Wykład 2. Drzewa zbalansowane AVL i 2-3-4
|
|
- Jolanta Dobrowolska
- 7 lat temu
- Przeglądów:
Transkrypt
1 Wykład Drzewa zbalansowane AVL i -3-4
2 Drzewa AVL Wprowadzenie Drzewa AVL Definicja drzewa AVL Operacje wstawiania i usuwania Złożoność obliczeniowa Drzewa -3-4 Definicja drzewa -3-4 Operacje wstawiania i usuwania Złożoność obliczeniowa Literatura R. Sedgewick, Algorytmy w C++, rozdz. 3
3 Wprowadzenie Drzewa BST są wygodne do efektywnego implementowania operacji: Search, Successor, Predecessor, Minimum, Maximum, Insert, Delete w czasie O(h), (gdzie h jest wysokością drzewa) Jeśli drzewo jest zbalansowane (ma wtedy wysokość h = O(lg n)), operacje te są najbardziej efektywne. Operacje wstawiania i usuwania elementów mogą powodować, że drzewo przestaje być zbalansowane. W najgorszym przypadku drzewo staje się listą liniową (h = O(n))! 3
4 Drzewa zbalansowane Staramy się znaleźć takie metody operowania na drzewie, żeby pozostawało ono zbalansowane. Jeżeli operacja Insert lub Delete spowoduje utratę zbalansowania drzewa, będziemy przywracać tę własność w czasie co najwyżej O(lgn) tak aby nie zwiększać złożoności. Potrzebujemy zapamiętywać dodatkowe informacje, aby to osiągnąć. Najbardziej popularne struktury danych dla drzew zbalansowanych to: Drzewa AVL: różnica wysokości dla poddrzew wynosi co najwyżej Drzewa -3-4 drzewa zbalansowane, ale nie binarne Drzewa czerwono-czarne: o wysokości co najwyżej (lg n + ) 4
5 Drzewa AVL Definicja: drzewem AVL nazywamy drzewo BST, takie że dla każdego z węzłów różnica wysokości jego lewego i prawego poddrzewa wynosi co najwyżej. Skrót AVL pochodzi od nazwisk twórców: Adelson-Velskii oraz Landis h x h- Sh- S h- h- S h S h = S h + S h 5
6 Przykład drzewa AVL
7 Wysokość drzewa AVL Twierdzenie:wysokość drzewa AVL n() 3 przechowującego n węzłów wynosi O(log n). 4 n() Dowód: ograniczymy najpierw n(h): minimalną ilość wewnętrznych węzłów w drzewie AVL o wysokości h. widać, że n() = i n() = dla n >, drzewo o wysokości h zawiera korzeń oraz dwa poddrzewa o wysokościach h- i h-. stąd: n(h) = + n(h-) + n(h-) wiemy, że n(h-) > n(h-), więc n(h) > n(h-). Dalej n(h) > n(h-), n(h) > 4n(h-4), n(h) > 8n(n-6),,n(h) > i n(h-i) rozwiązując powyższe dostaniemy n(h) > h/-, czyli h < log n(h) + Stąd wysokość drzewa AVL wynosi O(log n) 7
8 Wstawianie Wstawiamy tak jak do drzewa BST Zawsze dodajemy nowy liść. Przykład : a=y c=z b=x w 54 przed po wstawieniu 54 8
9 Przebudowa drzewa niech (a,b,c) będzie pożądaną listą wierzchołków w porządku inorder Przeprowadzamy rotacje, niezbędne do przemieszczenia b na górę poddrzewa a=z b=y (pozostałe dwa przypadki są symetryczne) a=z c=y przypadek : podwójna rotacja (prawa c, a potem lewa a) T 0 T 0 c=x b=x T b=y T 3 b=x T T 3 a=z c=x T T a=z c=y przypadek : pojedyncza Rotacja (lewa rotacja a) T 0 T T T 3 T 0 T T T 3 9
10 Rotacje (przypomnienie) Rotacja w prawo y x x δ Rotacja w lewo α y α β β δ α x β i x y δ α x y i β y δ 0
11 Przykład: Left-Rotate () 7 4 x y
12 Przykład: Left-Rotate () 7 4 x 3 6 α y 7 β 0 δ
13 Przykład: Left-Rotate (3) y 3 6 x 9 9 α 4 7 β 0 δ 3
14 Przykład (wstawiamy element 54) y x z T 3 T 0 T T 4
15 Przykład (po wstawieniu 54) niezbalansowane y x T T 0 T 7...zbalansowane z T y x T z T 0 T T 3 5
16 Przebudowa drzewa (pojedyncza rotacja przyp. ) a = z b = y c = x rotacja a = z b = y c = x T 0 T T T 3 T 0 T T T 3 a = x b = y c = z rotacja a = x b = y c = z T 0 T T T 3 T 3 T T T 0 6
17 Przebudowa drzewa (podwójna rotacja przyp. ) a = z b = x c = y rotacje a = z b = x c = y T 0 T T T 3 T 0 T T T 3 a = y b = x c = z rotacje a = y b = x c = z T 0 T 3 T T 3 T T 0 T T 7
18 Usuwanie z drzewa AVL Usuwamy, jak z drzewa BST może spowodować to zaburzenie zbalansowania drzewa. Przykład: Przed usunięciem 3 Po usunięciu 8
19 Przywracanie zbalansowania po usunięciu Niech z będzie pierwszym niezbalansowanym węzłem, na który natrafiamy idąc od w. Niech y będzie dzieckiem z o większej wysokości, a x jego dzieckiem o większej wysokości. Przeprowadzamy przebudowę drzewa w x, tak aby przywrócić zbalansowanie w z (węzły a,b,c mają być w porządku inorder). Ponieważ operacja taka może zachwiać balans w węźle powyżej - musimy sprawdzać zbalansowanie drzewa powyżej (aż do korzenia) a=z 44 6 w 7 6 b=y c=x
20 Złożoność obliczeniowa operacji na drzewach AVL Pojedyncza przebudowa zabiera czas O() Jeśli korzystamy ze struktury drzewa binarnego (tylko lub rotacje) Wyszukiwanie zajmuje O(log n) Wysokość drzewa wynosi O(log n), nie potrzeba przebudowywać drzewa Wstawianie zajmuje O(log n) Odnalezienie miejsca O(log n) Przebudowa drzewa O(log n) ze względu na wysokość drzewa Usuwanie - O(log n) Odnalezienie zabiera czas O(log n) Naprawa drzewa O(log n) ze względu na wysokość drzewa 0
21 Drzewa
22 Drzewa poszukiwań o wielu drogach Drzewem poszukiwań o wielu drogach (B-drzewem) nazywamy uporządkowane drzewo o następujących cechach: Każdy węzeł wewnętrzny posiada co najmniej potomków i przechowuje d elementów-kluczy (k i, o i ), gdzie d jest ilością potomków węzła Dla każdego węzła o potomkach v v v d przechowującego klucze k k k d Klucze w poddrzewie v są mniejsze od k Klucze w poddrzewie v i są pomiędzy k i i k i (i =,, d ) Klucze w poddrzewie v d są większe od k d Liście nie przechowują kluczy
23 Przechodzenie InOrder w drzewach o wielu drogach Możliwe jest rozszerzenie notacji odwiedzania węzłów InOrder z drzew binarnych na drzewa o wielu drogach Odwiedzamy element (k i, o i ) w węźle v pomiędzy rekursywnymi odwiedzinami poddrzew v o korzeniu w v i i v i + Odwiedzane węzły w tak zdefiniowanym porządku InOrder są uporządkowane rosnąco
24 Poszukiwanie w drzewach o wielu drogach Podobnie do poszukiwania w drzewie BST Dla każdego węzła wewnętrznego o potomkach v v v d o kluczach k k k d : k = k i (i =,, d ):poszukiwanie zakończone sukcesem k < k : poszukiwanie kontynuujemy w poddrzewie v k i < k < k i (i =,, d ): poszukiwanie kontynuujemy w poddrzewie v i k > k d : poszukiwania kontynuujemy w poddrzewie v d Dotarcie do liścia kończy poszukiwania (porażka) Przykład : odszukujemy klucza
25 Drzewa -3-4 Drzewa -3-4 nazywane też (,4) są drzewami poszukiwań o wielu drogach o następujących własnościach własność ilości potomków: każdy węzeł wewnętrzny ma co najwyżej 4 potomków własność wysokości: wszystkie liście mają tę samą wysokość W zależności od ilości potomków, wewnętrzne węzły będziemy nazywać -węzłami, 3-węzłami i 4-węzłami
26 Wysokość w drzewach -3-4 Twierdzenie: Drzewo -3-4 przechowujące n elementów ma wysokość O(log n) dowód: niech h będzie wysokością drzewa -3-4 o n elementach ponieważ mamy co najmniej i elementów na poziomie i = 0,, h i nie ma elementów ma poziomie h, więc n h = h stąd, h log (n + ) Wyszukiwanie w drzewie -3-4 o n elementach zajmuje czas O(log n) poziom 0 h h elementy h 0 6
27 Wstawianie Nowy element (k, o) wstawiamy do węzła v ostatniego wewnętrznego węzła, przez który przechodziliśmy poszukując k Nie psujemy własności wysokości drzewa Możemy spowodować przepełnienie węzła (v może stać się 5-węzłem) Przykład: wstawianie 30 powoduje przepełnienie v v 7
28 Przepełnienie i rozdzielanie węzła Problem przepełnienia można rozwiązać przez podział węzła v: niech v v 5 będą potomkami v i k k 4 będą kluczami w v węzeł v zastępujemy węzłami v' i v" v' jest 3-węzłem o kluczach k k i potomkach v v v 3 v" jest -węzłem o kluczach k 4 i potomkach v 4 v 5 klucz k 3 jest wstawiany do rodzica u węzła v (to może tworzyć nowy korzeń) Przepełnienie może teraz nastąpić w węźle u u v u v' 35 v" v v v 3 v 4 v 5 v v v 3 v 4 v 5 8
29 Analiza wstawiania Algorytm insertitem(k, o). Odszukujemy klucz k w celu zlokalizowania węzła do wstawienia wartości v. Dodajemy nowy element (k, o) w węźle v 3. while overflow(v) if isroot(v) twórz nowy pusty korzeń nad v v split(v) Niech T będzie drzewem -3-4 o n elementach T ma wysokość O(log n) krok zajmuje czas O(log n), ponieważ odwiedzamy O(log n) węzłów krok zajmuje czas O() krok 3 zabiera O(log n) czasu, ponieważ każde rozdzielanie zabiera O() i możemy mieć O(log n) takich operacji Stąd wstawianie do drzewa -3-4 zajmuje czas O(log n) 9
30 Usuwanie Rozważania na temat usuwania można sprowadzić tylko do przypadku usuwania wartości z węzła posiadającego jedynie potomków liście W przeciwnym razie (węzły wewnętrzne) zastępujemy element kolejnym w porządku inorder (następnikiem jego lewe dziecko musi być liściem) Przykład: usuwanie 4 zastępujemy 4 przez następnik w porządku inorder
31 Niedobór i łączenie Usunięcie elementu z węzła v może spowodować niedobór - v może stać się -węzłem (0 klucz, potomek) Dla obsługi tej sytuacji należy połączyć v z rodzicem u, rozpatrzmy dwa przypadki przypadek : sąsiedni brat v jest -węzłem operacja łączenia: łączymy v z bratem w i przenosimy element z u do połączonego węzła v' po połączeniu, niedobór może nastąpić w węźle powyżej (u) u 9 4 u w v v' 3
32 Niedobór i łączenie przypadek : sąsiedni brat w węzła v jest 3-węzłem lub 4-węzłem przenosimy:. potomka w do v. element z u do v 3. element z w do u po przeniesieniu nie występują przepełnienia u 4 9 u w v w 6 9 v 3
33 Analiza usuwania Niech T będzie drzewem -3-4 o n elementach wysokość T wynosi O(log n) Operacja usuwania: odwiedzamy O(log n) węzłów aby odszukać węzeł, z którego usuwamy element obsługa niedoborów może prowadzić do wykonania serii O(log n) łączeń węzłów (przyp. ) oraz jednego przesuwania (przyp. ) każde łączenie zajmuje O() Stąd operacja usuwania w drzewie -3-4 zajmuje czas O(log n) 33
Wykład 8. Drzewa AVL i 2-3-4
Wykład 8 Drzewa AVL i 2-3-4 1 Drzewa AVL Ø Drzewa AVL Definicja drzewa AVL Operacje wstawiania i usuwania Złożoność obliczeniowa Ø Drzewa 2-3-4 Definicja drzewa 2-3-4 Operacje wstawiania i usuwania Złożoność
Bardziej szczegółowoWykład 3. Drzewa czerwono-czarne
Wykład 3 Drzewa czerwono-czarne 1 Drzewa zbalansowane Wprowadzenie Drzewa czerwono-czarne Definicja, wysokość drzewa Rotacje, operacje wstawiania i usuwania Literatura Cormen, Leiserson, Rivest, Wprowadzenie
Bardziej szczegółowoWykład 2. Drzewa poszukiwań binarnych (BST)
Wykład 2 Drzewa poszukiwań binarnych (BST) 1 O czym będziemy mówić Definicja Operacje na drzewach BST: Search Minimum, Maximum Predecessor, Successor Insert, Delete Struktura losowo budowanych drzew BST
Bardziej szczegółowoWykład 6. Drzewa poszukiwań binarnych (BST)
Wykład 6 Drzewa poszukiwań binarnych (BST) 1 O czym będziemy mówić Definicja Operacje na drzewach BST: Search Minimum, Maximum Predecessor, Successor Insert, Delete Struktura losowo budowanych drzew BST
Bardziej szczegółowoPorządek symetryczny: right(x)
Porządek symetryczny: x lef t(x) right(x) Własność drzewa BST: W drzewach BST mamy porządek symetryczny. Dla każdego węzła x spełniony jest warunek: jeżeli węzeł y leży w lewym poddrzewie x, to key(y)
Bardziej szczegółowoALGORYTMY I STRUKTURY DANYCH
LGORTM I STRUKTUR DNH Temat 6: Drzewa ST, VL Wykładowca: dr inż. bigniew TRPT e-mail: bigniew.tarapata@isi.wat.edu.pl http://www.tarapata.strefa.pl/p_algorytmy_i_struktury_danych/ Współautorami wykładu
Bardziej szczegółowoDrzewo. Drzewo uporządkowane ma ponumerowanych (oznaczonych) następników. Drzewo uporządkowane składa się z węzłów, które zawierają następujące pola:
Drzewa Drzewa Drzewo (ang. tree) zbiór węzłów powiązanych wskaźnikami, spójny i bez cykli. Drzewo posiada wyróżniony węzeł początkowy nazywany korzeniem (ang. root). Drzewo ukorzenione jest strukturą hierarchiczną.
Bardziej szczegółowoWysokość drzewa Głębokość węzła
Drzewa Drzewa Drzewo (ang. tree) zbiór węzłów powiązanych wskaźnikami, spójny i bez cykli. Drzewo posiada wyróżniony węzeł początkowy nazywany korzeniem (ang. root). Drzewo ukorzenione jest strukturą hierarchiczną.
Bardziej szczegółowoZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 2014/2015. Drzewa BST c.d., równoważenie drzew, kopce.
POLITECHNIKA WARSZAWSKA Instytut Automatyki i Robotyki ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 204/205 Język programowania: Środowisko programistyczne: C/C++ Qt Wykład 2 : Drzewa BST c.d., równoważenie
Bardziej szczegółowoDrzewa binarne. Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0. jest drzewem binarnym Np.
Drzewa binarne Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0 i T 1 są drzewami binarnymi to T 0 T 1 jest drzewem binarnym Np. ( ) ( ( )) Wielkość drzewa
Bardziej szczegółowoPodstawy Informatyki. Metody dostępu do danych
Podstawy Informatyki c.d. alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Bazy danych Struktury danych Średni czas odszukania rekordu Drzewa binarne w pamięci dyskowej 2 Sformułowanie
Bardziej szczegółowoListy, kolejki, stosy
Listy, kolejki, stosy abc Lista O Struktura danych składa się z węzłów, gdzie mamy informacje (dane) i wskaźniki do następnych węzłów. Zajmuje tyle miejsca w pamięci ile mamy węzłów O Gdzie można wykorzystać:
Bardziej szczegółowoKażdy węzeł w drzewie posiada 3 pola: klucz, adres prawego potomka i adres lewego potomka. Pola zawierające adresy mogą być puste.
Drzewa binarne Każdy węzeł w drzewie posiada pola: klucz, adres prawego potomka i adres lewego potomka. Pola zawierające adresy mogą być puste. Uporządkowanie. Zakładamy, że klucze są różne. Klucze leżące
Bardziej szczegółowoDrzewa czerwono-czarne.
Binboy at Sphere http://binboy.sphere.p l Drzewa czerwono-czarne. Autor: Jacek Zacharek Wstęp. Pojęcie drzewa czerwono-czarnego (red-black tree) zapoczątkował Rudolf Bayer w książce z 1972 r. pt. Symmetric
Bardziej szczegółowoWSTĘP DO INFORMATYKI. Drzewa i struktury drzewiaste
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej WSTĘP DO INFORMATYKI Adrian Horzyk Drzewa i struktury drzewiaste www.agh.edu.pl DEFINICJA DRZEWA Drzewo
Bardziej szczegółowoPodstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno
Instrukcja laboratoryjna 5 Podstawy programowania 2 Temat: Drzewa binarne Przygotował: mgr inż. Tomasz Michno 1 Wstęp teoretyczny Drzewa są jedną z częściej wykorzystywanych struktur danych. Reprezentują
Bardziej szczegółowoAlgorytmy i Struktury Danych
Algorytmy i Struktury Danych Drzewa poszukiwań binarnych dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 12 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych
Bardziej szczegółowoKoszt zamortyzowany. Potencjał - Fundusz Ubezpieczeń Kosztów Algorytmicznych
Koszt zamortyzowany Jeśli mamy ciąg operacji, to koszt zamortyzowany jednej z nich jest sumarycznym kosztem wykonania wszystkich operacji podzielonym przez liczbę operacji. Inaczej mówiąc jest to, dla
Bardziej szczegółowoSortowanie bąbelkowe
1/98 Sortowanie bąbelkowe (Bubble sort) prosty i nieefektywny algorytm sortowania wielokrotnie przeglądamy listę elementów, porównując dwa sąsiadujące i zamieniając je miejscami, jeśli znajdują się w złym
Bardziej szczegółowoAlgorytmy i Struktury Danych
Algorytmy i Struktury Danych Kopce Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 11 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych Wykład 11 1 / 69 Plan wykładu
Bardziej szczegółowoDrzewa poszukiwań binarnych
1 Drzewa poszukiwań binarnych Kacper Pawłowski Streszczenie W tej pracy przedstawię zagadnienia związane z drzewami poszukiwań binarnych. Przytoczę poszczególne operacje na tej strukturze danych oraz ich
Bardziej szczegółowoAlgorytmy i Struktury Danych
Algorytmy i Struktury Danych Drzewa poszukiwań binarnych dr hab. Bożena Woźna-Szcześniak Jan Długosz University, Poland Wykład 8 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych Wykład 8 1 /
Bardziej szczegółowoAlgorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Drzewa poszukiwań binarnych. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 10 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych.
Bardziej szczegółowoAlgorytmy i struktury danych. wykład 5
Plan wykładu: Wskaźniki. : listy, drzewa, kopce. Wskaźniki - wskaźniki Wskaźnik jest to liczba lub symbol który w ogólności wskazuje adres komórki pamięci. W językach wysokiego poziomu wskaźniki mogą również
Bardziej szczegółowoLista liniowa dwukierunkowa
53 Lista liniowa dwukierunkowa Jest to lista złożona z elementów, z których każdy posiada, oprócz wskaźnika na element następny, również wskaźnik na element poprzedni. Zdefiniujmy element listy dwukierunkowej
Bardziej szczegółowoDrzewa poszukiwań binarnych
1 Cel ćwiczenia Algorytmy i struktury danych Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet ielonogórski Drzewa poszukiwań binarnych Ćwiczenie
Bardziej szczegółowoAlgorytmy i Struktury Danych, 9. ćwiczenia
Algorytmy i Struktury Danych, 9. ćwiczenia 206-2-09 Plan zajęć usuwanie z B-drzew join i split na 2-3-4 drzewach drzepce adresowanie otwarte w haszowaniu z analizą 2 B-drzewa definicja każdy węzeł ma następujące
Bardziej szczegółowoDrzewa BST i AVL. Drzewa poszukiwań binarnych (BST)
Drzewa ST i VL Drzewa poszukiwań binarnych (ST) Drzewo ST to dynamiczna struktura danych (w formie drzewa binarnego), która ma tą właściwość, że dla każdego elementu wszystkie elementy w jego prawym poddrzewie
Bardziej szczegółowoStruktury Danych i Złożoność Obliczeniowa
Struktury Danych i Złożoność Obliczeniowa Zajęcia 3 Struktury drzewiaste drzewo binarne szczególny przypadek drzewa, które jest szczególnym przypadkiem grafu skierowanego, stopień każdego wierzchołka jest
Bardziej szczegółowoALGORYTMY I STRUKTURY DANYCH
ALGORYTMY I STRUKTURY DANYCH Temat 4: Realizacje dynamicznych struktur danych. Wykładowca: dr inż. Zbigniew TARAPATA e-mail: Zbigniew.Tarapata@isi.wat.edu.pl http://www.tarapata.strefa.pl/p_algorytmy_i_struktury_danych/
Bardziej szczegółowoKolejka priorytetowa. Często rozważa się kolejki priorytetowe, w których poszukuje się elementu minimalnego zamiast maksymalnego.
Kolejki Kolejka priorytetowa Kolejka priorytetowa (ang. priority queue) to struktura danych pozwalająca efektywnie realizować następujące operacje na zbiorze dynamicznym, którego elementy pochodzą z określonego
Bardziej szczegółowoliniowa - elementy następują jeden za drugim. Graficznie możemy przedstawić to tak:
Sortowanie stogowe Drzewo binarne Binary Tree Dotychczas operowaliśmy na prostych strukturach danych, takich jak tablice. W tablicy elementy ułożone są zgodnie z ich numeracją, czyli indeksami. Jeśli za
Bardziej szczegółowo. Podstawy Programowania 2. Drzewa bst - część druga. Arkadiusz Chrobot. 12 maja 2019
.. Podstawy Programowania 2 Drzewa bst - część druga Arkadiusz Chrobot Zakład Informatyki 12 maja 2019 1 / 39 Plan.1 Wstęp.2 Wyszukiwanie w BST Minimalny i maksymalny klucz Wskazany klucz.3.4 Zmiany w
Bardziej szczegółowoDrzewo binarne BST. LABORKA Piotr Ciskowski
Drzewo binarne BST LABORKA Piotr Ciskowski zadanie 1. drzewo binarne - 1 Zaimplementuj drzewo binarne w postaci: klasy Osoba przechowującej prywatne zmienne: liczbę całkowitą to będzie klucz, wg którego
Bardziej szczegółowoUniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych. Algorytmy i struktury danych Laboratorium 7. 2 Drzewa poszukiwań binarnych
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Algorytmy i struktury danych Laboratorium Drzewa poszukiwań binarnych 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie studentów
Bardziej szczegółowoDrzewa wyszukiwań binarnych (BST)
Drzewa wyszukiwań binarnych (BST) Krzysztof Grządziel 12 czerwca 2007 roku 1 Drzewa Binarne Drzewa wyszukiwań binarnych, w skrócie BST (od ang. binary search trees), to szczególny przypadek drzew binarnych.
Bardziej szczegółowoWyszukiwanie w BST Minimalny i maksymalny klucz. Wyszukiwanie w BST Minimalny klucz. Wyszukiwanie w BST - minimalny klucz Wersja rekurencyjna
Podstawy Programowania 2 Drzewa bst - część druga Arkadiusz Chrobot Zakład Informatyki 12 maja 2016 1 / 8 Plan Wstęp Wyszukiwanie w BST Minimalny i maksymalny klucz Wskazany klucz Zmiany w funkcji main()
Bardziej szczegółowoTeoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 6a Model danych oparty na drzewach 1 Model danych oparty na drzewach Istnieje wiele sytuacji w których przetwarzane informacje mają strukturę hierarchiczną lub zagnieżdżoną,
Bardziej szczegółowoprowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325
PODSTAWY INFORMATYKI WYKŁAD 8. prowadzący dr ADRIAN HORZYK http://home home.agh.edu.pl/~ /~horzyk e-mail: horzyk@agh agh.edu.pl tel.: 012-617 617-4319 Konsultacje paw. D-13/325 DRZEWA Drzewa to rodzaj
Bardziej szczegółowoPrzypomnij sobie krótki wstęp do teorii grafów przedstawiony na początku semestru.
Spis treści 1 Drzewa 1.1 Drzewa binarne 1.1.1 Zadanie 1.1.2 Drzewo BST (Binary Search Tree) 1.1.2.1 Zadanie 1 1.1.2.2 Zadanie 2 1.1.2.3 Zadanie 3 1.1.2.4 Usuwanie węzła w drzewie BST 1.1.2.5 Zadanie 4
Bardziej szczegółowoTadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski
: idea Indeksowanie: Drzewo decyzyjne, przeszukiwania binarnego: F = {5, 7, 10, 12, 13, 15, 17, 30, 34, 35, 37, 40, 45, 50, 60} 30 12 40 7 15 35 50 Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski
Bardziej szczegółowoStruktury danych: stos, kolejka, lista, drzewo
Struktury danych: stos, kolejka, lista, drzewo Wykład: dane w strukturze, funkcje i rodzaje struktur, LIFO, last in first out, kolejka FIFO, first in first out, push, pop, size, empty, głowa, ogon, implementacja
Bardziej szczegółowoAlgorytmy i struktury danych
Algorytmy i struktury danych Wykład 9 - Drzewa i algorytmy ich przetwarzania (ciąg dalszy) Janusz Szwabiński Plan wykładu: Binarne drzewo poszukiwań (BST) Zrównoważone binarne drzewa poszukiwań (AVL) Implementacja
Bardziej szczegółowo< K (2) = ( Adams, John ), P (2) = adres bloku 2 > < K (1) = ( Aaron, Ed ), P (1) = adres bloku 1 >
Typy indeksów Indeks jest zakładany na atrybucie relacji atrybucie indeksowym (ang. indexing field). Indeks zawiera wartości atrybutu indeksowego wraz ze wskaźnikami do wszystkich bloków dyskowych zawierających
Bardziej szczegółowoWstęp do programowania. Drzewa podstawowe techniki. Piotr Chrząstowski-Wachtel
Wstęp do programowania Drzewa podstawowe techniki Piotr Chrząstowski-Wachtel Drzewa wyszukiwań Drzewa często służą do przechowywania informacji. Jeśli uda sie nam stworzyć drzewo o niewielkiej wysokości
Bardziej szczegółowoAlgorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne
Algorytmy i struktury danych Drzewa: BST, kopce Letnie Warsztaty Matematyczno-Informatyczne Drzewa: BST, kopce Definicja drzewa Drzewo (ang. tree) to nieskierowany, acykliczny, spójny graf. Drzewo może
Bardziej szczegółowoDrzewa AVL definicje
Drzewa AVL definicje Uporzadkowane drzewo binarne jest drzewem AVL 1, jeśli dla każdego wez la różnica wysokości dwóch jego poddrzew wynosi co najwyżej 1. M D S C H F K Z typowe drzewo AVL minimalne drzewa
Bardziej szczegółowo2012-01-16 PLAN WYKŁADU BAZY DANYCH INDEKSY - DEFINICJE. Indeksy jednopoziomowe Indeksy wielopoziomowe Indeksy z użyciem B-drzew i B + -drzew
0-0-6 PLAN WYKŁADU Indeksy jednopoziomowe Indeksy wielopoziomowe Indeksy z użyciem B-drzew i B + -drzew BAZY DANYCH Wykład 9 dr inż. Agnieszka Bołtuć INDEKSY - DEFINICJE Indeksy to pomocnicze struktury
Bardziej szczegółowoDynamiczny przydział pamięci w języku C. Dynamiczne struktury danych. dr inż. Jarosław Forenc. Metoda 1 (wektor N M-elementowy)
Rok akademicki 2012/2013, Wykład nr 2 2/25 Plan wykładu nr 2 Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia niestacjonarne I stopnia Rok akademicki 2012/2013
Bardziej szczegółowoZadanie 1 Przygotuj algorytm programu - sortowanie przez wstawianie.
Sortowanie Dane wejściowe: ciąg n-liczb (kluczy) (a 1, a 2, a 3,..., a n 1, a n ) Dane wyjściowe: permutacja ciągu wejściowego (a 1, a 2, a 3,..., a n 1, a n) taka, że a 1 a 2 a 3... a n 1 a n. Będziemy
Bardziej szczegółowo. Podstawy Programowania 2. Drzewa bst - część pierwsza. Arkadiusz Chrobot. 22 maja 2016
.. Podstawy Programowania 2 Drzewa bst - część pierwsza Arkadiusz Chrobot Zakład Informatyki 22 maja 2016 1 / 55 Plan.1 Wstęp.2 Definicje.3 Implementacja Typ bazowy i wskaźnik na korzeń Dodawanie elementu
Bardziej szczegółowoWykład 8. Drzewo rozpinające (minimum spanning tree)
Wykład 8 Drzewo rozpinające (minimum spanning tree) 1 Minimalne drzewo rozpinające - przegląd Definicja problemu Własności minimalnych drzew rozpinających Algorytm Kruskala Algorytm Prima Literatura Cormen,
Bardziej szczegółowoBazy danych - BD. Indeksy. Wykład przygotował: Robert Wrembel. BD wykład 7 (1)
Indeksy Wykład przygotował: Robert Wrembel BD wykład 7 (1) 1 Plan wykładu Problematyka indeksowania Podział indeksów i ich charakterystyka indeks podstawowy, zgrupowany, wtórny indeks rzadki, gęsty Indeks
Bardziej szczegółowoTeoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 6b: Model danych oparty na drzewach http://hibiscus.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Model danych oparty na drzewach
Bardziej szczegółowoWykład 3. Złożoność i realizowalność algorytmów Elementarne struktury danych: stosy, kolejki, listy
Wykład 3 Złożoność i realizowalność algorytmów Elementarne struktury danych: stosy, kolejki, listy Dynamiczne struktury danych Lista jest to liniowo uporządkowany zbiór elementów, z których dowolny element
Bardziej szczegółowoGrafy (3): drzewa. Wykłady z matematyki dyskretnej dla informatyków i teleinformatyków. UTP Bydgoszcz
Grafy (3): drzewa Wykłady z matematyki dyskretnej dla informatyków i teleinformatyków UTP Bydgoszcz 13 (Wykłady z matematyki dyskretnej) Grafy (3): drzewa 13 1 / 107 Drzewo Definicja. Drzewo to graf acykliczny
Bardziej szczegółowoKompresja danych Streszczenie Studia Dzienne Wykład 10,
1 Kwantyzacja wektorowa Kompresja danych Streszczenie Studia Dzienne Wykład 10, 28.04.2006 Kwantyzacja wektorowa: dane dzielone na bloki (wektory), każdy blok kwantyzowany jako jeden element danych. Ogólny
Bardziej szczegółowoMatematyka dyskretna - 7.Drzewa
Matematyka dyskretna - 7.Drzewa W tym rozdziale zajmiemy się drzewami: specjalnym przypadkiem grafów. Są one szczególnie przydatne do przechowywania informacji, umożliwiającego szybki dostęp do nich. Definicja
Bardziej szczegółowoDrzewa podstawowe poj
Drzewa podstawowe poj ecia drzewo graf reprezentujacy regularna strukture wskaźnikowa, gdzie każdy element zawiera dwa lub wiecej wskaźników (ponumerowanych) do takich samych elementów; wez ly (albo wierzcho
Bardziej szczegółowodr inż. Paweł Myszkowski Wykład nr 11 ( )
dr inż. Paweł Myszkowski Politechnika Białostocka Wydział Elektryczny Elektronika i Telekomunikacja, semestr II, studia stacjonarne I stopnia Rok akademicki 2015/2016 Wykład nr 11 (11.05.2016) Plan prezentacji:
Bardziej szczegółowoProgramowanie obiektowe
Programowanie obiektowe Sieci powiązań Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk (Wydział Fizyki) PO w. IX Jesień 2014 1 / 24 Sieci powiązań Można (bardzo zgrubnie) wyróżnić dwa rodzaje powiązań
Bardziej szczegółowoALGORYTMY I STRUKTURY DANYCH
ALGORYTMY I STRUKTURY DANYCH Temat : Drzewa zrównoważone, sortowanie drzewiaste Wykładowca: dr inż. Zbigniew TARAPATA e-mail: Zbigniew.Tarapata@isi.wat.edu.pl http://www.tarapata.strefa.pl/p_algorytmy_i_struktury_danych/
Bardziej szczegółowoWykład X. Programowanie. dr inż. Janusz Słupik. Gliwice, Wydział Matematyki Stosowanej Politechniki Śląskiej. c Copyright 2016 Janusz Słupik
Wykład X Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2016 c Copyright 2016 Janusz Słupik Drzewa binarne Drzewa binarne Drzewo binarne - to drzewo (graf spójny bez cykli) z korzeniem (wyróżnionym
Bardziej szczegółowoSortowanie. Bartman Jacek Algorytmy i struktury
Sortowanie Bartman Jacek jbartman@univ.rzeszow.pl Algorytmy i struktury danych Sortowanie przez proste wstawianie przykład 41 56 17 39 88 24 03 72 41 56 17 39 88 24 03 72 17 41 56 39 88 24 03 72 17 39
Bardziej szczegółowoPODSTAWY INFORMATYKI wykład 6.
PODSTAWY INFORMATYKI wykład 6. Adrian Horzyk Web: http://home.agh.edu.pl/~horzyk/ E-mail: horzyk@agh.edu.pl Google: Adrian Horzyk Gabinet: paw. D13 p. 325 Akademia Górniczo-Hutnicza w Krakowie WEAIiE,
Bardziej szczegółowoDefinicja pliku kratowego
Pliki kratowe Definicja pliku kratowego Plik kratowy (ang grid file) jest strukturą wspierająca realizację zapytań wielowymiarowych Uporządkowanie rekordów, zawierających dane wielowymiarowe w pliku kratowym,
Bardziej szczegółowoSortowanie. Kolejki priorytetowe i algorytm Heapsort Dynamiczny problem sortowania:
Sortowanie Kolejki priorytetowe i algorytm Heapsort Dynamiczny problem sortowania: podać strukturę danych dla elementów dynamicznego skończonego multi-zbioru S, względem którego są wykonywane następujące
Bardziej szczegółowoWykład 5. Sortowanie w czasie liniowologarytmicznym
Wykład 5 Sortowanie w czasie liniowologarytmicznym 1 Sortowanie - zadanie Definicja (dla liczb): wejście: ciąg n liczb A = (a 1, a 2,, a n ) wyjście: permutacja (a 1,, a n ) taka, że a 1 a n 2 Zestawienie
Bardziej szczegółowo7a. Teoria drzew - kodowanie i dekodowanie
7a. Teoria drzew - kodowanie i dekodowanie Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny 7a. wteoria Krakowie) drzew - kodowanie i
Bardziej szczegółowoAlgorytmy i Struktury Danych. (c) Marcin Sydow. Słownik. Tablica mieszająca. Słowniki. Słownik uporządkowany. Drzewo BST.
i Zawartość wykładu definicja słownika analiza naiwnych implementacji słownika tablice mieszające własności funkcji mieszającej analiza operacji słownika zaimplementowanych na tablicy mieszającej sposoby
Bardziej szczegółowo- wyszukiwanie wzorca w tekście są algorytmy siłowe czyli przyporządkowanie znaczek po znaczku, ale są też fajniejsze i tu dużo dziwnych nazw
5-7 projektów, 2 tygodnie na każdy projekt, 0-10 punktów na każdy projekt, 7pkt za projekt wykonany poprawnie, 2 pkt straty za spóźnienie. Minimalna ilość by zaliczyć ćw to (ilość projektów -1)*5+2. Czyli
Bardziej szczegółowoAlgorytmy i. Wykład 5: Drzewa. Dr inż. Paweł Kasprowski
Algorytmy i struktury danych Wykład 5: Drzewa Dr inż. Paweł Kasprowski pawel@kasprowski.pl Drzewa Struktury przechowywania danych podobne do list ale z innymi zasadami wskazywania następników Szczególny
Bardziej szczegółowoAiSD zadanie drugie. Gliwiński Jarosław Marek Kruczyński Konrad Marek Grupa dziekańska I5. 10 kwietnia 2008
AiSD zadanie drugie Gliwiński Jarosław Marek Kruczyński Konrad Marek Grupa dziekańska I5 10 kwietnia 2008 1 Wstęp W nowym zadaniu porównywano efektywność kilku operacji na dwóch różnie zorganizowanych
Bardziej szczegółowoPrzykładowe B+ drzewo
Przykładowe B+ drzewo 3 8 1 3 7 8 12 Jak obliczyć rząd indeksu p Dane: rozmiar klucza V, rozmiar wskaźnika do bloku P, rozmiar bloku B, liczba rekordów w indeksowanym pliku danych r i liczba bloków pliku
Bardziej szczegółowoAlgorytmy i struktury danych. Wykład 4 Tablice nieporządkowane i uporządkowane
Algorytmy i struktury danych Wykład 4 Tablice nieporządkowane i uporządkowane Tablice uporządkowane Szukanie binarne Szukanie interpolacyjne Tablice uporządkowane Szukanie binarne O(log N) Szukanie interpolacyjne
Bardziej szczegółowoProgramowanie obiektowe
Programowanie obiektowe Sieci powiązań Paweł Daniluk Wydział Fizyki Jesień 2015 P. Daniluk (Wydział Fizyki) PO w. IX Jesień 2015 1 / 21 Sieci powiązań Można (bardzo zgrubnie) wyróżnić dwa rodzaje powiązań
Bardziej szczegółowoEgzamin, AISDI, I termin, 18 czerwca 2015 r.
Egzamin, AISDI, I termin, 18 czerwca 2015 r. 1 W czasie niezależnym do danych wejściowych działają algorytmy A. sortowanie bąbelkowego i Shella B. sortowanie szybkiego i przez prosty wybór C. przez podział
Bardziej szczegółowoAlgorytmy i struktury danych Struktury danych - drzewa IS/IO, WIMiIP
Algorytmy i struktury danych Struktury danych - drzewa IS/IO, WIMiIP Danuta Szeliga AGH Kraków Drzewo Drzewo (tree) Drzewo jest hierarchiczną strukturą danych. Def. Drzewo jest to zbiór T jednego lub więcej
Bardziej szczegółowoAlgorytmy i struktury danych. Wykład 6 Tablice rozproszone cz. 2
Algorytmy i struktury danych Wykład 6 Tablice rozproszone cz. 2 Na poprzednim wykładzie Wiele problemów wymaga dynamicznych zbiorów danych, na których można wykonywać operacje: wstawiania (Insert) szukania
Bardziej szczegółowoPodstawy Informatyki Metody dostępu do danych
Podstawy Informatyki Metody dostępu do danych alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Wprowadzenie Czym zajmuje się informatyka 2 Wprowadzenie Podstawowe problemy baz danych Struktury
Bardziej szczegółowododatkowe operacje dla kopca binarnego: typu min oraz typu max:
ASD - ćwiczenia IX Kopce binarne własność porządku kopca gdzie dla każdej trójki wierzchołków kopca (X, Y, Z) porządek etykiet elem jest następujący X.elem Y.elem oraz Z.elem Y.elem w przypadku kopca typu
Bardziej szczegółowoOgólne wiadomości o drzewach
Ogólne wiadomości o drzewach Algorytmy i struktury danych Wykład 4. Rok akademicki: 2010/2011 Drzewo jako struktura danych Drzewo kolekcja elementów pozostających w zależności hierarchicznej, posiadająca
Bardziej szczegółowoDynamiczne drzewa. Piotr Sankowski. - p. 1/27
Piotr Sankowski - p. 1/27 przypomnienie czas O(log 2 n), jak to zrobić w czasie O(log n), jak to zrobić w pesymistycznym czasie O(log n) (szkic). - p. 2/27 Operacje na dynamicznych drzewach: parent(v)
Bardziej szczegółowoPlan wykładu. Klucz wyszukiwania. Pojęcie indeksu BAZY DANYCH. Pojęcie indeksu - rodzaje indeksów Metody implementacji indeksów.
Plan wykładu 2 BAZY DANYCH Wykład 4: Indeksy. Pojęcie indeksu - rodzaje indeksów Metody implementacji indeksów struktury statyczne struktury dynamiczne Małgorzata Krętowska Wydział Informatyki PB Pojęcie
Bardziej szczegółowoDynamiczne drzewa. Marian M. Kędzierski. 26 listopada Wstęp Euler-Tour Trees Dynamiczna spójność Algorytm Dinica Link-Cut Trees
Dynamiczne drzewa Marian M. Kędzierski 26 listopada 2009 Plan prezentacji Wstęp 1 Wstęp Zagadnienie dynamicznych drzew SPLITiJOINnadrzewachBST 2 Euler-TourTrees Operacje na ET-drzewach Rozszerzenia 3 Dynamicznaspójność
Bardziej szczegółowoBazy danych. Andrzej Łachwa, UJ, /15
Bazy danych Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl www.uj.edu.pl/web/zpgk/materialy 15/15 PYTANIA NA EGZAMIN LICENCJACKI 84. B drzewa definicja, algorytm wyszukiwania w B drzewie. Zob. Elmasri:
Bardziej szczegółowoPodstawy Informatyki. Wykład 6. Struktury danych
Podstawy Informatyki Wykład 6 Struktury danych Stałe i zmienne Podstawowymi obiektami występującymi w programie są stałe i zmienne. Ich znaczenie jest takie samo jak w matematyce. Stałe i zmienne muszą
Bardziej szczegółowoBAZY DANYCH. Microsoft Access. Adrian Horzyk OPTYMALIZACJA BAZY DANYCH I TWORZENIE INDEKSÓW. Akademia Górniczo-Hutnicza
BAZY DANYCH Microsoft Access OPTYMALIZACJA BAZY DANYCH I TWORZENIE INDEKSÓW Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki
Bardziej szczegółowoSortowanie - wybrane algorytmy
Sortowanie - wybrane algorytmy Aleksandra Wilkowska Wydział Matematyki - Katedra Matematyki Stosowanej Politechika Wrocławska 2 maja 2018 1 / 39 Plan prezentacji Złożoność obliczeniowa Sortowanie bąbelkowe
Bardziej szczegółowoMetoda Tablic Semantycznych
Procedura Plan Reguły Algorytm Logika obliczeniowa Instytut Informatyki Plan Procedura Reguły 1 Procedura decyzyjna Logiczna równoważność formuł Logiczna konsekwencja Procedura decyzyjna 2 Reguły α, β,
Bardziej szczegółowoMetoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa.
Plan Procedura decyzyjna Reguły α i β - algorytm Plan Procedura decyzyjna Reguły α i β - algorytm Logika obliczeniowa Instytut Informatyki 1 Procedura decyzyjna Logiczna konsekwencja Teoria aksjomatyzowalna
Bardziej szczegółowoAlgorytmy i struktury danych Struktury danych IS/IO, WIMiIP
Algorytmy i struktury danych Struktury danych IS/IO, WIMiIP Danuta Szeliga AGH Kraków Spis treści I 1 Wstęp Pojęcia podstawowe Abstrakcyjne typ danych Statyczna/dynamiczna struktura danych 2 Statyczne
Bardziej szczegółowoWykłady z Matematyki Dyskretnej
Wykłady z Matematyki Dyskretnej dla kierunku Informatyka dr Instytut Informatyki Politechnika Krakowska Wykłady na bazie materiałów: dra hab. Andrzeja Karafiata dr hab. Joanny Kołodziej, prof. PK Grafy
Bardziej szczegółowoLuty 2001 Algorytmy (4) 2000/2001
Mając dany zbiór elementów, chcemy znaleźć w nim element największy (maksimum), bądź najmniejszy (minimum). We wszystkich naturalnych metodach znajdywania najmniejszego i największego elementu obecne jest
Bardziej szczegółowoE: Rekonstrukcja ewolucji. Algorytmy filogenetyczne
E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne Przypominajka: 152 drzewo filogenetyczne to drzewo, którego liśćmi są istniejące gatunki, a węzły wewnętrzne mają stopień większy niż jeden i reprezentują
Bardziej szczegółowoEgzaminy i inne zadania. Semestr II.
Egzaminy i inne zadania. Semestr II. Poniższe zadania są wyborem zadań ze Wstępu do Informatyki z egzaminów jakie przeprowadziłem w ciągu ostatnich lat. Ponadto dołączyłem szereg zadań, które pojawiały
Bardziej szczegółowoWstęp do programowania
Wstęp do programowania Stosy, kolejki, drzewa Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. VII Jesień 2013 1 / 25 Listy Lista jest uporządkowanym zbiorem elementów. W Pythonie
Bardziej szczegółowoAlgorytmy i struktury danych
Algorytmy i struktury danych Drzewa Witold Marańda maranda@dmcs.p.lodz.pl Drzewa - podstawy Drzewo jest dynamiczną strukturą danych składającą się z elementu węzłowego, zawierającego wskazania na skończoną
Bardziej szczegółowowstęp do informatyki i programowania część testowa (25 pyt. / 60 min.)
egzamin podstawowy 7 lutego 2017 r. wstęp do informatyki i programowania część testowa (25 pyt. / 60 min.) Instytut Informatyki Uniwersytetu Wrocławskiego Paweł Rzechonek imię, nazwisko i nr indeksu:..............................................................
Bardziej szczegółowoLista 0. Kamil Matuszewski 1 marca 2016
Lista 0 Kamil Matuszewski marca 206 2 3 4 5 6 7 8 0 0 Zadanie 4 Udowodnić poprawność mnożenia po rosyjsku Zastanówmy się co robi nasz algorytm Mamy podane liczby n i m W każdym kroku liczbę n dzielimy
Bardziej szczegółowo