Praktyczne metody weryfikacji. Wykład 9: Weryfikacja ograniczona.. p.1/40

Wielkość: px
Rozpocząć pokaz od strony:

Download "Praktyczne metody weryfikacji. Wykład 9: Weryfikacja ograniczona.. p.1/40"

Transkrypt

1 Praktyczne metody weryfikacji Wykład 9: Weryfikacja ograniczona. p.1/40

2 Symboliczna weryfikacja modelowa (SMC) model kodowanie boolowskie QBF implementacja OBDD weryfikacja modelowa = operacje na OBDDs. p.2/40

3 Ograniczona weryfikacja modelowa (BMC) model kodowanie boolowskie BF weryfikacja modelowa = spełnialność formuły boolowskiej. p.3/40

4 SMC BMC Przykład: EF p (bezpieczeństwo) pre-smc:... p EX ( p EX p) p EX p p false... p pre( p pre( p)) p pre( p) p false post-smc: S 0 S 0 post(s 0 ) S 0 post(s 0 post(s 0 )).... p.4/40

5 Ograniczona weryfikacja modelowa poszukiwanie kontrprzykładów ograniczonej długości metoda symboliczna wykorzystanie SAT-rozwia,zywaczy (ang. SAT-solvers). p.5/40

6 I. Weryfikacja ograniczona. p.6/40

7 M E φ (φ LTL + ) np. zamiast M AG φ, sprawdzamy M EF φ M opisany przez formuły boolowskie: R(x 1,..., x m, x 1,..., x m) L p (x 1,..., x m ), Ŝ 0 (x 1,..., x m ). p.7/40

8 Pomysł: horyzont k 0 k kroków systemu Π k φ k kroków wystarcza by stwierdzić, że Π φ Lem.: Π k φ = Π φ Lem.: M E φ = k 0. M k E φ Tw.: M E φ k 0. M k E φ. p.8/40

9 Π = s 0 s 1 s 2... (k, l) - pe,tla: s 0 s 1... s l... s k s k+1+i = s l+i (k - pe,tla) brak pe,tli: s 0 s 1... s k.... p.9/40

10 Semantyka ograniczona dla k-pe,tli Π k φ Π φ Π = s 0 s 1 s p.10/40

11 Semantyka ograniczona dla nie-pe,tli Π k φ Π 0 k φ Π = s 0 s 1 s 2... i k, 0 i k Π i k p p L(s i) Π i k p, φ 1 φ 2, φ 1 φ 2... Π i k X φ i<k i Π i+1 k φ Π i k F φ j, i j k. Π j k φ Π i k G φ nigdy Π i k φ U ψ j, i j k. Π j k ψ l, i l<j. Π l k φ Π i k φ R ψ?. p.11/40

12 φ R ψ ( φu ψ) Π φ R ψ wtw gdy i < Π. ( j < i. Π j φ) = Π i ψ φ R ψ ψ U (ψ φ) G ψ Π i k φ U ψ j, i j k. Π j k ψ l, i l<j. Π l k φ Π i k φ R ψ j, i j k. Π j k φ l, i l j. Π l k ψ. p.12/40

13 Lem.: Π k φ = Π φ Lem.: M E φ = k 0. M k E φ Tw.: M E φ k 0. M k E φ jakie k jest wystarczaja,co duże? średnica grafu? brak pełności!. p.13/40

14 M k E φ (φ LTL + ) M, ψ, k [M, φ] k M k φ [M, φ] k spełnialna M opisany przez formuły boolowskie: R(z, z ) L p (z), S 0 (z). p.14/40

15 Ścieżka symboliczna z 0 z 1... z k [M] k := S 0 (z 0 ) k 1 i=0 R(z i, z i+1 ) (k + 1) m zmiennych boolowskich rozmiar formuły boolowskiej [M] k jest O(k M ). p.15/40

16 (k, l) - pe,tla: s 0 s 1... s l... s k ll k R(z k, z l ) L k k ll k l=0 brak pe,tli: s 0 s 1... s k. p.16/40

17 [M, φ] k := [M] k ( k ( L k [φ] 0 k) ( l L k l [φ] 0 k) ) l=0 l[φ] 0 k [φ] 0 k znaczenie φ na (k, l)-pe,tli znaczenie φ na nie-pe,tli rozmiar formuły [M, φ] k jest O(k ( M + φ )). p.17/40

18 l[φ] i k 0 l, i k s 0 s 1... s l... s k l[p] i k := L p (z i ) l[ p] i k l[φ ψ] i k l[φ ψ] i k :=... l[ X φ] i k := l [φ] succ(i) k succ(i) = { i + 1 i < k l i = k F φ φ X F φ φ U ψ ψ (φ X φ U ψ) G φ φ X G φ φ R ψ ψ (φ X φ R ψ). p.18/40

19 Przykład: s 0 s 1... s l... s k l[ F p] 0 k = L p (z 0 )... L p (z k ) l[ G p] 0 k = L p (z 0 )... L p (z k ) l[p U q] 0 k = L q (z 0 ) (L p (z 0 ) (L q (z 1 ) (... L q (z k 1 ) (L p (z k 1 ) L q (z k ))...))) l[ F G p] 0 k = (L p (z 0 ) L p (z 1 )... L p (z k )) (L p (z 1 )... L p (z k )) L p (z k ). p.19/40

20 Rozmiar formuły boolowskiej l [φ] i k jest O(k φ ) dzie,ki dzieleniu podformuł. p.20/40

21 [φ] i k 0 i k s 0 s 1... s k [p] i k [ p] i k [φ ψ] i k [φ ψ] i k := j. w. [ X φ] i k := [φ] i+1 k [φ] k+1 k := false F φ φ X F φ φ U ψ ψ (φ X φ U ψ) G φ φ X G φ φ R ψ ψ (φ X φ R ψ). p.21/40

22 Przykład: s 0 s 1... s k [ F p] 0 k = L p (z 0 )... L p (z k ) false [ G p] 0 k = L p (z 0 )... L p (z k ) false false [p U q] 0 k = L q (z 0 ) (L p (z 0 ) (L q (z 1 ) (... L q (z k 1 ) (L p (z k 1 ) (L q (z k ) (L p (z k ) false)))...))) [ F G p] 0 k false. p.22/40

23 [M, φ] k := [M] k ( k ( L k [φ] 0 k) ( l L k l [φ] 0 k) ) l=0 Tw.: M k E φ [M, φ] k jest spełnialna.. p.23/40

24 II. Pełność?. p.24/40

25 Jak uzyskać pełnósć weryfikacji ograniczonej? ograniczenie dla k (bezpieczeństwo) równolegle sprawdzamy φ i φ (żywotność) indukcja (bezpieczeństwo). p.25/40

26 Pełność dla G p Średnica ograniczenie dla k najmniejsze i t. że z 0,..., z n. z 0,..., z t, t i. S 0 (z 0 ) n 1 j=0 R(z j, z j+1 ) = S 0 (z 0) ( t 1 j=0 R(z j, z j+1) ) z t = z n. p.26/40

27 Pełność dla G p Średnica ograniczenie dla k najmniejsze i t. że z 0,..., z i+1. z 0,..., z i. S 0 (z 0 ) i j=0 R(z j, z j+1 ) = S 0 (z 0) ( i 1 j=0 R(z j, z j+1) ) i j=0 z j = z i+1. p.27/40

28 Pełność dla G p najdłuższaścieżka bez pe,tli ograniczenie dla k najwie,ksze i t. że z 0,..., z i. S 0 (z 0 ) ( i 1 j=0 R(z j, z j+1 ) ) i 1 i j=0 l=j+1 z j z l. p.28/40

29 Pełność dla F p M EG p k t. że naste,puja,ca formuła jest spełnialna: S 0 (z 0 ) k 1 R(z j, z j+1 ) k ( l L k k L p (z j )) j=0 l=0 j=0 M AF p k t. że naste,puja,ca formuła jest tautologia,: S 0 (z 0 ) k 1 R(z j, z j+1 ) = k L p (z j ) j=0 j=0. p.29/40

30 Pełność dla F p M EG p k t. że naste,puja,ca formuła jest spełnialna: S 0 (z 0 ) k 1 j=0 R(z j, z j+1 ) ( k l=0 ll k ) k j=0 L p (z j ) M AF p k t. że naste,puja,ca formuła jest niespełnialna: S 0 (z 0 ) k 1 R(z j, z j+1 ) k L p (z j ) j=0 j=0. p.30/40

31 Pełność dla G p indukcja 1) wybieramy niezmiennik φ(z) 2) sprawdzamy, że poniższa formuła jest niespełnialna: z 0,..., z k. S 0 (z 0 ) k 1 R(z j, z j+1 ) k φ(z j ) j=0 j=0 3) sprawdzamy, że poniższa formuła jest niespełnialna: z 0,..., z k+1. k (φ(z j ) R(z j, z j+1 )) φ(z k+1 ) j=0 4) sprawdzamy, że poniższa formuła jest tautologia,: z. φ(z) = L p (z). p.31/40

32 Po co k > 1? p p p p p. p.32/40

33 III. BDD czy SAT?. p.33/40

34 . p.34/40

35 BDD + SAT nieograniczona weryfikacja modelowa. p.35/40

36 IV. SAT-solvers. p.36/40

37 CNF algorytm DPLL przeszukiwanie drzewa wartościowań cze,ściowych BCP (ang. Boolean Constraint Propagation) konflikty obcinanie drzewa heurystyki. p.37/40

38 Graf implikacji. p.38/40

39 . p.39/40

40 Dlaczego SAT-rozwia,zywacze sa, tak szybkie? uczenie konfliktów dodajemy tzw. klauzule konfliktowe niechronologiczne powroty heurystyki dla: decyzji.... p.40/40

Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017

Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017 Logika Stosowana Wykład 1 - Logika zdaniowa Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 30 Plan wykładu 1 Język

Bardziej szczegółowo

Weryfikacja modelowa. Protokoły komunikacyjne 2006/2007. Paweł Kaczan

Weryfikacja modelowa. Protokoły komunikacyjne 2006/2007. Paweł Kaczan Weryfikacja modelowa Protokoły komunikacyjne 2006/2007 Paweł Kaczan pk209469@students.mimuw.edu.pl Plan Wstęp Trzy kroki do weryfikacji modelowej Problemy Podsumowanie Dziedziny zastosowań Weryfikacja

Bardziej szczegółowo

LOGIKA Klasyczny Rachunek Zdań

LOGIKA Klasyczny Rachunek Zdań LOGIKA Klasyczny Rachunek Zdań Robert Trypuz trypuz@kul.pl 5 listopada 2013 Robert Trypuz (trypuz@kul.pl) Klasyczny Rachunek Zdań 5 listopada 2013 1 / 24 PLAN WYKŁADU 1 Alfabet i formuła KRZ 2 Zrozumieć

Bardziej szczegółowo

Logika Stosowana. Wykład 2 - Logika modalna Część 3. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2017/2018

Logika Stosowana. Wykład 2 - Logika modalna Część 3. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2017/2018 Logika Stosowana Wykład 2 - Logika modalna Część 3 Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2017/2018 Marcin Szczuka (MIMUW) Logika Stosowana 2018 1 / 36 Plan wykładu

Bardziej szczegółowo

Automatyczne dowodzenie twierdzeń metodą rezolucji

Automatyczne dowodzenie twierdzeń metodą rezolucji Automatyczne dowodzenie twierdzeń metodą rezolucji 16 kwietnia 2010 Rezolucja zdaniowa Formuły rachunku zdań: zbudowane ze zmiennych zdaniowych za pomocą spójników logicznych,,,, i nawiasów Wartości logiczne:

Bardziej szczegółowo

Metody Programowania

Metody Programowania POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Metody Programowania www.pk.edu.pl/~zk/mp_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 8: Wyszukiwanie

Bardziej szczegółowo

Semantyka rachunku predykatów

Semantyka rachunku predykatów Relacje Interpretacja Wartość Spełnialność Logika obliczeniowa Instytut Informatyki Relacje Interpretacja Wartość Plan Plan Relacje O co chodzi? Znaczenie w logice Relacje 3 Interpretacja i wartościowanie

Bardziej szczegółowo

Rozstrzygalność logiki modalnej

Rozstrzygalność logiki modalnej , a FO, a Guarded fragment Rozstrzygalność logiki modalnej, a logika pierwszego rzędu 13.05.2009 / , a FO, a Guarded fragment Spis treści 1 Definicja Model Checking Spełnialność 2, a FO Zamiana na FO Złożoność

Bardziej szczegółowo

Podstawy Sztucznej Inteligencji (PSZT)

Podstawy Sztucznej Inteligencji (PSZT) Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Wnioskowanie logiczne i systemy eksperckie Systemy posługujące się logiką predykatów: część 3/3 Dzisiaj Uogólnienie Poprawność i pełność wnioskowania

Bardziej szczegółowo

III rok kognitywistyki UAM,

III rok kognitywistyki UAM, METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ WYKŁAD 6A: REZOLUCJA III rok kognitywistyki UAM, 2016 2017 1 Rezolucja w KRZ Dowody rezolucyjne w KRZ są równie proste, jak dowody tablicowe Metoda

Bardziej szczegółowo

Praktyczne metody weryfikacji

Praktyczne metody weryfikacji Praktyczne metody weryfikacji Sławomir Lasota Uniwersytet Warszawski semestr zimowy 06/07. p.1/?? I. Motywacja czyli po co?. p.2/?? czerwiec 1996. p.3/?? nieobsłużony wyjatek szacunkowy koszt: 600 mln

Bardziej szczegółowo

Adam Meissner SZTUCZNA INTELIGENCJA Problem spełnialności (SAT)

Adam Meissner   SZTUCZNA INTELIGENCJA Problem spełnialności (SAT) Instytut Automatyki, Robotyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Problem spełnialności

Bardziej szczegółowo

Logika Temporalna i Automaty Czasowe

Logika Temporalna i Automaty Czasowe Modelowanie i Analiza Systemów Informatycznych Logika Temporalna i Automaty Czasowe (7) Automaty czasowe NuSMV Paweł Głuchowski, Politechnika Wrocławska wersja 2.3 Treść wykładu NuSMV NuSMV symboliczny

Bardziej szczegółowo

Teoria obliczeń i złożoność obliczeniowa

Teoria obliczeń i złożoność obliczeniowa Teoria obliczeń i złożoność obliczeniowa Kontakt: dr hab. inż. Adam Kasperski, prof. PWr. pokój 509 B4 adam.kasperski@pwr.wroc.pl materiały + informacje na stronie www. Zaliczenie: Egzamin Literatura Problemy

Bardziej szczegółowo

Adam Meissner.

Adam Meissner. Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Podstawy logiki pierwszego rzędu

Bardziej szczegółowo

Logika stosowana. Ćwiczenia Złożoność obliczeniowa problemu spełnialności. Marcin Szczuka. Instytut Informatyki, Uniwersytet Warszawski

Logika stosowana. Ćwiczenia Złożoność obliczeniowa problemu spełnialności. Marcin Szczuka. Instytut Informatyki, Uniwersytet Warszawski Logika stosowana Ćwiczenia Złożoność obliczeniowa problemu spełnialności Marcin Szczuka Instytut Informatyki, Uniwersytet Warszawski Wykład fakultatywny w semestrze zimowym 2015/2016 Marcin Szczuka (MIMUW)

Bardziej szczegółowo

Algebrę L = (L, Neg, Alt, Kon, Imp) nazywamy algebrą języka logiki zdań. Jest to algebra o typie

Algebrę L = (L, Neg, Alt, Kon, Imp) nazywamy algebrą języka logiki zdań. Jest to algebra o typie 3. Wykłady 5 i 6: Semantyka klasycznego rachunku zdań. Dotychczas rozwinęliśmy klasyczny rachunek na gruncie czysto syntaktycznym, a więc badaliśmy metodę sprawdzania, czy dana formuła B jest dowodliwa

Bardziej szczegółowo

Automatyczne planowanie oparte na sprawdzaniu spełnialności

Automatyczne planowanie oparte na sprawdzaniu spełnialności Automatyczne planowanie oparte na sprawdzaniu spełnialności Linh Anh Nguyen Instytut Informatyki Uniwersytet Warszawski Linh Anh Nguyen Algorytm planowania SatPlan 1 Problem planowania sufit nie malowany?

Bardziej szczegółowo

Metody dowodzenia twierdzeń i automatyzacja rozumowań Tabele syntetyczne: definicje i twierdzenia

Metody dowodzenia twierdzeń i automatyzacja rozumowań Tabele syntetyczne: definicje i twierdzenia Metody dowodzenia twierdzeń i automatyzacja rozumowań Tabele syntetyczne: definicje i twierdzenia Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@.edu.pl Metoda tabel syntetycznych (MTS) MTS

Bardziej szczegółowo

Logika Temporalna i Automaty Czasowe

Logika Temporalna i Automaty Czasowe Modelowanie i Analiza Systemów Informatycznych Logika Temporalna i Automaty Czasowe (7) Automaty czasowe NuSMV Paweł Głuchowski, Politechnika Wrocławska wersja 2.4 Treść wykładu NuSMV NuSMV symboliczny

Bardziej szczegółowo

METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ

METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ KONWERSATORIUM 6: REZOLUCJA V rok kognitywistyki UAM 1 Kilka uwag terminologicznych Słuchacze zapewne pamiętają z zajęć dotyczących PROLOGu poniższą

Bardziej szczegółowo

Semantyka rachunku predykatów pierwszego rzędu. Dziedzina interpretacji. Stałe, zmienne, funkcje. Logika obliczeniowa.

Semantyka rachunku predykatów pierwszego rzędu. Dziedzina interpretacji. Stałe, zmienne, funkcje. Logika obliczeniowa. Logika obliczeniowa Instytut Informatyki 1 Interpretacja i wartościowanie Dziedzina interpretacji Interpretacja Wartościowanie 2 Wartość formuły Wartość termu Wartość logiczna formuły Własności 3 Logiczna

Bardziej szczegółowo

Wprowadzenie do Sztucznej Inteligencji

Wprowadzenie do Sztucznej Inteligencji Wprowadzenie do Sztucznej Inteligencji Wykład 2 Informatyka Studia Inżynierskie Automatyczne dowodzenie twierdzeń O teoriach formalnie na przykładzie rachunku zdań Zastosowanie dedukcji: system Logic Theorist

Bardziej szczegółowo

Paradygmaty dowodzenia

Paradygmaty dowodzenia Paradygmaty dowodzenia Sprawdzenie, czy dana formuła rachunku zdań jest tautologią polega zwykle na obliczeniu jej wartości dla 2 n różnych wartościowań, gdzie n jest liczbą zmiennych zdaniowych tej formuły.

Bardziej szczegółowo

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ 1 Inferencyjna równoważność formuł Definicja 9.1. Formuła A jest

Bardziej szczegółowo

Złożoność obliczeniowa

Złożoność obliczeniowa Złożoność obliczeniowa Jakub Michaliszyn 26 kwietnia 2017 Są problemy rozstrzygalne i nierozstrzygalne Są problemy rozstrzygalne i nierozstrzygalne Jak rozwiązywać te, które są rozstrzygalne? Są problemy

Bardziej szczegółowo

Język rachunku predykatów Formuły rachunku predykatów Formuły spełnialne i prawdziwe Dowody założeniowe. 1 Zmienne x, y, z...

Język rachunku predykatów Formuły rachunku predykatów Formuły spełnialne i prawdziwe Dowody założeniowe. 1 Zmienne x, y, z... Język rachunku predykatów 1 Zmienne x, y, z... 2 Predykaty n-argumentowe P(x, y,...), Q(x, y...),... 3 Funktory zdaniowe,,,, 4 Kwantyfikatory: istnieje, dla każdego Język rachunku predykatów Ustalenie

Bardziej szczegółowo

Logika rachunek zdań

Logika rachunek zdań Wprowadzenie do Wykładu 1 Logika Logika rachunek zdań Materiały pomocnicze do wykładu dla Studentów Informatyki Stosowanej Wydział EAIiIB AGH Antoni Ligęza Materiały pomocnicze: http://home.agh.edu.pl/~ligeza

Bardziej szczegółowo

Programowanie deklaratywne i logika obliczeniowa

Programowanie deklaratywne i logika obliczeniowa Programowanie deklaratywne i logika obliczeniowa Programowanie deklaratywne i logika obliczeniowa Wykład logika 12 godzin Dr hab. inż. Joanna Józefowska, prof. PP dyżur: poniedziałek 9.30-11.00 p. 10,

Bardziej szczegółowo

Logika Temporalna i Automaty Czasowe

Logika Temporalna i Automaty Czasowe Modelowanie i Analiza Systemów Informatycznych Logika Temporalna i Automaty Czasowe (3) Logika CTL Paweł Głuchowski, Politechnika Wrocławska wersja 2.2 Treść wykładu Charakterystyka logiki CTL Czas w Computation

Bardziej szczegółowo

Logika rachunek zdań

Logika rachunek zdań Wprowadzenie do Wykładu 1 Logika Logika rachunek zdań Materiały pomocnicze do wykładu dla Studentów Informatyki Wydział EAIiIB AGH Antoni Ligęza Materiały pomocnicze: http://home.agh.edu.pl/~ligeza Wprowadzenie

Bardziej szczegółowo

Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa.

Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa. Plan Procedura decyzyjna Reguły α i β - algorytm Plan Procedura decyzyjna Reguły α i β - algorytm Logika obliczeniowa Instytut Informatyki 1 Procedura decyzyjna Logiczna konsekwencja Teoria aksjomatyzowalna

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-10-15 Projekt

Bardziej szczegółowo

Logika Stosowana. Wykład 2 - Logika modalna Część 2. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017

Logika Stosowana. Wykład 2 - Logika modalna Część 2. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017 Logika Stosowana Wykład 2 - Logika modalna Część 2 Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 27 Plan wykładu

Bardziej szczegółowo

Praktyczne metody weryfikacji

Praktyczne metody weryfikacji Praktyczne metody weryfikacji Sławomir Lasota Uniwersytet Warszawski semestr letni 08/09. p.1/50 I. Motywacja czyli po co?. p.2/50 Arianne 5, czerwiec 1996. p.3/50 nieobsłużony wyjatek szacunkowy koszt:

Bardziej szczegółowo

Lista 6 Problemy NP-zupełne

Lista 6 Problemy NP-zupełne 1 Wprowadzenie Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Teoretyczne Podstawy Informatyki Lista 6 Problemy NP-zupełne Problem abstrakcyjny Q jest to relacja dwuargumentowa

Bardziej szczegółowo

Adam Meissner SZTUCZNA INTELIGANCJA

Adam Meissner SZTUCZNA INTELIGANCJA Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGANCJA Podstawy programowania z ograniczeniami

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wstęp do programowania Algorytmy zachłanne, programowanie dynamiczne Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk(Wydział Fizyki) WP w. IX Jesień 2014 1 / 26 Algorytmy zachłanne Strategia polegająca

Bardziej szczegółowo

Trudność aproksymacji problemów NP-trudnych

Trudność aproksymacji problemów NP-trudnych Uniwersytet Warszawski Wydział Matematyki, Informatyki i Mechaniki Anna Niewiarowska Nr albumu: 201074 Trudność aproksymacji problemów NP-trudnych Praca magisterska na kierunku INFORMATYKA Praca wykonana

Bardziej szczegółowo

Algorytm wspinaczkowy dla zadania k-sat

Algorytm wspinaczkowy dla zadania k-sat Algorytm wspinaczkowy dla zadania k-sat 1 Problem k-spełnialności Niech L 0 oznacza język rachunku zdań. Do jego formalizacji konieczne są zmienne zdaniowe (nazywane formułami atomowymi, lub krótko atomami)

Bardziej szczegółowo

Metoda Tablic Semantycznych

Metoda Tablic Semantycznych Procedura Plan Reguły Algorytm Logika obliczeniowa Instytut Informatyki Plan Procedura Reguły 1 Procedura decyzyjna Logiczna równoważność formuł Logiczna konsekwencja Procedura decyzyjna 2 Reguły α, β,

Bardziej szczegółowo

Teoretyczne Podstawy Języków Programowania Wykład 1. Rachunek zdań

Teoretyczne Podstawy Języków Programowania Wykład 1. Rachunek zdań Instytut Informatyki Teoretyczne Podstawy Języków Programowania Wykład 1. Rachunek zdań Zdzisław Spławski Zdzisław Spławski: Teoretyczne Podstawy Języków Programowania, Wykład 1. Rachunek zdań 1 Systemy

Bardziej szczegółowo

Logika pragmatyczna. Logika pragmatyczna. Kontakt: Zaliczenie:

Logika pragmatyczna. Logika pragmatyczna. Kontakt: Zaliczenie: Logika pragmatyczna Logika pragmatyczna Kontakt: dr hab. inż. Adam Kasperski pokój 509 B4 adam.kasperski@pwr.wroc.pl materiały + literatura + informacje na stronie www. Zaliczenie: Kolokwium pisemne na

Bardziej szczegółowo

Logika pragmatyczna dla inżynierów

Logika pragmatyczna dla inżynierów Logika pragmatyczna Logika pragmatyczna dla inżynierów Kontakt: dr hab. inż. Adam Kasperski pokój 509 B4 adam.kasperski@pwr.edu.pl materiały + literatura + informacje na stronie www. Zaliczenie: Test pisemny

Bardziej szczegółowo

Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń

Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń Elementy logiki Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń 1 Klasyczny Rachunek Zdań 1.1 Spójniki logiczne Zdaniem w sensie logicznym nazywamy wyrażenie, które jest

Bardziej szczegółowo

Monte Carlo w model checkingu

Monte Carlo w model checkingu Niezawodność systemów współbieżnych i obiektowych 28 kwietnia 2010 1 2 3 4 5 Cel Cel Weryfikacja systemów komputerowych sprawdzenie, czy formuła LTL zachodzi dla danego systemu Problemy: Problem weryfikacji

Bardziej szczegółowo

Konsekwencja logiczna

Konsekwencja logiczna Konsekwencja logiczna Niech Φ 1, Φ 2,..., Φ n będa formułami logicznymi. Formuła Ψ wynika logicznie z Φ 1, Φ 2,..., Φ n jeżeli (Φ 1 Φ 2 Φ n ) Ψ jest tautologia. Formuły Φ 1, Φ 2,..., Φ n nazywamy założeniami

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-11 1 Modelowanie funkcji logicznych

Bardziej szczegółowo

Definicja: alfabetem. słowem długością słowa

Definicja: alfabetem. słowem długością słowa Definicja: Niech X będzie zbiorem niepustym. Zbiór ten będziemy nazywać alfabetem. Skończony ciąg elementów alfabetu X będziemy nazywać słowem a liczbę elementów tego ciągu nazywamy długością słowa. Na

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści wspólnych z kierunkiem Matematyka, moduł kierunku obowiązkowy Rodzaj zajęć: wykład, ćwiczenia I KARTA PRZEDMIOTU CEL

Bardziej szczegółowo

SID Wykład 5 Wnioskowanie w rachunku zdań

SID Wykład 5 Wnioskowanie w rachunku zdań SID Wykład 5 Wnioskowanie w rachunku zdań Wydział Matematyki, Informatyki i Mechaniki UW slezak@mimuw.edu.pl Bazy wiedzy Inference engines Knowledge base domain-independent algorithms domain-specific content

Bardziej szczegółowo

Logika Rachunek zdań

Logika Rachunek zdań Wprowadzenie do Wykładu 1 Logika Rachunek zdań Materiały pomocnicze do wykładu dla Studentek i Studentów Informatyki Wydziału EAIiIB AGH Antoni Ligęza : 2016 Materiały pomocnicze: http://home.agh.edu.pl/~ligeza

Bardziej szczegółowo

Logika Temporalna i Automaty Czasowe

Logika Temporalna i Automaty Czasowe Modelowanie i Analiza Systemów Informatycznych Logika Temporalna i Automaty Czasowe (4) Modelowa weryfikacja systemu Paweł Głuchowski, Politechnika Wrocławska wersja 2.1 Treść wykładu Własności współbieżnych

Bardziej szczegółowo

Logika rachunek zdań

Logika rachunek zdań Wprowadzenie do Wykładu 1 Logika Logika rachunek zdań Materiały pomocnicze do wykładu dla Studentów Informatyki Stosowanej Wydział EAIiIB AGH Antoni Ligęza Materiały pomocnicze: http://home.agh.edu.pl/~ligeza

Bardziej szczegółowo

vf(c) =, vf(ft 1... t n )=vf(t 1 )... vf(t n ).

vf(c) =, vf(ft 1... t n )=vf(t 1 )... vf(t n ). 6. Wykład 6: Rachunek predykatów. Język pierwszego rzędu składa się z: symboli relacyjnych P i, i I, gdzie (P i ) oznaczać będzie ilość argumentów symbolu P i, symboli funkcyjnych f j, j J, gdzie (f j

Bardziej szczegółowo

1. Składnia. Logika obliczeniowa - zadania 1 SKŁADNIA Teoria

1. Składnia. Logika obliczeniowa - zadania 1 SKŁADNIA Teoria Logika obliczeniowa - zadania 1 SKŁADNIA 1. Składnia 1.1. Teoria 1. Składnia oznacza reguły tworzenia... z.... 2. Rachunek predykatów pierwszego rzędu (w skrócie: rachunek predykatów) wyróżnia cztery zbiory

Bardziej szczegółowo

Logika Stosowana. Wykład 2 - Logika modalna Część 1. Marcin Szczuka. Instytut Matematyki UW. Wykład monograficzny, semestr letni 2016/2017

Logika Stosowana. Wykład 2 - Logika modalna Część 1. Marcin Szczuka. Instytut Matematyki UW. Wykład monograficzny, semestr letni 2016/2017 Logika Stosowana Wykład 2 - Logika modalna Część 1 Marcin Szczuka Instytut Matematyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 28 Plan wykładu 1

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-10 Projekt pn. Wzmocnienie

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład 5 Prof. dr hab. inż. Jan Magott DMT rozwiązuje problem decyzyjny π przy kodowaniu e w co najwyżej wielomianowym czasie, jeśli dla wszystkich łańcuchów wejściowych

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Wykłady 10b i 11. Semantyka relacyjna dla normalnych modalnych rachunków zdań

Andrzej Wiśniewski Logika II. Wykłady 10b i 11. Semantyka relacyjna dla normalnych modalnych rachunków zdań Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykłady 10b i 11. Semantyka relacyjna dla normalnych modalnych rachunków zdań 1 Struktury modelowe Przedstawimy teraz pewien

Bardziej szczegółowo

1 Funktory i kwantyfikatory

1 Funktory i kwantyfikatory Logika, relacje v07 egzamin mgr inf niestacj 1 1 Funktory i kwantyfikatory x X x X Φ(x) dla każdego x X (= dla wszystkich x) zachodzi formuła Φ(x) Φ(x) istnieje x X takie, że (= dla pewnego x) zachodzi

Bardziej szczegółowo

Podstawowe Pojęcia. Semantyczne KRZ

Podstawowe Pojęcia. Semantyczne KRZ Logika Matematyczna: Podstawowe Pojęcia Semantyczne KRZ I rok Językoznawstwa i Informacji Naukowej UAM 2006-2007 Jerzy Pogonowski Zakład Logiki Stosowanej UAM http://www.logic.amu.edu.pl Dodatek: ściąga

Bardziej szczegółowo

Elementy logiki Klasyczny rachunek zdań. Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im.

Elementy logiki Klasyczny rachunek zdań. Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im. Elementy logiki. Klasyczny rachunek zdań. Elementy logiki Klasyczny rachunek zdań Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza 1 Spójniki

Bardziej szczegółowo

Logika Temporalna i Automaty Czasowe

Logika Temporalna i Automaty Czasowe Modelowanie i Analiza Systemów Informatycznych Logika Temporalna i Automaty Czasowe (2) Logika LTL Paweł Głuchowski, Politechnika Wrocławska wersja 2.1 Treść wykładu Charakterystyka logiki LTL Czas w Linear

Bardziej szczegółowo

Metody Sztucznej Inteligencji (studia inżynierskie)

Metody Sztucznej Inteligencji (studia inżynierskie) Politechnika Warszawska Ośrodek Kształcenia Na Odległość Metody Sztucznej Inteligencji (studia inżynierskie) Autor: Włodzimierz Kasprzak Opracowanie multimedialne: Warszawa, wrzesień 2014 Metody Sztucznej

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wstęp do programowania Programowanie dynamiczne Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. X Jesień 2013 1 / 21 Dziel i zwyciężaj przypomnienie 1 Podział problemu na 2 lub

Bardziej szczegółowo

Wstęp do logiki. Klasyczny Rachunek Zdań II

Wstęp do logiki. Klasyczny Rachunek Zdań II Wstęp do logiki Klasyczny Rachunek Zdań II DEF. 1 (Słownik). Następujące znaki tworzą słownik języka KRZ: p 1, p 2, p 3, (zmienne zdaniowe) ~,,,, (spójniki) ), ( (nawiasy). DEF. 2 (Wyrażenie). Wyrażeniem

Bardziej szczegółowo

Interpretacja Niech U będzie zbiorem formuł takim, że zbiór {p 1,..., p k } jest zbiorem wszystkich symboli predykatywnych, {f 1,..., f l } jest zbior

Interpretacja Niech U będzie zbiorem formuł takim, że zbiór {p 1,..., p k } jest zbiorem wszystkich symboli predykatywnych, {f 1,..., f l } jest zbior Rachunek predykatów Wykład 5 Plan wykładu Funkcje i termy Postać klauzulowa formuł Modele Herbranda Twierdzenie Herbranda Rezolucja dla klauzul ustalonych Podstawienia Uzgadnianie Rezolucja Funkcje i termy

Bardziej szczegółowo

Definicja: zmiennych zdaniowych spójnikach zdaniowych:

Definicja: zmiennych zdaniowych spójnikach zdaniowych: Definicja: Alfabet języka logiki zdań składa się z nieskończonego (najczęściej zakładamy: przeliczalnego) zbioru P, o którym myślimy jak o zbiorze zmiennych zdaniowych i skończonego zbioru symboli, o których

Bardziej szczegółowo

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ 1 Tezy KRZ Pewien system aksjomatyczny KRZ został przedstawiony

Bardziej szczegółowo

Definicja: zmiennych zdaniowych spójnikach zdaniowych:

Definicja: zmiennych zdaniowych spójnikach zdaniowych: Definicja: Alfabet języka logiki zdań składa się z nieskończonego (najczęściej zakładamy: przeliczalnego) zbioru P, o którym myślimy jak o zbiorze zmiennych zdaniowych i skończonego zbioru symboli, o których

Bardziej szczegółowo

Algorytmy aproksymacyjne i parametryzowane

Algorytmy aproksymacyjne i parametryzowane Algorytmy aproksymacyjne i parametryzowane Marek Cygan Uniwersytet Warszawski 18 października 2012 Marek Cygan Algorytmy aproksymacyjne i parametryzowane 1/22 Wstęp W algorytmice problemy dzielimy na obliczeniowo

Bardziej szczegółowo

Planowanie drogi robota, algorytm A*

Planowanie drogi robota, algorytm A* Planowanie drogi robota, algorytm A* Karol Sydor 13 maja 2008 Założenia Uproszczenie przestrzeni Założenia Problem planowania trasy jest bardzo złożony i trudny. W celu uproszczenia problemu przyjmujemy

Bardziej szczegółowo

ROZDZIAŁ 1. Rachunek funkcyjny

ROZDZIAŁ 1. Rachunek funkcyjny ROZDZIAŁ 1 Rachunek funkcyjny Niech X 1,..., X n będą dowolnymi zbiorami. Wyrażenie (formułę) ϕ(x 1,..., x n ), w którym występuje n zmiennych x 1,..., x n i które zamienia się w zdanie logiczne, gdy zamiast

Bardziej szczegółowo

Logika Stosowana. Wykład 7 - Zbiory i logiki rozmyte Część 3 Prawdziwościowa logika rozmyta. Marcin Szczuka. Instytut Informatyki UW

Logika Stosowana. Wykład 7 - Zbiory i logiki rozmyte Część 3 Prawdziwościowa logika rozmyta. Marcin Szczuka. Instytut Informatyki UW Logika Stosowana Wykład 7 - Zbiory i logiki rozmyte Część 3 Prawdziwościowa logika rozmyta Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika

Bardziej szczegółowo

LOGIKA STOSOWANA Wykład monograficzny Semestr letni, 2016/2017

LOGIKA STOSOWANA Wykład monograficzny Semestr letni, 2016/2017 LOGIKA STOSOWANA Wykład monograficzny Semestr letni, 2016/2017 Nguyen Hung Son, Marcin Szczuka Instytut Informatyki UW Warszawa, ul.banacha 2 szczuka@mimuw.edu.pl 2 Spis treści 1 Rachunek zdań 5 1.1 Język

Bardziej szczegółowo

Rachunek predykatów. Formuły rachunku predykatów. Plan wykładu. Relacje i predykaty - przykłady. Relacje i predykaty

Rachunek predykatów. Formuły rachunku predykatów. Plan wykładu. Relacje i predykaty - przykłady. Relacje i predykaty Rachunek predykatów Wykład 4 Plan wykładu Relacje i predykaty Formuły rachunku predykatów Interpretacje Logiczna równoważność Metoda tabel Modele skończone i nieskończone Rozstrzygalność Relacje i predykaty

Bardziej szczegółowo

Teoria Złożoności Zadania

Teoria Złożoności Zadania Teoria Złożoności Zadania Łukasz Czajka 14 czerwca 2008 1 Spis treści 1 Zadanie 1 3 2 Zadanie 5 8 2 1 Zadanie 1 Niech A NP 1. Istnieje zatem jedno-taśmowa niedeterministyczna maszyna Turinga M o alfabecie

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 5. Wprowadzenie do semantyki teoriomodelowej cz.5. Wynikanie logiczne 1 Na poprzednim wykładzie udowodniliśmy m.in.:

Bardziej szczegółowo

Inteligencja obliczeniowa Laboratorium 2: Algorytmy genetyczne

Inteligencja obliczeniowa Laboratorium 2: Algorytmy genetyczne Inteligencja obliczeniowa Laboratorium 2: Algorytmy genetyczne Zadanie 1 W problemie plecakowym pytamy, jakie przedmioty wziąć do plecaka o ograniczonej objętości, by ich wartość była najwyższa. Załóżmy,

Bardziej szczegółowo

Algorytmy i struktury danych

Algorytmy i struktury danych Algorytmy i struktury danych 4. Łódź 2018 Suma szeregu harmonicznego - Wpisz kod programu w oknie edycyjnym - Zapisz kod w pliku harmonic.py - Uruchom skrypt (In[1]: run harmonic.py) - Ten program wykorzystuje

Bardziej szczegółowo

Problemy optymalizacyjne - zastosowania

Problemy optymalizacyjne - zastosowania Problemy optymalizacyjne - zastosowania www.qed.pl/ai/nai2003 PLAN WYKŁADU Zło ono obliczeniowa - przypomnienie Problemy NP-zupełne klika jest NP-trudna inne problemy NP-trudne Inne zadania optymalizacyjne

Bardziej szczegółowo

Wstęp do Programowania potok funkcyjny

Wstęp do Programowania potok funkcyjny Wstęp do Programowania potok funkcyjny Marcin Kubica 2010/2011 Outline 1 Kilka podstawowych pojęć Definition Programy imperatywne zmieniają stan, czyli wartości zmiennych. Asercja = warunek logiczny, który

Bardziej szczegółowo

Metalogika (10) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM

Metalogika (10) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM Metalogika (10) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Uniwersytet Opolski Jerzy Pogonowski (MEG) Metalogika (10) Uniwersytet Opolski 1 / 291 Plan wykładu Plan

Bardziej szczegółowo

Rodzaje Code slicing w weryfikacji Narzędzia Literatura. Code slicing. Bartłomiej Wołowiec. 16 lutego 2011

Rodzaje Code slicing w weryfikacji Narzędzia Literatura. Code slicing. Bartłomiej Wołowiec. 16 lutego 2011 w weryfikacji 16 lutego 2011 w weryfikacji 1 Rodzaje Statyczny slicing (ang. Static Slicing) Dynamiczny slicing (ang. Dynamic Slicing) Warunkowy slicing (ang. Conditioned Slicing) Bezpostaciowy slicing

Bardziej szczegółowo

Elementy logiki i teorii mnogości

Elementy logiki i teorii mnogości Elementy logiki i teorii mnogości Zdanie logiczne Zdanie logiczne jest to zdanie oznajmujące, któremu można przypisać określoną wartość logiczną. W logice klasycznej zdania dzielimy na: prawdziwe (przypisujemy

Bardziej szczegółowo

WERYFIKACJA WSPOMAGANA KOMPUTEROWO

WERYFIKACJA WSPOMAGANA KOMPUTEROWO WERYFIKACJA WSPOMAGANA KOMPUTEROWO Wykład 10 Dowodzenie poprawności programów. Java Modeling Language I. Dowodzenie poprawności DOWODZENIE POPRAWNOŚCI obligacje dowodowe system wspomagający dowodzenie

Bardziej szczegółowo

Algorytmy stochastyczne, wykład 05 Systemy Liendenmayera, modelowanie roślin

Algorytmy stochastyczne, wykład 05 Systemy Liendenmayera, modelowanie roślin Algorytmy stochastyczne, wykład 5, modelowanie roślin Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 214-3-2 1 2 3 ze stosem Przypomnienie gramatyka to system (Σ, A, s,

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 15. Trójwartościowa logika zdań Łukasiewicza

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 15. Trójwartościowa logika zdań Łukasiewicza Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 15. Trójwartościowa logika zdań Łukasiewicza 1 Wprowadzenie W logice trójwartościowej, obok tradycyjnych wartości logicznych,

Bardziej szczegółowo

Czyli o budowie drzew semantycznych.

Czyli o budowie drzew semantycznych. Czyli o budowie drzew semantycznych ZAŁÓŻMY Jednego z Was porwał okrutny PRL. W ramach okupu żąda, by obecni na sali udowodnili, że podane przez nich formuły są zawsze prawdziwe. Zaczynają zupełnie niewinnie

Bardziej szczegółowo

Graf. Definicja marca / 1

Graf. Definicja marca / 1 Graf 25 marca 2018 Graf Definicja 1 Graf ogólny to para G = (V, E), gdzie V jest zbiorem wierzchołków (węzłów, punktów grafu), E jest rodziną krawędzi, które mogą być wielokrotne, dokładniej jednoelementowych

Bardziej szczegółowo

Imię, nazwisko, nr indeksu

Imię, nazwisko, nr indeksu Imię, nazwisko, nr indeksu (kod) (9 punktów) Wybierz 9 z poniższych pytań i wybierz odpowiedź tak/nie (bez uzasadnienia). Za prawidłowe odpowiedzi dajemy +1 punkt, za złe -1 punkt. Punkty policzymy za

Bardziej szczegółowo

III rok kognitywistyki UAM,

III rok kognitywistyki UAM, METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ WYKŁAD 14: POWTÓRKA III rok kognitywistyki UAM, 2016 2017 Dzisiejszy wykład w całości poświęcony będzie omówieniu przykładowych zadań, podobnych do

Bardziej szczegółowo

Logika Matematyczna 11 12

Logika Matematyczna 11 12 Logika Matematyczna 11 12 Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 3, 10 stycznia 2008 Jerzy Pogonowski (MEG) Logika Matematyczna 11 12 3, 10 stycznia 2008 1

Bardziej szczegółowo

Elementy logiki i teorii mnogości Wyk lad 1: Rachunek zdań

Elementy logiki i teorii mnogości Wyk lad 1: Rachunek zdań Elementy logiki i teorii mnogości Wyk lad 1: Rachunek zdań Micha l Ziembowski m.ziembowski@mini.pw.edu.pl www.mini.pw.edu.pl/ ziembowskim/ October 2, 2016 M. Ziembowski (WUoT) Elementy logiki i teorii

Bardziej szczegółowo

Wprowadzenie Logiki temporalne Przykłady użycia Bibliografia. Logiki temporalne. Andrzej Oszer. Seminarium Protokoły Komunikacyjne

Wprowadzenie Logiki temporalne Przykłady użycia Bibliografia. Logiki temporalne. Andrzej Oszer. Seminarium Protokoły Komunikacyjne Seminarium Protokoły Komunikacyjne Spis treści 1 2 PLTL - Propositional Linear Temporal Logic CTL - Computation Tree Logic CTL* - uogólnienie 3 4 rozszerzaja logikę pierwszego rzędu o symbole określajace

Bardziej szczegółowo

Sztuczna inteligencja i logika. Podsumowanie przedsięwzięcia naukowego Kisielewicz Andrzej WNT 20011

Sztuczna inteligencja i logika. Podsumowanie przedsięwzięcia naukowego Kisielewicz Andrzej WNT 20011 Sztuczna inteligencja i logika. Podsumowanie przedsięwzięcia naukowego Kisielewicz Andrzej WNT 20011 Przedmowa. CZĘŚĆ I: WPROWADZENIE 1. Komputer 1.1. Kółko i krzyżyk 1.2. Kodowanie 1.3. Odrobina fantazji

Bardziej szczegółowo

Logika Matematyczna 11 12

Logika Matematyczna 11 12 Logika Matematyczna 11 12 Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl TA w KRZ Jerzy Pogonowski (MEG) Logika Matematyczna 11 12 TA w KRZ 1 / 102 Wprowadzenie Wprowadzenie

Bardziej szczegółowo

Prof. dr hab. inż. Jan Magott Wrocław, Katedra Informatyki Technicznej Wydział Elektroniki Politechniki Wrocławskiej

Prof. dr hab. inż. Jan Magott Wrocław, Katedra Informatyki Technicznej Wydział Elektroniki Politechniki Wrocławskiej Prof. dr hab. inż. Jan Magott Wrocław, 09.09.2017 Katedra Informatyki Technicznej Wydział Elektroniki Politechniki Wrocławskiej RECENZJA ROZPRAWY DOKTORSKIEJ DLA INSTYTUTU PODSTAW INFORMATYKI POLSKIEJ

Bardziej szczegółowo

WERYFIKACJA WSPOMAGANA KOMPUTEROWO. Sławomir Lasota Uniwersytet Warszawski 2009/1020

WERYFIKACJA WSPOMAGANA KOMPUTEROWO. Sławomir Lasota Uniwersytet Warszawski 2009/1020 WERYFIKACJA WSPOMAGANA KOMPUTEROWO Sławomir Lasota Uniwersytet Warszawski 2009/1020 Teoria i praktyka wspomaganych komputerowo metod analizy formalnej oprogramowania i układów sprzętowych. I. Motywacja

Bardziej szczegółowo