiedź (różny czas działania). Przykład: RandQuicksort ALP520
Prawdopodobieństwo i statystyka
Wykład VII: Metody specjalne Monte Carlo 24 listopada 2014 Transformacje specjalne Przykład - symulacja rozkładu geometrycznego Niech X Ex(λ). Rozważmy zmienną losową [X ], która przyjmuje wartości naturalne.
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta
Zadanie 1 Przygotuj algorytm programu - sortowanie przez wstawianie.
Sortowanie Dane wejściowe: ciąg n-liczb (kluczy) (a 1, a 2, a 3,..., a n 1, a n ) Dane wyjściowe: permutacja ciągu wejściowego (a 1, a 2, a 3,..., a n 1, a n) taka, że a 1 a 2 a 3... a n 1 a n. Będziemy
Teoria systemów uczacych się i wymiar Vapnika-Chervonenkisa
Systemy uczace się 2009 1 / 32 Teoria systemów uczacych się i wymiar Vapnika-Chervonenkisa Hung Son Nguyen Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski email: son@mimuw.edu.pl Grudzień
Aproksymacja funkcji a regresja symboliczna
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą
Optymalizacja. Symulowane wyżarzanie
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Wyżarzanie wzrost temperatury gorącej kąpieli do takiej wartości, w której ciało stałe topnieje powolne
Praktyczne metody weryfikacji. Wykład 9: Weryfikacja ograniczona.. p.1/40
Praktyczne metody weryfikacji Wykład 9: Weryfikacja ograniczona. p.1/40 Symboliczna weryfikacja modelowa (SMC) model kodowanie boolowskie QBF implementacja OBDD weryfikacja modelowa = operacje na OBDDs.
Centralne twierdzenie graniczne
Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 4 Ważne uzupełnienie Dwuwymiarowy rozkład normalny N (µ X, µ Y, σ X, σ Y, ρ): f XY (x, y) = 1 2πσ X σ Y 1 ρ 2 { [ (x ) 1
Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie
Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w
Algorytmy i struktury danych. Wykład 6 Tablice rozproszone cz. 2
Algorytmy i struktury danych Wykład 6 Tablice rozproszone cz. 2 Na poprzednim wykładzie Wiele problemów wymaga dynamicznych zbiorów danych, na których można wykonywać operacje: wstawiania (Insert) szukania
4 Klasyczny rachunek zdań
4 Klasyczny rachunek zdań Elementy Logiki i Teorii Mnogości 2015/2016 Spis najważniejszych tautologii: (a) p p prawo wyłączonego środka (b) ( p) p prawo podwójnej negacji (c) p q q p (d) p q q p prawo
Analiza algorytmów zadania podstawowe
Analiza algorytmów zadania podstawowe Zadanie 1 Zliczanie Zliczaj(n) 1 r 0 2 for i 1 to n 1 3 do for j i + 1 to n 4 do for k 1 to j 5 do r r + 1 6 return r 0 Jaka wartość zostanie zwrócona przez powyższą
Algorytmy zrandomizowane
Algorytmy zrandomizowane http://zajecia.jakubw.pl/nai ALGORYTMY ZRANDOMIZOWANE Algorytmy, których działanie uzależnione jest od czynników losowych. Algorytmy typu Monte Carlo: dają (po pewnym czasie) wynik
MODELOWANIE I WERYFIKACJA PROTOKOŁU SCTP Z WYKORZYSTANIEM AUTOMATÓW CZASOWYCH ZE ZMIENNYMI
Zeszyty Naukowe WSInf Vol 7, Nr 1, 2008 Artur Męski 1, Agata Półrola 2 1 Wyższa Szkoła Informatyki w Łodzi 2 Uniwersytet Łódzki, Wydział Matematyki i Fizyki MODELOWANIE I WERYFIKACJA PROTOKOŁU SCTP Z WYKORZYSTANIEM
Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k =
Matematyka ubezpieczeń majątkowych 0.0.006 r. Zadanie. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k 5 Pr( N = k) =, k = 0,,,... 6 6 Wartości kolejnych szkód Y, Y,, są i.i.d.,
Prawa wielkich liczb, centralne twierdzenia graniczne
, centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne
LOGIKA I TEORIA ZBIORÓW
LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
Algorytmy estymacji stanu (filtry)
Algorytmy estymacji stanu (filtry) Na podstawie: AIMA ch15, Udacity (S. Thrun) Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 21 kwietnia 2014 Problem lokalizacji Obserwowalność? Determinizm?
Algorytmy i struktury danych. Co dziś? Tytułem przypomnienia metoda dziel i zwyciężaj. Wykład VIII Elementarne techniki algorytmiczne
Algorytmy i struktury danych Wykład VIII Elementarne techniki algorytmiczne Co dziś? Algorytmy zachłanne (greedyalgorithms) 2 Tytułem przypomnienia metoda dziel i zwyciężaj. Problem można podzielić na
Elementy Rachunek prawdopodobieństwa
Elementy rachunku prawdopodobieństwa Rachunek prawdopodobieństwa zajmuje się analizą praw rządzących zdarzeniami losowymi Pojęciami pierwotnymi są: zdarzenie elementarne ω oraz zbiór zdarzeń elementarnych
Wstęp do Programowania potok funkcyjny
Wstęp do Programowania potok funkcyjny Marcin Kubica 2010/2011 Outline 1 Kilka podstawowych pojęć Definition Programy imperatywne zmieniają stan, czyli wartości zmiennych. Asercja = warunek logiczny, który
Wprowadzenie do programowania współbieżnego
Wprowadzenie do programowania współbieżnego Marcin Engel Instytut Informatyki Uniwersytet Warszawski Zamiast wstępu... Zamiast wstępu... Możliwość wykonywania wielu akcji jednocześnie może ułatwić tworzenie
Wykład 11: Martyngały: definicja, twierdzenia o zbieżności
RAP 412 14.01.2009 Wykład 11: Martyngały: definicja, twierdzenia o zbieżności Wykładowca: Andrzej Ruciński Pisarz:Mirosława Jańczak 1 Wstęp Do tej pory zajmowaliśmy się ciągami zmiennych losowych (X n
Metody dowodzenia twierdzeń i automatyzacja rozumowań Tabele syntetyczne: definicje i twierdzenia
Metody dowodzenia twierdzeń i automatyzacja rozumowań Tabele syntetyczne: definicje i twierdzenia Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@.edu.pl Metoda tabel syntetycznych (MTS) MTS
Logika Temporalna i Automaty Czasowe
Modelowanie i Analiza Systemów Informatycznych Logika Temporalna i Automaty Czasowe (4) Modelowa weryfikacja systemu Paweł Głuchowski, Politechnika Wrocławska wersja 2.1 Treść wykładu Własności współbieżnych
Praktyczne metody weryfikacji
Praktyczne metody weryfikacji Sławomir Lasota Uniwersytet Warszawski semestr letni 08/09. p.1/50 I. Motywacja czyli po co?. p.2/50 Arianne 5, czerwiec 1996. p.3/50 nieobsłużony wyjatek szacunkowy koszt:
Teoria obliczeń i złożoność obliczeniowa
Teoria obliczeń i złożoność obliczeniowa Kontakt: dr hab. inż. Adam Kasperski, prof. PWr. pokój 509 B4 adam.kasperski@pwr.wroc.pl materiały + informacje na stronie www. Zaliczenie: Egzamin Literatura Problemy
Topologia zbioru Cantora a obwody logiczne
Adam Radziwończyk-Syta Michał Skrzypczak Uniwersytet Warszawski 1 lipca 2009 http://students.mimuw.edu.pl/~mskrzypczak/dokumenty/ obwody.pdf Zbiór Cantora Topologia Definicja Przez zbiór Cantora K oznaczamy
Siedem cudów informatyki czyli o algorytmach zdumiewajacych
Siedem cudów informatyki czyli o algorytmach zdumiewajacych Łukasz Kowalik kowalik@mimuw.edu.pl Instytut Informatyki Uniwersytet Warszawski Łukasz Kowalik, Siedem cudów informatyki p. 1/25 Problem 1: mnożenie
Wykład 9: Markov Chain Monte Carlo
RAP 412 17.12.2008 Wykład 9: Markov Chain Monte Carlo Wykładowca: Andrzej Ruciński Pisarz: Ewelina Rychlińska i Wojciech Wawrzyniak Wstęp W tej części wykładu zajmiemy się zastosowaniami łańcuchów Markowa
WYKŁAD 3. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki
WYKŁAD 3 Witold Bednorz, Paweł Wolff 1 Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Schemmat Bernouliego Rzucamy 10 razy moneta, próba Bernouliego jest pojedynczy
Programowanie dynamiczne cz. 2
Programowanie dynamiczne cz. 2 Wykład 7 16 kwietnia 2019 (Wykład 7) Programowanie dynamiczne cz. 2 16 kwietnia 2019 1 / 19 Outline 1 Mnożenie ciągu macierzy Konstruowanie optymalnego rozwiązania 2 Podstawy
Pojęcie szeregu nieskończonego:zastosowania do rachunku prawdopodobieństwa wykład 1
Pojęcie szeregu nieskończonego:zastosowania do rachunku prawdopodobieństwa wykład dr Mariusz Grządziel 5 lutego 04 Paradoks Zenona z Elei wersja uwspółcześniona Zenek goni Andrzeja; prędkość Andrzeja:
Sieci Mobilne i Bezprzewodowe laboratorium 2 Modelowanie zdarzeń dyskretnych
Sieci Mobilne i Bezprzewodowe laboratorium 2 Modelowanie zdarzeń dyskretnych Plan laboratorium Generatory liczb pseudolosowych dla rozkładów dyskretnych: Generator liczb o rozkładzie równomiernym Generator
Złożoność obliczeniowa
Złożoność obliczeniowa Jakub Michaliszyn 26 kwietnia 2017 Są problemy rozstrzygalne i nierozstrzygalne Są problemy rozstrzygalne i nierozstrzygalne Jak rozwiązywać te, które są rozstrzygalne? Są problemy
Imię, nazwisko, nr indeksu
Imię, nazwisko, nr indeksu (kod) (9 punktów) Wybierz 9 z poniższych pytań i wybierz odpowiedź tak/nie (bez uzasadnienia). Za prawidłowe odpowiedzi dajemy +1 punkt, za złe -1 punkt. Punkty policzymy za
Wykład 2. Drzewa zbalansowane AVL i 2-3-4
Wykład Drzewa zbalansowane AVL i -3-4 Drzewa AVL Wprowadzenie Drzewa AVL Definicja drzewa AVL Operacje wstawiania i usuwania Złożoność obliczeniowa Drzewa -3-4 Definicja drzewa -3-4 Operacje wstawiania
9. Schematy aproksymacyjne
9. Schematy aproksymacyjne T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein Wprowadzenie do algorytmów, WNT (2004) O.H. Ibarra, C.E. Kim Fast approximation algorithms for the knapsack and sum of subset
w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(), zwaną funkcją aproksymującą
PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω)
PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω) określonych na tej samej przestrzeni probabilistycznej
Rachunek prawdopodobieństwa MAP1064 Wydział Elektroniki, rok akad. 2008/09, sem. letni Wykładowca: dr hab. A. Jurlewicz
Rachunek prawdopodobieństwa MAP064 Wydział Elektroniki, rok akad. 08/09, sem. letni Wykładowca: dr hab. A. Jurlewicz Przykłady do listy 7: Zmienne losowe dyskretne. Rozkłady Bernoulliego dwumianowy), Pascala,
Przykład: Σ = {0, 1} Σ - zbiór wszystkich skończonych ciagów binarnych. L 1 = {0, 00, 000,...,1, 11, 111,... } L 2 = {01, 1010, 001, 11}
Języki Ustalmy pewien skończony zbiór symboli Σ zwany alfabetem. Zbiór Σ zawiera wszystkie skończone ciagi symboli z Σ. Podzbiór L Σ nazywamy językiem a x L nazywamy słowem. Specjalne słowo puste oznaczamy
PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek
PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Piotr Wiącek ROZKŁAD PRAWDOPODOBIEŃSTWA Jest to miara probabilistyczna określona na σ-ciele podzbiorów borelowskich pewnej przestrzeni metrycznej. σ-ciało podzbiorów
Języki formalne i automaty Ćwiczenia 7
Języki formalne i automaty Ćwiczenia 7 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Automaty... 2 Cechy automatów... 4 Łączenie automatów... 4 Konwersja automatu do wyrażenia
e E Z = P = 1 Z e E Kanoniczna suma stanów Prawdopodobieństwo wystąpienia mikrostanu U E = =Z 1 Wartość średnia energii
Metoda Metropolisa Z = e E P = 1 Z e E Kanoniczna suma stanów Prawdopodobieństwo wystąpienia mikrostanu U E = P E =Z 1 E e E Wartość średnia energii Średnia wartość A = d r N A r N exp[ U r N ] d r N exp[
Rozkłady prawdopodobieństwa zmiennych losowych
Rozkłady prawdopodobieństwa zmiennych losowych Rozkład dwumianowy Rozkład normalny Marta Zalewska Zmienna losowa dyskretna (skokowa) jest to zmienna, której zbór wartości jest skończony lub przeliczalny.
Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru
Logika Stosowana. Wykład 7 - Zbiory i logiki rozmyte Część 3 Prawdziwościowa logika rozmyta. Marcin Szczuka. Instytut Informatyki UW
Logika Stosowana Wykład 7 - Zbiory i logiki rozmyte Część 3 Prawdziwościowa logika rozmyta Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika
Wstęp do programowania. Listy. Piotr Chrząstowski-Wachtel
Wstęp do programowania Listy Piotr Chrząstowski-Wachtel Do czego stosujemy listy? Listy stosuje się wszędzie tam, gdzie występuje duży rozrzut w możliwym rozmiarze danych, np. w reprezentacji grafów jeśli
Automaty czasowe. Sposoby weryfikacji UPPAAL. Narzędzie do weryfikacji automatów czasowych. Aleksander Zabłocki. 6 maja 2009
Narzędzie do weryfikacji automatów czasowych 6 maja 2009 Plan 1 2 3 Modeluje układy (komunikujacych się) automatów czasowych Weryfikuje podane własności wyrażane w uproszczonym CTL Powstaje na uniwersytetach
Fuzja sygnałów i filtry bayesowskie
Fuzja sygnałów i filtry bayesowskie Roboty Manipulacyjne i Mobilne dr inż. Janusz Jakubiak Katedra Cybernetyki i Robotyki Wydział Elektroniki, Politechnika Wrocławska Wrocław, 10.03.2015 Dlaczego potrzebna
Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka
Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga 1 Zagadnienia 1. Przypomnienie wybranych pojęć rachunku prawdopodobieństwa. Zmienna losowa. Rozkład
Algorytm Grovera. Kwantowe przeszukiwanie zbiorów. Robert Nowotniak
Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej Politechnika Łódzka 13 listopada 2007 Plan wystapienia 1 Informatyka Kwantowa podstawy 2 Opis problemu (przeszukiwanie zbioru) 3 Intuicyjna
Elementy modelowania matematycznego
Elementy modelowania matematycznego Modelowanie algorytmów klasyfikujących. Podejście probabilistyczne. Naiwny klasyfikator bayesowski. Modelowanie danych metodą najbliższych sąsiadów. Jakub Wróblewski
Rozkład materiału nauczania
Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2015/2016 Przedmiot: MATEMATYKA Klasa: III 2 godz/tyg 30 = 60 godzin Rozkład materiału nauczania Temat I. LOGARYTMY
Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach
Adam Stawowy Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach Summary: We present a meta-heuristic to combine Monte Carlo simulation with genetic algorithm for Capital
Wykład 2: Tworzenie danych
Wykład 2: Tworzenie danych Plan: Statystyka opisowa a wnioskowanie statystyczne Badania obserwacyjne a eksperyment Planowanie eksperymentu, randomizacja Próbkowanie z populacji Rozkłady próbkowe Wstępna/opisowa
Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych
Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w
KATEDRA INFORMATYKI TECHNICZNEJ. Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych. ćwiczenie 204
Opracował: prof. dr hab. inż. Jan Kazimierczak KATEDA INFOMATYKI TECHNICZNEJ Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych ćwiczenie 204 Temat: Hardware'owa implementacja automatu skończonego pełniącego
Drugie kolokwium z Rachunku Prawdopodobieństwa, zestaw A
Drugie kolokwium z Rachunku Prawdopodobieństwa, zestaw A Zad. 1. Korzystając z podanych poniżej mini-tablic, oblicz pierwszy, drugi i trzeci kwartyl rozkładu N(10, 2 ). Rozwiązanie. Najpierw ogólny komentarz
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 7 i 8 1 / 9 EFEKTYWNOŚĆ ESTYMATORÓW, próba
Prawdopodobieństwo i statystyka
Wykład XI: Testowanie hipotez statystycznych 12 stycznia 2015 Przykład Motywacja X 1, X 2,..., X N N (µ, σ 2 ), Y 1, Y 2,..., Y M N (ν, δ 2 ). Chcemy sprawdzić, czy µ = ν i σ 2 = δ 2, czyli że w obu populacjach
Na A (n) rozważamy rozkład P (n) , który na zbiorach postaci A 1... A n określa się jako P (n) (X n, A (n), P (n)
MODELE STATYSTYCZNE Punktem wyjścia w rozumowaniu statystycznym jest zmienna losowa (cecha) X i jej obserwacje opisujące wyniki doświadczeń bądź pomiarów. Zbiór wartości zmiennej losowej X (zbiór wartości
Logika Stosowana. Wykład 2 - Logika modalna Część 3. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2017/2018
Logika Stosowana Wykład 2 - Logika modalna Część 3 Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2017/2018 Marcin Szczuka (MIMUW) Logika Stosowana 2018 1 / 36 Plan wykładu
Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Indukcja Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Charakteryzacja zbioru liczb naturalnych Arytmetyka liczb naturalnych Jedną z najważniejszych teorii matematycznych jest arytmetyka
Teoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 12a: Prawdopodobieństwo i algorytmy probabilistyczne http://hibiscus.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Teoria prawdopodobieństwa
Matematyczne Podstawy Kognitywistyki
Matematyczne Podstawy Kognitywistyki Dorota Leszczyńska-Jasion Kombinatoryka, ci agi liczbowe, skończone przestrzenie probabilistyczne Przykłady zagadnień kombinatorycznych Rozważmy układ n miast o bardzo
ZLOŻONOŚĆ OBLICZENIOWA - WYK. 2
ZLOŻONOŚĆ OBLICZENIOWA - WYK. 2 1. Twierdzenie Sipsera: Dla dowolnej maszyny M działającej w pamięci S(n) istnieje maszyna M taka, że: L(M) = L(M ), M działa w pamięci S(n), M ma własność stopu. Dowód:
P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A)
Wykład 3 Niezależność zdarzeń, schemat Bernoulliego Kiedy dwa zdarzenia są niezależne? Gdy wiedza o tym, czy B zaszło, czy nie, NIE MA WPŁYWU na oszacowanie prawdopodobieństwa zdarzenia A: P (A B) = P
Struktury danych i złożoność obliczeniowa Wykład 2. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład 2. Prof. dr hab. inż. Jan Magott Metody konstrukcji algorytmów: Siłowa (ang. brute force), Dziel i zwyciężaj (ang. divide-and-conquer), Zachłanna (ang.
Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, Spis treści
Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, 2017 Spis treści Od autorów 11 I. Klasyczne metody numeryczne Rozdział 1. Na początek 15 1.1.
Porządek dostępu do zasobu: procesory obszary pamięci cykle procesora pliki urządzenia we/wy
ZAKLESZCZENIA w SO brak środków zapobiegania zakleszczeniom Zamówienia na zasoby => przydział dowolnego egzemplarza danego typu Zasoby w systemie typy; identyczne egzemplarze procesory obszary pamięci
RÓWNANIA NIELINIOWE Maciej Patan
RÓWNANIA NIELINIOWE Maciej Patan Uniwersytet Zielonogórski Przykład 1 Prędkość v spadającego spadochroniarza wyraża się zależnością v = mg ( 1 e c t) m c gdzie g = 9.81 m/s 2. Dla współczynnika oporu c