Praktyczne metody weryfikacji. Wykład 9: Weryfikacja ograniczona.. p.1/40
|
|
- Roman Świątek
- 8 lat temu
- Przeglądów:
Transkrypt
1 Praktyczne metody weryfikacji Wykład 9: Weryfikacja ograniczona. p.1/40
2 Symboliczna weryfikacja modelowa (SMC) model kodowanie boolowskie QBF implementacja OBDD weryfikacja modelowa = operacje na OBDDs. p.2/40
3 Ograniczona weryfikacja modelowa (BMC) model kodowanie boolowskie BF weryfikacja modelowa = spełnialność formuły boolowskiej. p.3/40
4 SMC BMC Przykład: EF p (bezpieczeństwo) pre-smc:... p EX ( p EX p) p EX p p false... p pre( p pre( p)) p pre( p) p false post-smc: S 0 S 0 post(s 0 ) S 0 post(s 0 post(s 0 )).... p.4/40
5 Ograniczona weryfikacja modelowa poszukiwanie kontrprzykładów ograniczonej długości metoda symboliczna wykorzystanie SAT-rozwia,zywaczy (ang. SAT-solvers). p.5/40
6 I. Weryfikacja ograniczona. p.6/40
7 M E φ (φ LTL + ) np. zamiast M AG φ, sprawdzamy M EF φ M opisany przez formuły boolowskie: R(x 1,..., x m, x 1,..., x m) L p (x 1,..., x m ), Ŝ 0 (x 1,..., x m ). p.7/40
8 Pomysł: horyzont k 0 k kroków systemu Π k φ k kroków wystarcza by stwierdzić, że Π φ Lem.: Π k φ = Π φ Lem.: M E φ = k 0. M k E φ Tw.: M E φ k 0. M k E φ. p.8/40
9 Π = s 0 s 1 s 2... (k, l) - pe,tla: s 0 s 1... s l... s k s k+1+i = s l+i (k - pe,tla) brak pe,tli: s 0 s 1... s k.... p.9/40
10 Semantyka ograniczona dla k-pe,tli Π k φ Π φ Π = s 0 s 1 s p.10/40
11 Semantyka ograniczona dla nie-pe,tli Π k φ Π 0 k φ Π = s 0 s 1 s 2... i k, 0 i k Π i k p p L(s i) Π i k p, φ 1 φ 2, φ 1 φ 2... Π i k X φ i<k i Π i+1 k φ Π i k F φ j, i j k. Π j k φ Π i k G φ nigdy Π i k φ U ψ j, i j k. Π j k ψ l, i l<j. Π l k φ Π i k φ R ψ?. p.11/40
12 φ R ψ ( φu ψ) Π φ R ψ wtw gdy i < Π. ( j < i. Π j φ) = Π i ψ φ R ψ ψ U (ψ φ) G ψ Π i k φ U ψ j, i j k. Π j k ψ l, i l<j. Π l k φ Π i k φ R ψ j, i j k. Π j k φ l, i l j. Π l k ψ. p.12/40
13 Lem.: Π k φ = Π φ Lem.: M E φ = k 0. M k E φ Tw.: M E φ k 0. M k E φ jakie k jest wystarczaja,co duże? średnica grafu? brak pełności!. p.13/40
14 M k E φ (φ LTL + ) M, ψ, k [M, φ] k M k φ [M, φ] k spełnialna M opisany przez formuły boolowskie: R(z, z ) L p (z), S 0 (z). p.14/40
15 Ścieżka symboliczna z 0 z 1... z k [M] k := S 0 (z 0 ) k 1 i=0 R(z i, z i+1 ) (k + 1) m zmiennych boolowskich rozmiar formuły boolowskiej [M] k jest O(k M ). p.15/40
16 (k, l) - pe,tla: s 0 s 1... s l... s k ll k R(z k, z l ) L k k ll k l=0 brak pe,tli: s 0 s 1... s k. p.16/40
17 [M, φ] k := [M] k ( k ( L k [φ] 0 k) ( l L k l [φ] 0 k) ) l=0 l[φ] 0 k [φ] 0 k znaczenie φ na (k, l)-pe,tli znaczenie φ na nie-pe,tli rozmiar formuły [M, φ] k jest O(k ( M + φ )). p.17/40
18 l[φ] i k 0 l, i k s 0 s 1... s l... s k l[p] i k := L p (z i ) l[ p] i k l[φ ψ] i k l[φ ψ] i k :=... l[ X φ] i k := l [φ] succ(i) k succ(i) = { i + 1 i < k l i = k F φ φ X F φ φ U ψ ψ (φ X φ U ψ) G φ φ X G φ φ R ψ ψ (φ X φ R ψ). p.18/40
19 Przykład: s 0 s 1... s l... s k l[ F p] 0 k = L p (z 0 )... L p (z k ) l[ G p] 0 k = L p (z 0 )... L p (z k ) l[p U q] 0 k = L q (z 0 ) (L p (z 0 ) (L q (z 1 ) (... L q (z k 1 ) (L p (z k 1 ) L q (z k ))...))) l[ F G p] 0 k = (L p (z 0 ) L p (z 1 )... L p (z k )) (L p (z 1 )... L p (z k )) L p (z k ). p.19/40
20 Rozmiar formuły boolowskiej l [φ] i k jest O(k φ ) dzie,ki dzieleniu podformuł. p.20/40
21 [φ] i k 0 i k s 0 s 1... s k [p] i k [ p] i k [φ ψ] i k [φ ψ] i k := j. w. [ X φ] i k := [φ] i+1 k [φ] k+1 k := false F φ φ X F φ φ U ψ ψ (φ X φ U ψ) G φ φ X G φ φ R ψ ψ (φ X φ R ψ). p.21/40
22 Przykład: s 0 s 1... s k [ F p] 0 k = L p (z 0 )... L p (z k ) false [ G p] 0 k = L p (z 0 )... L p (z k ) false false [p U q] 0 k = L q (z 0 ) (L p (z 0 ) (L q (z 1 ) (... L q (z k 1 ) (L p (z k 1 ) (L q (z k ) (L p (z k ) false)))...))) [ F G p] 0 k false. p.22/40
23 [M, φ] k := [M] k ( k ( L k [φ] 0 k) ( l L k l [φ] 0 k) ) l=0 Tw.: M k E φ [M, φ] k jest spełnialna.. p.23/40
24 II. Pełność?. p.24/40
25 Jak uzyskać pełnósć weryfikacji ograniczonej? ograniczenie dla k (bezpieczeństwo) równolegle sprawdzamy φ i φ (żywotność) indukcja (bezpieczeństwo). p.25/40
26 Pełność dla G p Średnica ograniczenie dla k najmniejsze i t. że z 0,..., z n. z 0,..., z t, t i. S 0 (z 0 ) n 1 j=0 R(z j, z j+1 ) = S 0 (z 0) ( t 1 j=0 R(z j, z j+1) ) z t = z n. p.26/40
27 Pełność dla G p Średnica ograniczenie dla k najmniejsze i t. że z 0,..., z i+1. z 0,..., z i. S 0 (z 0 ) i j=0 R(z j, z j+1 ) = S 0 (z 0) ( i 1 j=0 R(z j, z j+1) ) i j=0 z j = z i+1. p.27/40
28 Pełność dla G p najdłuższaścieżka bez pe,tli ograniczenie dla k najwie,ksze i t. że z 0,..., z i. S 0 (z 0 ) ( i 1 j=0 R(z j, z j+1 ) ) i 1 i j=0 l=j+1 z j z l. p.28/40
29 Pełność dla F p M EG p k t. że naste,puja,ca formuła jest spełnialna: S 0 (z 0 ) k 1 R(z j, z j+1 ) k ( l L k k L p (z j )) j=0 l=0 j=0 M AF p k t. że naste,puja,ca formuła jest tautologia,: S 0 (z 0 ) k 1 R(z j, z j+1 ) = k L p (z j ) j=0 j=0. p.29/40
30 Pełność dla F p M EG p k t. że naste,puja,ca formuła jest spełnialna: S 0 (z 0 ) k 1 j=0 R(z j, z j+1 ) ( k l=0 ll k ) k j=0 L p (z j ) M AF p k t. że naste,puja,ca formuła jest niespełnialna: S 0 (z 0 ) k 1 R(z j, z j+1 ) k L p (z j ) j=0 j=0. p.30/40
31 Pełność dla G p indukcja 1) wybieramy niezmiennik φ(z) 2) sprawdzamy, że poniższa formuła jest niespełnialna: z 0,..., z k. S 0 (z 0 ) k 1 R(z j, z j+1 ) k φ(z j ) j=0 j=0 3) sprawdzamy, że poniższa formuła jest niespełnialna: z 0,..., z k+1. k (φ(z j ) R(z j, z j+1 )) φ(z k+1 ) j=0 4) sprawdzamy, że poniższa formuła jest tautologia,: z. φ(z) = L p (z). p.31/40
32 Po co k > 1? p p p p p. p.32/40
33 III. BDD czy SAT?. p.33/40
34 . p.34/40
35 BDD + SAT nieograniczona weryfikacja modelowa. p.35/40
36 IV. SAT-solvers. p.36/40
37 CNF algorytm DPLL przeszukiwanie drzewa wartościowań cze,ściowych BCP (ang. Boolean Constraint Propagation) konflikty obcinanie drzewa heurystyki. p.37/40
38 Graf implikacji. p.38/40
39 . p.39/40
40 Dlaczego SAT-rozwia,zywacze sa, tak szybkie? uczenie konfliktów dodajemy tzw. klauzule konfliktowe niechronologiczne powroty heurystyki dla: decyzji.... p.40/40
Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017
Logika Stosowana Wykład 1 - Logika zdaniowa Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 30 Plan wykładu 1 Język
Weryfikacja modelowa. Protokoły komunikacyjne 2006/2007. Paweł Kaczan
Weryfikacja modelowa Protokoły komunikacyjne 2006/2007 Paweł Kaczan pk209469@students.mimuw.edu.pl Plan Wstęp Trzy kroki do weryfikacji modelowej Problemy Podsumowanie Dziedziny zastosowań Weryfikacja
LOGIKA Klasyczny Rachunek Zdań
LOGIKA Klasyczny Rachunek Zdań Robert Trypuz trypuz@kul.pl 5 listopada 2013 Robert Trypuz (trypuz@kul.pl) Klasyczny Rachunek Zdań 5 listopada 2013 1 / 24 PLAN WYKŁADU 1 Alfabet i formuła KRZ 2 Zrozumieć
Logika Stosowana. Wykład 2 - Logika modalna Część 3. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2017/2018
Logika Stosowana Wykład 2 - Logika modalna Część 3 Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2017/2018 Marcin Szczuka (MIMUW) Logika Stosowana 2018 1 / 36 Plan wykładu
Automatyczne dowodzenie twierdzeń metodą rezolucji
Automatyczne dowodzenie twierdzeń metodą rezolucji 16 kwietnia 2010 Rezolucja zdaniowa Formuły rachunku zdań: zbudowane ze zmiennych zdaniowych za pomocą spójników logicznych,,,, i nawiasów Wartości logiczne:
Metody Programowania
POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Metody Programowania www.pk.edu.pl/~zk/mp_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 8: Wyszukiwanie
Semantyka rachunku predykatów
Relacje Interpretacja Wartość Spełnialność Logika obliczeniowa Instytut Informatyki Relacje Interpretacja Wartość Plan Plan Relacje O co chodzi? Znaczenie w logice Relacje 3 Interpretacja i wartościowanie
Rozstrzygalność logiki modalnej
, a FO, a Guarded fragment Rozstrzygalność logiki modalnej, a logika pierwszego rzędu 13.05.2009 / , a FO, a Guarded fragment Spis treści 1 Definicja Model Checking Spełnialność 2, a FO Zamiana na FO Złożoność
Podstawy Sztucznej Inteligencji (PSZT)
Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Wnioskowanie logiczne i systemy eksperckie Systemy posługujące się logiką predykatów: część 3/3 Dzisiaj Uogólnienie Poprawność i pełność wnioskowania
III rok kognitywistyki UAM,
METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ WYKŁAD 6A: REZOLUCJA III rok kognitywistyki UAM, 2016 2017 1 Rezolucja w KRZ Dowody rezolucyjne w KRZ są równie proste, jak dowody tablicowe Metoda
Praktyczne metody weryfikacji
Praktyczne metody weryfikacji Sławomir Lasota Uniwersytet Warszawski semestr zimowy 06/07. p.1/?? I. Motywacja czyli po co?. p.2/?? czerwiec 1996. p.3/?? nieobsłużony wyjatek szacunkowy koszt: 600 mln
Adam Meissner SZTUCZNA INTELIGENCJA Problem spełnialności (SAT)
Instytut Automatyki, Robotyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Problem spełnialności
Logika Temporalna i Automaty Czasowe
Modelowanie i Analiza Systemów Informatycznych Logika Temporalna i Automaty Czasowe (7) Automaty czasowe NuSMV Paweł Głuchowski, Politechnika Wrocławska wersja 2.3 Treść wykładu NuSMV NuSMV symboliczny
Teoria obliczeń i złożoność obliczeniowa
Teoria obliczeń i złożoność obliczeniowa Kontakt: dr hab. inż. Adam Kasperski, prof. PWr. pokój 509 B4 adam.kasperski@pwr.wroc.pl materiały + informacje na stronie www. Zaliczenie: Egzamin Literatura Problemy
Adam Meissner.
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Podstawy logiki pierwszego rzędu
Logika stosowana. Ćwiczenia Złożoność obliczeniowa problemu spełnialności. Marcin Szczuka. Instytut Informatyki, Uniwersytet Warszawski
Logika stosowana Ćwiczenia Złożoność obliczeniowa problemu spełnialności Marcin Szczuka Instytut Informatyki, Uniwersytet Warszawski Wykład fakultatywny w semestrze zimowym 2015/2016 Marcin Szczuka (MIMUW)
Algebrę L = (L, Neg, Alt, Kon, Imp) nazywamy algebrą języka logiki zdań. Jest to algebra o typie
3. Wykłady 5 i 6: Semantyka klasycznego rachunku zdań. Dotychczas rozwinęliśmy klasyczny rachunek na gruncie czysto syntaktycznym, a więc badaliśmy metodę sprawdzania, czy dana formuła B jest dowodliwa
Automatyczne planowanie oparte na sprawdzaniu spełnialności
Automatyczne planowanie oparte na sprawdzaniu spełnialności Linh Anh Nguyen Instytut Informatyki Uniwersytet Warszawski Linh Anh Nguyen Algorytm planowania SatPlan 1 Problem planowania sufit nie malowany?
Metody dowodzenia twierdzeń i automatyzacja rozumowań Tabele syntetyczne: definicje i twierdzenia
Metody dowodzenia twierdzeń i automatyzacja rozumowań Tabele syntetyczne: definicje i twierdzenia Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@.edu.pl Metoda tabel syntetycznych (MTS) MTS
Logika Temporalna i Automaty Czasowe
Modelowanie i Analiza Systemów Informatycznych Logika Temporalna i Automaty Czasowe (7) Automaty czasowe NuSMV Paweł Głuchowski, Politechnika Wrocławska wersja 2.4 Treść wykładu NuSMV NuSMV symboliczny
METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ
METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ KONWERSATORIUM 6: REZOLUCJA V rok kognitywistyki UAM 1 Kilka uwag terminologicznych Słuchacze zapewne pamiętają z zajęć dotyczących PROLOGu poniższą
Semantyka rachunku predykatów pierwszego rzędu. Dziedzina interpretacji. Stałe, zmienne, funkcje. Logika obliczeniowa.
Logika obliczeniowa Instytut Informatyki 1 Interpretacja i wartościowanie Dziedzina interpretacji Interpretacja Wartościowanie 2 Wartość formuły Wartość termu Wartość logiczna formuły Własności 3 Logiczna
Wprowadzenie do Sztucznej Inteligencji
Wprowadzenie do Sztucznej Inteligencji Wykład 2 Informatyka Studia Inżynierskie Automatyczne dowodzenie twierdzeń O teoriach formalnie na przykładzie rachunku zdań Zastosowanie dedukcji: system Logic Theorist
Paradygmaty dowodzenia
Paradygmaty dowodzenia Sprawdzenie, czy dana formuła rachunku zdań jest tautologią polega zwykle na obliczeniu jej wartości dla 2 n różnych wartościowań, gdzie n jest liczbą zmiennych zdaniowych tej formuły.
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ 1 Inferencyjna równoważność formuł Definicja 9.1. Formuła A jest
Złożoność obliczeniowa
Złożoność obliczeniowa Jakub Michaliszyn 26 kwietnia 2017 Są problemy rozstrzygalne i nierozstrzygalne Są problemy rozstrzygalne i nierozstrzygalne Jak rozwiązywać te, które są rozstrzygalne? Są problemy
Język rachunku predykatów Formuły rachunku predykatów Formuły spełnialne i prawdziwe Dowody założeniowe. 1 Zmienne x, y, z...
Język rachunku predykatów 1 Zmienne x, y, z... 2 Predykaty n-argumentowe P(x, y,...), Q(x, y...),... 3 Funktory zdaniowe,,,, 4 Kwantyfikatory: istnieje, dla każdego Język rachunku predykatów Ustalenie
Logika rachunek zdań
Wprowadzenie do Wykładu 1 Logika Logika rachunek zdań Materiały pomocnicze do wykładu dla Studentów Informatyki Stosowanej Wydział EAIiIB AGH Antoni Ligęza Materiały pomocnicze: http://home.agh.edu.pl/~ligeza
Programowanie deklaratywne i logika obliczeniowa
Programowanie deklaratywne i logika obliczeniowa Programowanie deklaratywne i logika obliczeniowa Wykład logika 12 godzin Dr hab. inż. Joanna Józefowska, prof. PP dyżur: poniedziałek 9.30-11.00 p. 10,
Logika Temporalna i Automaty Czasowe
Modelowanie i Analiza Systemów Informatycznych Logika Temporalna i Automaty Czasowe (3) Logika CTL Paweł Głuchowski, Politechnika Wrocławska wersja 2.2 Treść wykładu Charakterystyka logiki CTL Czas w Computation
Logika rachunek zdań
Wprowadzenie do Wykładu 1 Logika Logika rachunek zdań Materiały pomocnicze do wykładu dla Studentów Informatyki Wydział EAIiIB AGH Antoni Ligęza Materiały pomocnicze: http://home.agh.edu.pl/~ligeza Wprowadzenie
Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa.
Plan Procedura decyzyjna Reguły α i β - algorytm Plan Procedura decyzyjna Reguły α i β - algorytm Logika obliczeniowa Instytut Informatyki 1 Procedura decyzyjna Logiczna konsekwencja Teoria aksjomatyzowalna
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-10-15 Projekt
Logika Stosowana. Wykład 2 - Logika modalna Część 2. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017
Logika Stosowana Wykład 2 - Logika modalna Część 2 Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 27 Plan wykładu
Praktyczne metody weryfikacji
Praktyczne metody weryfikacji Sławomir Lasota Uniwersytet Warszawski semestr letni 08/09. p.1/50 I. Motywacja czyli po co?. p.2/50 Arianne 5, czerwiec 1996. p.3/50 nieobsłużony wyjatek szacunkowy koszt:
Lista 6 Problemy NP-zupełne
1 Wprowadzenie Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Teoretyczne Podstawy Informatyki Lista 6 Problemy NP-zupełne Problem abstrakcyjny Q jest to relacja dwuargumentowa
Adam Meissner SZTUCZNA INTELIGANCJA
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGANCJA Podstawy programowania z ograniczeniami
Wstęp do programowania
Wstęp do programowania Algorytmy zachłanne, programowanie dynamiczne Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk(Wydział Fizyki) WP w. IX Jesień 2014 1 / 26 Algorytmy zachłanne Strategia polegająca
Trudność aproksymacji problemów NP-trudnych
Uniwersytet Warszawski Wydział Matematyki, Informatyki i Mechaniki Anna Niewiarowska Nr albumu: 201074 Trudność aproksymacji problemów NP-trudnych Praca magisterska na kierunku INFORMATYKA Praca wykonana
Algorytm wspinaczkowy dla zadania k-sat
Algorytm wspinaczkowy dla zadania k-sat 1 Problem k-spełnialności Niech L 0 oznacza język rachunku zdań. Do jego formalizacji konieczne są zmienne zdaniowe (nazywane formułami atomowymi, lub krótko atomami)
Metoda Tablic Semantycznych
Procedura Plan Reguły Algorytm Logika obliczeniowa Instytut Informatyki Plan Procedura Reguły 1 Procedura decyzyjna Logiczna równoważność formuł Logiczna konsekwencja Procedura decyzyjna 2 Reguły α, β,
Teoretyczne Podstawy Języków Programowania Wykład 1. Rachunek zdań
Instytut Informatyki Teoretyczne Podstawy Języków Programowania Wykład 1. Rachunek zdań Zdzisław Spławski Zdzisław Spławski: Teoretyczne Podstawy Języków Programowania, Wykład 1. Rachunek zdań 1 Systemy
Logika pragmatyczna. Logika pragmatyczna. Kontakt: Zaliczenie:
Logika pragmatyczna Logika pragmatyczna Kontakt: dr hab. inż. Adam Kasperski pokój 509 B4 adam.kasperski@pwr.wroc.pl materiały + literatura + informacje na stronie www. Zaliczenie: Kolokwium pisemne na
Logika pragmatyczna dla inżynierów
Logika pragmatyczna Logika pragmatyczna dla inżynierów Kontakt: dr hab. inż. Adam Kasperski pokój 509 B4 adam.kasperski@pwr.edu.pl materiały + literatura + informacje na stronie www. Zaliczenie: Test pisemny
Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń
Elementy logiki Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń 1 Klasyczny Rachunek Zdań 1.1 Spójniki logiczne Zdaniem w sensie logicznym nazywamy wyrażenie, które jest
Monte Carlo w model checkingu
Niezawodność systemów współbieżnych i obiektowych 28 kwietnia 2010 1 2 3 4 5 Cel Cel Weryfikacja systemów komputerowych sprawdzenie, czy formuła LTL zachodzi dla danego systemu Problemy: Problem weryfikacji
Konsekwencja logiczna
Konsekwencja logiczna Niech Φ 1, Φ 2,..., Φ n będa formułami logicznymi. Formuła Ψ wynika logicznie z Φ 1, Φ 2,..., Φ n jeżeli (Φ 1 Φ 2 Φ n ) Ψ jest tautologia. Formuły Φ 1, Φ 2,..., Φ n nazywamy założeniami
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-11 1 Modelowanie funkcji logicznych
Definicja: alfabetem. słowem długością słowa
Definicja: Niech X będzie zbiorem niepustym. Zbiór ten będziemy nazywać alfabetem. Skończony ciąg elementów alfabetu X będziemy nazywać słowem a liczbę elementów tego ciągu nazywamy długością słowa. Na
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści wspólnych z kierunkiem Matematyka, moduł kierunku obowiązkowy Rodzaj zajęć: wykład, ćwiczenia I KARTA PRZEDMIOTU CEL
SID Wykład 5 Wnioskowanie w rachunku zdań
SID Wykład 5 Wnioskowanie w rachunku zdań Wydział Matematyki, Informatyki i Mechaniki UW slezak@mimuw.edu.pl Bazy wiedzy Inference engines Knowledge base domain-independent algorithms domain-specific content
Logika Rachunek zdań
Wprowadzenie do Wykładu 1 Logika Rachunek zdań Materiały pomocnicze do wykładu dla Studentek i Studentów Informatyki Wydziału EAIiIB AGH Antoni Ligęza : 2016 Materiały pomocnicze: http://home.agh.edu.pl/~ligeza
Logika Temporalna i Automaty Czasowe
Modelowanie i Analiza Systemów Informatycznych Logika Temporalna i Automaty Czasowe (4) Modelowa weryfikacja systemu Paweł Głuchowski, Politechnika Wrocławska wersja 2.1 Treść wykładu Własności współbieżnych
Logika rachunek zdań
Wprowadzenie do Wykładu 1 Logika Logika rachunek zdań Materiały pomocnicze do wykładu dla Studentów Informatyki Stosowanej Wydział EAIiIB AGH Antoni Ligęza Materiały pomocnicze: http://home.agh.edu.pl/~ligeza
vf(c) =, vf(ft 1... t n )=vf(t 1 )... vf(t n ).
6. Wykład 6: Rachunek predykatów. Język pierwszego rzędu składa się z: symboli relacyjnych P i, i I, gdzie (P i ) oznaczać będzie ilość argumentów symbolu P i, symboli funkcyjnych f j, j J, gdzie (f j
1. Składnia. Logika obliczeniowa - zadania 1 SKŁADNIA Teoria
Logika obliczeniowa - zadania 1 SKŁADNIA 1. Składnia 1.1. Teoria 1. Składnia oznacza reguły tworzenia... z.... 2. Rachunek predykatów pierwszego rzędu (w skrócie: rachunek predykatów) wyróżnia cztery zbiory
Logika Stosowana. Wykład 2 - Logika modalna Część 1. Marcin Szczuka. Instytut Matematyki UW. Wykład monograficzny, semestr letni 2016/2017
Logika Stosowana Wykład 2 - Logika modalna Część 1 Marcin Szczuka Instytut Matematyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 28 Plan wykładu 1
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-10 Projekt pn. Wzmocnienie
Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład 5 Prof. dr hab. inż. Jan Magott DMT rozwiązuje problem decyzyjny π przy kodowaniu e w co najwyżej wielomianowym czasie, jeśli dla wszystkich łańcuchów wejściowych
Andrzej Wiśniewski Logika II. Wykłady 10b i 11. Semantyka relacyjna dla normalnych modalnych rachunków zdań
Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykłady 10b i 11. Semantyka relacyjna dla normalnych modalnych rachunków zdań 1 Struktury modelowe Przedstawimy teraz pewien
1 Funktory i kwantyfikatory
Logika, relacje v07 egzamin mgr inf niestacj 1 1 Funktory i kwantyfikatory x X x X Φ(x) dla każdego x X (= dla wszystkich x) zachodzi formuła Φ(x) Φ(x) istnieje x X takie, że (= dla pewnego x) zachodzi
Podstawowe Pojęcia. Semantyczne KRZ
Logika Matematyczna: Podstawowe Pojęcia Semantyczne KRZ I rok Językoznawstwa i Informacji Naukowej UAM 2006-2007 Jerzy Pogonowski Zakład Logiki Stosowanej UAM http://www.logic.amu.edu.pl Dodatek: ściąga
Elementy logiki Klasyczny rachunek zdań. Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im.
Elementy logiki. Klasyczny rachunek zdań. Elementy logiki Klasyczny rachunek zdań Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza 1 Spójniki
Logika Temporalna i Automaty Czasowe
Modelowanie i Analiza Systemów Informatycznych Logika Temporalna i Automaty Czasowe (2) Logika LTL Paweł Głuchowski, Politechnika Wrocławska wersja 2.1 Treść wykładu Charakterystyka logiki LTL Czas w Linear
Metody Sztucznej Inteligencji (studia inżynierskie)
Politechnika Warszawska Ośrodek Kształcenia Na Odległość Metody Sztucznej Inteligencji (studia inżynierskie) Autor: Włodzimierz Kasprzak Opracowanie multimedialne: Warszawa, wrzesień 2014 Metody Sztucznej
Wstęp do programowania
Wstęp do programowania Programowanie dynamiczne Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. X Jesień 2013 1 / 21 Dziel i zwyciężaj przypomnienie 1 Podział problemu na 2 lub
Wstęp do logiki. Klasyczny Rachunek Zdań II
Wstęp do logiki Klasyczny Rachunek Zdań II DEF. 1 (Słownik). Następujące znaki tworzą słownik języka KRZ: p 1, p 2, p 3, (zmienne zdaniowe) ~,,,, (spójniki) ), ( (nawiasy). DEF. 2 (Wyrażenie). Wyrażeniem
Interpretacja Niech U będzie zbiorem formuł takim, że zbiór {p 1,..., p k } jest zbiorem wszystkich symboli predykatywnych, {f 1,..., f l } jest zbior
Rachunek predykatów Wykład 5 Plan wykładu Funkcje i termy Postać klauzulowa formuł Modele Herbranda Twierdzenie Herbranda Rezolucja dla klauzul ustalonych Podstawienia Uzgadnianie Rezolucja Funkcje i termy
Definicja: zmiennych zdaniowych spójnikach zdaniowych:
Definicja: Alfabet języka logiki zdań składa się z nieskończonego (najczęściej zakładamy: przeliczalnego) zbioru P, o którym myślimy jak o zbiorze zmiennych zdaniowych i skończonego zbioru symboli, o których
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ 1 Tezy KRZ Pewien system aksjomatyczny KRZ został przedstawiony
Definicja: zmiennych zdaniowych spójnikach zdaniowych:
Definicja: Alfabet języka logiki zdań składa się z nieskończonego (najczęściej zakładamy: przeliczalnego) zbioru P, o którym myślimy jak o zbiorze zmiennych zdaniowych i skończonego zbioru symboli, o których
Algorytmy aproksymacyjne i parametryzowane
Algorytmy aproksymacyjne i parametryzowane Marek Cygan Uniwersytet Warszawski 18 października 2012 Marek Cygan Algorytmy aproksymacyjne i parametryzowane 1/22 Wstęp W algorytmice problemy dzielimy na obliczeniowo
Planowanie drogi robota, algorytm A*
Planowanie drogi robota, algorytm A* Karol Sydor 13 maja 2008 Założenia Uproszczenie przestrzeni Założenia Problem planowania trasy jest bardzo złożony i trudny. W celu uproszczenia problemu przyjmujemy
ROZDZIAŁ 1. Rachunek funkcyjny
ROZDZIAŁ 1 Rachunek funkcyjny Niech X 1,..., X n będą dowolnymi zbiorami. Wyrażenie (formułę) ϕ(x 1,..., x n ), w którym występuje n zmiennych x 1,..., x n i które zamienia się w zdanie logiczne, gdy zamiast
Logika Stosowana. Wykład 7 - Zbiory i logiki rozmyte Część 3 Prawdziwościowa logika rozmyta. Marcin Szczuka. Instytut Informatyki UW
Logika Stosowana Wykład 7 - Zbiory i logiki rozmyte Część 3 Prawdziwościowa logika rozmyta Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika
LOGIKA STOSOWANA Wykład monograficzny Semestr letni, 2016/2017
LOGIKA STOSOWANA Wykład monograficzny Semestr letni, 2016/2017 Nguyen Hung Son, Marcin Szczuka Instytut Informatyki UW Warszawa, ul.banacha 2 szczuka@mimuw.edu.pl 2 Spis treści 1 Rachunek zdań 5 1.1 Język
Rachunek predykatów. Formuły rachunku predykatów. Plan wykładu. Relacje i predykaty - przykłady. Relacje i predykaty
Rachunek predykatów Wykład 4 Plan wykładu Relacje i predykaty Formuły rachunku predykatów Interpretacje Logiczna równoważność Metoda tabel Modele skończone i nieskończone Rozstrzygalność Relacje i predykaty
Teoria Złożoności Zadania
Teoria Złożoności Zadania Łukasz Czajka 14 czerwca 2008 1 Spis treści 1 Zadanie 1 3 2 Zadanie 5 8 2 1 Zadanie 1 Niech A NP 1. Istnieje zatem jedno-taśmowa niedeterministyczna maszyna Turinga M o alfabecie
Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki
Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 5. Wprowadzenie do semantyki teoriomodelowej cz.5. Wynikanie logiczne 1 Na poprzednim wykładzie udowodniliśmy m.in.:
Inteligencja obliczeniowa Laboratorium 2: Algorytmy genetyczne
Inteligencja obliczeniowa Laboratorium 2: Algorytmy genetyczne Zadanie 1 W problemie plecakowym pytamy, jakie przedmioty wziąć do plecaka o ograniczonej objętości, by ich wartość była najwyższa. Załóżmy,
Algorytmy i struktury danych
Algorytmy i struktury danych 4. Łódź 2018 Suma szeregu harmonicznego - Wpisz kod programu w oknie edycyjnym - Zapisz kod w pliku harmonic.py - Uruchom skrypt (In[1]: run harmonic.py) - Ten program wykorzystuje
Problemy optymalizacyjne - zastosowania
Problemy optymalizacyjne - zastosowania www.qed.pl/ai/nai2003 PLAN WYKŁADU Zło ono obliczeniowa - przypomnienie Problemy NP-zupełne klika jest NP-trudna inne problemy NP-trudne Inne zadania optymalizacyjne
Wstęp do Programowania potok funkcyjny
Wstęp do Programowania potok funkcyjny Marcin Kubica 2010/2011 Outline 1 Kilka podstawowych pojęć Definition Programy imperatywne zmieniają stan, czyli wartości zmiennych. Asercja = warunek logiczny, który
Metalogika (10) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM
Metalogika (10) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Uniwersytet Opolski Jerzy Pogonowski (MEG) Metalogika (10) Uniwersytet Opolski 1 / 291 Plan wykładu Plan
Rodzaje Code slicing w weryfikacji Narzędzia Literatura. Code slicing. Bartłomiej Wołowiec. 16 lutego 2011
w weryfikacji 16 lutego 2011 w weryfikacji 1 Rodzaje Statyczny slicing (ang. Static Slicing) Dynamiczny slicing (ang. Dynamic Slicing) Warunkowy slicing (ang. Conditioned Slicing) Bezpostaciowy slicing
Elementy logiki i teorii mnogości
Elementy logiki i teorii mnogości Zdanie logiczne Zdanie logiczne jest to zdanie oznajmujące, któremu można przypisać określoną wartość logiczną. W logice klasycznej zdania dzielimy na: prawdziwe (przypisujemy
WERYFIKACJA WSPOMAGANA KOMPUTEROWO
WERYFIKACJA WSPOMAGANA KOMPUTEROWO Wykład 10 Dowodzenie poprawności programów. Java Modeling Language I. Dowodzenie poprawności DOWODZENIE POPRAWNOŚCI obligacje dowodowe system wspomagający dowodzenie
Algorytmy stochastyczne, wykład 05 Systemy Liendenmayera, modelowanie roślin
Algorytmy stochastyczne, wykład 5, modelowanie roślin Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 214-3-2 1 2 3 ze stosem Przypomnienie gramatyka to system (Σ, A, s,
Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 15. Trójwartościowa logika zdań Łukasiewicza
Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 15. Trójwartościowa logika zdań Łukasiewicza 1 Wprowadzenie W logice trójwartościowej, obok tradycyjnych wartości logicznych,
Czyli o budowie drzew semantycznych.
Czyli o budowie drzew semantycznych ZAŁÓŻMY Jednego z Was porwał okrutny PRL. W ramach okupu żąda, by obecni na sali udowodnili, że podane przez nich formuły są zawsze prawdziwe. Zaczynają zupełnie niewinnie
Graf. Definicja marca / 1
Graf 25 marca 2018 Graf Definicja 1 Graf ogólny to para G = (V, E), gdzie V jest zbiorem wierzchołków (węzłów, punktów grafu), E jest rodziną krawędzi, które mogą być wielokrotne, dokładniej jednoelementowych
Imię, nazwisko, nr indeksu
Imię, nazwisko, nr indeksu (kod) (9 punktów) Wybierz 9 z poniższych pytań i wybierz odpowiedź tak/nie (bez uzasadnienia). Za prawidłowe odpowiedzi dajemy +1 punkt, za złe -1 punkt. Punkty policzymy za
III rok kognitywistyki UAM,
METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ WYKŁAD 14: POWTÓRKA III rok kognitywistyki UAM, 2016 2017 Dzisiejszy wykład w całości poświęcony będzie omówieniu przykładowych zadań, podobnych do
Logika Matematyczna 11 12
Logika Matematyczna 11 12 Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 3, 10 stycznia 2008 Jerzy Pogonowski (MEG) Logika Matematyczna 11 12 3, 10 stycznia 2008 1
Elementy logiki i teorii mnogości Wyk lad 1: Rachunek zdań
Elementy logiki i teorii mnogości Wyk lad 1: Rachunek zdań Micha l Ziembowski m.ziembowski@mini.pw.edu.pl www.mini.pw.edu.pl/ ziembowskim/ October 2, 2016 M. Ziembowski (WUoT) Elementy logiki i teorii
Wprowadzenie Logiki temporalne Przykłady użycia Bibliografia. Logiki temporalne. Andrzej Oszer. Seminarium Protokoły Komunikacyjne
Seminarium Protokoły Komunikacyjne Spis treści 1 2 PLTL - Propositional Linear Temporal Logic CTL - Computation Tree Logic CTL* - uogólnienie 3 4 rozszerzaja logikę pierwszego rzędu o symbole określajace
Sztuczna inteligencja i logika. Podsumowanie przedsięwzięcia naukowego Kisielewicz Andrzej WNT 20011
Sztuczna inteligencja i logika. Podsumowanie przedsięwzięcia naukowego Kisielewicz Andrzej WNT 20011 Przedmowa. CZĘŚĆ I: WPROWADZENIE 1. Komputer 1.1. Kółko i krzyżyk 1.2. Kodowanie 1.3. Odrobina fantazji
Logika Matematyczna 11 12
Logika Matematyczna 11 12 Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl TA w KRZ Jerzy Pogonowski (MEG) Logika Matematyczna 11 12 TA w KRZ 1 / 102 Wprowadzenie Wprowadzenie
Prof. dr hab. inż. Jan Magott Wrocław, Katedra Informatyki Technicznej Wydział Elektroniki Politechniki Wrocławskiej
Prof. dr hab. inż. Jan Magott Wrocław, 09.09.2017 Katedra Informatyki Technicznej Wydział Elektroniki Politechniki Wrocławskiej RECENZJA ROZPRAWY DOKTORSKIEJ DLA INSTYTUTU PODSTAW INFORMATYKI POLSKIEJ
WERYFIKACJA WSPOMAGANA KOMPUTEROWO. Sławomir Lasota Uniwersytet Warszawski 2009/1020
WERYFIKACJA WSPOMAGANA KOMPUTEROWO Sławomir Lasota Uniwersytet Warszawski 2009/1020 Teoria i praktyka wspomaganych komputerowo metod analizy formalnej oprogramowania i układów sprzętowych. I. Motywacja