3 Przeszukiwanie baz danych
|
|
- Weronika Kowalik
- 6 lat temu
- Przeglądów:
Transkrypt
1 Spis treści 3 Przeszukiwanie baz danych Heurystyczne algorytmy FASTA BLAST Macierze substytucyjne PAM BLOSUM Przeszukiwanie baz danych Jest dużo baz danych specjalizuj acych sie w różnych aspektach zwi azanych z sekwencjami naturalnie pojawiaj acymi sie w biologii. Dla sekwencji DNA główne bazy danych to: GenBank (USA), EMBL (Europa), DDBJ (Japonia). Natomiast dla białek główn a baz a danych jest Swiss-Prot. Przeszukiwanie baz danych jest jedn a z głównych metod pracy współczesnego biologa. Poniżej omówimy kilka zagadnień zwi azanych z praktycznymi aspektami przeszukiwania baz. 3.1 Heurystyczne algorytmy Omówimy dwa najbardziej popularne heurystyczne algorytmy używane do obliczania przybliżonej wartości lokalnego uliniowienia. Algorytmy te stanowi a standardowe narzedzie do przeszukiwania baz danych w procesie wyszukiwania podobieństw pomiedzy sekwencjami FASTA Jest to heurystyczny algorytm (Lipman, Pearson, 1985) służ acy do przybliżonego obliczania lokalnego uliniowienia danego wzorca wzgledem tekstowej sekwencji wzietej z bazy danych. Zwykle stosuje sie go do kolejnych sekwencji z bazy danych. Na pocz atku użytkownik wybiera liczbowy parametr, zwany ktup. Standardowo sugerowane wartości dla ktup to 6 dla sekwencji DNA oraz 2 dla białek. Przyjmijmy, że jest wartości a parametru ktup. Przez -słowo bedziemy rozumieć dowolne słowo długości. Niech w nastepuj acych czterech krokach. oraz. Działanie algorytmu można przedstawić 1. Dla, algorytm znajduje pary, takie że -słowo zaczynaj ace sie w w pozycji jest identyczne z - słowem zaczynaj acym sie w w pozycji. Każda taka para 1
2 nazywa sie gor acym miejscem. Operacje te można wykonać efektywnie sporz adzaj ac na pocz atku tablice haszuj ac a dla, lub (rzadziej) dla wszystkich słów z bazy danych. ace miejsce można traktować jako odcinek długości 2. Każde gor leż acy na przek atnej o numerze 1 w tablicy (otrzymanej metod a dynamicznego programowania oczywiście nie mamy). Algorytm przypisuje pewne wartości dodatnie gor acym miejscom oraz wartości ujemne przerwom pomiedzy takimi miejscami (im dłuższa przerwa, tym mniejsza wartość). Dla każdej przek atnej zawieraj acej gor ace miejsce, algorytm wybiera fragment pomiedzy gor acymi miejscami o maksymalnej wartości. W ten sposób zostaje wybranych 10 przek atnych (i zawartych w nich fragmentów) o maksymalnej wartości. Dla każdego z tych fragmentów algorytm znajduje cześć takiego fragmentu (podsłowo) o maksymalnej wartości uliniowienia bez spacji (do obliczania tej wartości stosuje sie tablice PAM lub BLOSUM) Tak a cześć fragmentu nazwiemy poduliniowieniem. Niech init1 bedzie najlepszym poduliniowieniem. 3. Wybrane s a poduliniowienia, których wartość przekracza pewn a z góry ustalon a granice. Z tych dobrych poduliniowień próbuje sie ułożyć uliniowienie o maksymalnej wartości. W tym celu buduje sie nastepuj acy graf poduliniowień. Wierzchołkami s a poduliniowienia. Każdemu wierzchołkowi jest przypisana liczba bed aca wartości a tego poduliniowienia. Jeśli i s a poduliniowieniami, takimi że zaczyna sie w pozycji i kończy w pozycji, a zaczyna sie w pozycji, to tworzymy krawedź od do, gdy oraz, tzn gdy wiersz (kolumna) w którym zaczyna sie jest poniżej wiersza (na prawo od kolumny), w którym kończy sie. Krawedzi tej przypisujemy pewn a wage zależ ac a od liczby spacji jakie trzeba wprowadzić we fragmencie lokalnego uliniowienia, w którym poduliniowienie wystepuje po poduliniowieniu. Im wieksza liczba spacji tym waga takiej krawedzi jest mniejsza. Nastepnie algorytm znajduje droge o maksymalnej wartości w wyżej opisanym grafie. Taka droga wyznacza lokalne uliniowienie pomiedzy dwoma słowami. To nie musi być optymalne lokalne uliniowienie pomiedzy oraz. Oznaczmy to uliniowienie przez initn. 4. Algorytm wraca do poduliniowienia init1 z kroku 2 i znajduje najlepsze lokalne uliniowienie wokół przek atnej zawieraj acej init1 w pasie (dla białek) oraz w pasie (dla DNA). Niech opt bedzie takim uliniowieniem. 1 Główna przekatna ma numer 0, przekatne o numerach dodatnich leża nad główna przekatn a, a o numerach ujemnych pod główna przekatn a. 2
3 W ten sposób jest porównywane z kolejnymi słowami z bazy danych. Bior ac pod uwage opt lub initn wyznacza sie mał a liczbe słów, najbardziej obiecuj acych z punktu widzenia uliniowienia z. Dla każdego z nich wykonuje sie pełny algorytm Smitha-Watermana obliczaj acy optymalne uliniowienia BLAST Algorytm BLAST podaje jako wynik całe spektrum rozwi azań (uliniowień) wraz z oszacowaniem statystycznej istotności znalezionego rozwi azania (czyli prawdopodobieństwa tego, że znaleziona wartość, lub wartość od niej wieksza mogła sie pojawić przypadkiem (z losowej sekwencji)). BLAST porównuje wzorzec z każd a sekwencj a z bazy danych, staraj ac sie zidentyfikować te sekwencje, dla których MSP (maximal segment pair, czyli para podsłów równej długości maksymalizuj aca wartość uliniowienia bez spacji 2 ) jest wieksze od pewnej z góry ustalonej wartości. W ten sposób wybiera sie pewne słowa podejrzane o pewne podobieństwo z. Jak sie szuka takich, dla których MSP jest wieksze od? Ustala sie długość oraz wartość graniczn a. Nastepnie BLAST znajduje wszystkie -podsłowa w, dla których istnieje -podsłowo w o wartości uliniowienia (bez spacji) wiekszej od. Każde takie miejsce jest rozszerzane w celu znalezienia wartości uliniowienia wiekszej od. Jeśli w trakcie rozszerzania wartość uliniowienia (która może rosn ać lub maleć z każdym krokiem rozszerzenia) spadnie poniżej pewnej wartości progowej, to poszukiwania dla takiego miejsca s a przerywane. Dobór wartości, oraz ma kluczowe znaczenie dla jakości znajdowanych wyników. Na przykład, dla porównywania białek jest przyjmowane pomiedzy 3 a 5, natomiast dla DNA jest zwykle równe około Macierze substytucyjne Zacznijmy od paru ogólnych uwag. Załóżmy, że dla liter, jest prawdopodobieństwem tego, że aminokwasy oraz pochodz a od wspólnego aminokwasu (przodka) w drodze punktowej mutacji. Mamy dane dwa słowa oraz. Chcemy obliczyć jakie jest prawdopodobieństwo tego że oraz pochodz a od wspólnego przodka w wyniku punktowych zmian. Dla dowolnej litery, niech oznacza prawdopodobieństwo wyst apienia litery w słowie. Wówczas prawdopo- 2 Przy użyciu pewnej macierzy substytucyjnej. 3
4 dobieństwo pojawienia sie słów oraz to Natomiast prawdopodobieństwo tego, że i pochodz a od wspólnego przodka jest równe. Iloraz tych dwóch wartości nazywa sie odds ratio. Im wieksza jest ta wartość tym bardziej dane dwa słowa nie s a całkowicie losowe (niezależne), ale pochodz a od wspólnego przodka. Ponieważ dużo wygodniej jest pracować z addytywn a miar a podobieństwa, to przechodzimy do logarytmu: liczba jest kar a/nagrod a za zamiane na PAM Macierze PAM (percent accepted mutations) zostały zaproponawane przez M. Dayhoff i jej współpracowników około 1978r. S a to tzw. macierze substytucyjne dla aminokwasów i jako takie reprezentuj a funkcje podobieństwa. PAM również używa sie jako jednostki miary opisuj acej ewolucyjn a rozbieżność pomiedzy dwoma ci agami aminokwasów. Powiemy, że dwa słowa i różni a sie o jedn a jednoske PAM, jeśli można otrzymać z w ci agu akceptowalnych punktowych mutacji, tak że średnia liczba akceptowalnych mutacji na 100 aminokwasów wynosi 1. Akceptowalna punktowa mutacja to taka, która albo nie zmieniła funkcji białka, lub była korzystna dla organizmu (co najmniej nie spowodowała śmierci organizmu). Zwróćmy uwage, różnica 1PAM pomiedzy i nie oznacza, że słowa te różni a sie pomiedzy sob a o 1%. Liczba mutacji na pewnej pozycji w słowach może być wieksza od jedynki, a nawet w wyniku tych mutacji ta pozycja nie musi sie zmienić. Jako podstawe do budowy macierzy PAM wzieto pewn a rodzine bardzo podobnych białek (każde dwa nie różniły sie o wiecej niż 15%) i recznie 4
5 sporz adzono globalne uliniowienia dla tej rodziny. Nastepnie stworzono tablice, tak a że dla aminokwasów, a wyst apień ulino- jest liczb wienia pary w wyżej wymienionych uliniowieniach. Wówczas prawdopodobieństwo mutacji z na jest równe Niech bedzie prawdopodobieństwem wyst apienia litery w w/w białkach. Wówczas wartość oczekiwana (średnia) liczby zamian w losowej parze słów długości wynosi Ponieważ macierz 1PAM to taka, dla której powyższa wartość oczekiwana wynosi 1 dla, to musimy tak przeskalować na aby zachodziło Wystarczy stosownie dobrać stał a i wzi ać: dla dla W ten sposób otrzymujemy 1PAM macierz. Oznaczmy j a przez. Tak wiec (w przybliżeniu) jest prawdopodobieństwem zamiany na w jednej umownej jednostce czasu. Macierz przedstawia pewien łańcuch Markowa. Prawdopodobieństwo zamiany na w jednostkach czasu to, gdzie jest -krotnym iloczynem macierzy przez siebie. Macierze nazywaj a sie PAM macierzami. Wartości do prawdziwej macierzy PAM s a brane z przez stosowanie logarytmu, skalowanie i zaokr aglanie. Bardzo popularne s a 250PAM macierze BLOSUM Macierze substytucyjne BLOSUM (blocks substitution matrix) zostały zaproponawane przez S. oraz J. Heinkoff w 1991r. jako efekt krytyki tego, że macierze PAM dla nie oddaj a dobrze wpływu czasu na zmiany sekwencji koduj acych białka. Macierze BLOSUM zostały oparte na białkowej bazie danych BLOCKS w nastepuj acy sposób. Niech. Opiszemy sposób budowania macierzy BLOSUM. Białka z bazy danych s a dzielone na grupy. Do jednej grupy s a zaliczane dwa białka jeśli 5
6 można przejść od jednego białka do drugiego, używaj ac białek pośrednich wzietych z bazy danych, takich że każde dwa kolejne białka maj a skład identyczny w co najmniej L%. Białka w bazie danych BLOCKS s a uliniowione w tzw. blokach. Tworzymy macierz. Wybierzmy dwie grupy. Dla aminokwasów, liczba jest czestości a z jak a aminokwas pochodz acy z grupy jest uliniowiony z aminokwasem pochodz acym z grupy (liczba ta jest podzielona przez, gdzie jest liczebności a grupy, a jest liczebności a grupy ). otrzymuje sie przez sumowanie po wszystkich parach grup. Maj ac możemy obliczyć prawdopodobieństwo wyst apienia aminokwasu : oraz prawdopodobieństwo zamiany na : Wówczas Najcześciej używane to oraz. 6
danych jest Swiss-Prot. Przeszukiwanie baz danych jest jedna
Wst ep do obliczeniowej biologii molekularnej (J. Tiuryn, wykĺad nr.6, 23 listopada 2005) Spis treści 3 Przeszukiwanie baz danych 36 3.1 Heurystyczne algorytmy..................... 36 3.1.1 FASTA...........................
Dopasowywanie sekwencji (ang. sequence alignment) Metody dopasowywania sekwencji. Homologia a podobieństwo sekwencji. Rodzaje dopasowania
Wprowadzenie do Informatyki Biomedycznej Wykład 2: Metody dopasowywania sekwencji Wydział Informatyki PB Dopasowywanie sekwencji (ang. sequence alignment) Dopasowywanie (przyrównywanie) sekwencji polega
PODSTAWY BIOINFORMATYKI WYKŁAD 4 DOPASOWANIE SEKWENCJI
PODSTAWY BIOINFORMATYKI WYKŁAD 4 DOPASOWANIE SEKWENCJI DOPASOWANIE SEKWENCJI 1. Dopasowanie sekwencji - definicja 2. Wizualizacja dopasowania sekwencji 3. Miary podobieństwa sekwencji 4. Przykłady programów
PODSTAWY BIOINFORMATYKI WYKŁAD 4 DOPASOWANIE SEKWENCJI
PODSTAWY BIOINFORMATYKI WYKŁAD 4 DOPASOWANIE SEKWENCJI DOPASOWANIE SEKWENCJI 1. Dopasowanie sekwencji - definicja 2. Wizualizacja dopasowania sekwencji 3. Miary podobieństwa sekwencji 4. Przykłady programów
Wyk lad 5 W lasności wyznaczników. Macierz odwrotna
Wyk lad 5 W lasności wyznaczników Macierz odwrotna 1 Operacje elementarne na macierzach Bardzo ważne znaczenie w algebrze liniowej odgrywaja tzw operacje elementarne na wierszach lub kolumnach macierzy
Bioinformatyka Laboratorium, 30h. Michał Bereta
Bioinformatyka Laboratorium, 30h Michał Bereta mbereta@pk.edu.pl www.michalbereta.pl 1 Wyszukiwanie sekwencji Jak wyszukad z baz danych bioinformatycznych sekwencje podobne do sekwencji zadanej (ang. query
PODSTAWY BIOINFORMATYKI 8 DOPASOWYWANIE SEKWENCJI AMINOKWASÓW
PODSTAWY BIOINFORMATYKI 8 DOPASOWYWANIE SEKWENCJI AMINOKWASÓW DOPASOWYWANIE SEKWENCJI 1. Miary podobieństwa sekwencji aminokwasów 2. Zastosowanie programów: CLUSTAL OMEGA BLAST Copyright 2013, Joanna Szyda
2 Uliniowienie wielu sekwencji Miara typu suma par (SP) Uliniowienie gwiazdowe dla SP... 24
Spis treści 1 Podobieństwo dwóch sekwencji 1 11 Globalne uliniowienie 111 Metoda dynamicznego programowania 4 11 Odtwarzanie optymalnych uliniowań 6 113 Odległość edycyjna 8 1 Lokalne uliniowienie 10 13
Porównywanie i dopasowywanie sekwencji
Porównywanie i dopasowywanie sekwencji Związek bioinformatyki z ewolucją Wraz ze wzrostem dostępności sekwencji DNA i białek pojawiła się nowa możliwość śledzenia ewolucji na poziomie molekularnym Ewolucja
PRZYRÓWNANIE SEKWENCJI
http://theta.edu.pl/ Podstawy Bioinformatyki III PRZYRÓWNANIE SEKWENCJI 1 Sequence alignment - przyrównanie sekwencji Poszukiwanie ciągów znaków (zasad nukleotydowych lub reszt aminokwasowych), które posiadają
Wyk lad 3 Wyznaczniki
1 Określenie wyznacznika Wyk lad 3 Wyznaczniki Niech A bedzie macierza kwadratowa stopnia n > 1 i niech i, j bed a liczbami naturalnymi n Symbolem A ij oznaczać bedziemy macierz kwadratowa stopnia n 1
Dopasowania par sekwencji DNA
Dopasowania par sekwencji DNA Tworzenie uliniowień (dopasowań, tzw. alignmentów ) par sekwencji PSA Pairwise Sequence Alignment Dopasowania globalne i lokalne ACTACTAGATTACTTACGGATCAGGTACTTTAGAGGCTTGCAACCA
Dopasowanie sekwencji (sequence alignment)
Co to jest alignment? Dopasowanie sekwencji (sequence alignment) Alignment jest sposobem dopasowania struktur pierwszorzędowych DNA, RNA lub białek do zidentyfikowanych regionów w celu określenia podobieństwa;
Przyrównanie sekwencji. Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu
Przyrównanie sekwencji Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu Sequence alignment - przyrównanie sekwencji Poszukiwanie ciągów znaków (zasad nukleotydowych lub reszt aminokwasowych),
Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010
R. Rȩbowski 1 WPROWADZENIE Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010 1 Wprowadzenie Powszechnie uważa siȩ, że metoda simplex, jako uniwersalny algorytm pozwalaj acyznaleźć rozwi azanie optymalne
Statystyczna analiza danych
Statystyczna analiza danych ukryte modele Markowa, zastosowania Anna Gambin Instytut Informatyki Uniwersytet Warszawski plan na dziś Ukryte modele Markowa w praktyce modelowania rodzin białek multiuliniowienia
Wyk lad 4 Dzia lania na macierzach. Określenie wyznacznika
Wyk lad 4 Dzia lania na macierzach Określenie wyznacznika 1 Określenie macierzy Niech K bedzie dowolnym cia lem oraz niech n i m bed a dowolnymi liczbami naturalnymi Prostokatn a tablice a 11 a 12 a 1n
Metody Numeryczne Wykład 4 Wykład 5. Interpolacja wielomianowa
Sformułowanie zadania interpolacji Metody Numeryczne Wykład 4 Wykład 5 Interpolacja wielomianowa Niech D R i niech F bȩdzie pewnym zbiorem funkcji f : D R. Niech x 0, x 1,..., x n bȩdzie ustalonym zbiorem
Bioinformatyka. Ocena wiarygodności dopasowania sekwencji.
Bioinformatyka Ocena wiarygodności dopasowania sekwencji www.michalbereta.pl Załóżmy, że mamy dwie sekwencje, które chcemy dopasować i dodatkowo ocenić wiarygodność tego dopasowania. Interesujące nas pytanie
Porównywanie i dopasowywanie sekwencji
Porównywanie i dopasowywanie sekwencji Związek bioinformatyki z ewolucją Wraz ze wzrostem dostępności sekwencji DNA i białek narodziła się nowa dyscyplina nauki ewolucja molekularna Ewolucja molekularna
prof. dr hab. inż. Marta Kasprzak Instytut Informatyki, Politechnika Poznańska Dopasowanie sekwencji
Bioinformatyka wykład 5: dopasowanie sekwencji prof. dr hab. inż. Marta Kasprzak Instytut Informatyk Politechnika Poznańska Dopasowanie sekwencji Badanie podobieństwa sekwencji stanowi podstawę wielu gałęzi
2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0,
2 Arytmetyka Niech b = d r d r 1 d 1 d 0 będzie zapisem liczby w systemie dwójkowym Zamiana zapisu liczby b na system dziesiętny odbywa się poprzez wykonanie dodawania d r 2 r + d r 1 2 r 1 d 1 2 1 + d
Wyk lad 4 Macierz odwrotna i twierdzenie Cramera
Wyk lad 4 Macierz odwrotna i twierdzenie Cramera 1 Odwracanie macierzy I n jest elementem neutralnym mnożenia macierzy w zbiorze M n (R) tzn A I n I n A A dla dowolnej macierzy A M n (R) Ponadto z twierdzenia
Bioinformatyka. (wykład monograficzny) wykład 5. E. Banachowicz. Zakład Biofizyki Molekularnej IF UAM
Bioinformatyka (wykład monograficzny) wykład 5. E. Banachowicz Zakład Biofizyki Molekularnej IF UM http://www.amu.edu.pl/~ewas lgorytmy macierze punktowe (DotPlot) programowanie dynamiczne metody heurystyczne
0 + 0 = 0, = 1, = 1, = 0.
5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,
D: Dopasowanie sekwencji. Programowanie dynamiczne
D: Dopasowanie sekwencji. Programowanie dynamiczne Problem: jak porównywać sekwencje DNA? Czy te sekwencje są podobne? Jeśli są podobne, to jak mierzyć to podobieństwo? Odpowiedzi są kluczowe dla konstrukcji
Spis treści. Przedmowa... XI. Wprowadzenie i biologiczne bazy danych. 1 Wprowadzenie... 3. 2 Wprowadzenie do biologicznych baz danych...
Przedmowa... XI Część pierwsza Wprowadzenie i biologiczne bazy danych 1 Wprowadzenie... 3 Czym jest bioinformatyka?... 5 Cele... 5 Zakres zainteresowań... 6 Zastosowania... 7 Ograniczenia... 8 Przyszłe
Niesimpleksowe metody rozwia zywania zadań PL. Seminarium Szkoleniowe Edyta Mrówka
Niesimpleksowe metody rozwia zywania zadań PL Seminarium Szkoleniowe Metoda Simplex: wady i zalety Algorytm SIMPLEX jest szeroko znany i stosowany do rozwi azywania zadań programowania liniowego w praktyce.
Generator testów Bioinformatyka wer / 0 Strona: 1
Przedmiot: Nazwa przedmiotu Nazwa testu: Bioinformatyka wer. 1.0.6 Nr testu 0 Klasa: V zaoczne WNB UZ Odpowiedzi zaznaczamy TYLKO w tabeli! 1. Analiza porównawcza białek zwykle zaczyna się na badaniach
Dopasowanie sekwencji Sequence alignment. Bioinformatyka, wykłady 3 i 4 (19, 26.X.2010)
Dopasowanie sekwencji Sequence alignment Bioinformatyka, wykłady 3 i 4 (19, 26.X.2010) krzysztof_pawlowski@sggw.pl terminologia alignment 33000 dopasowanie sekwencji 119 uliniowienie sekwencji 82 uliniowianie
Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova
Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova M. Czoków, J. Piersa 2010-12-21 1 Definicja Własności Losowanie z rozkładu dyskretnego 2 3 Łańcuch Markova Definicja Własności Losowanie z rozkładu
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA I WSPOMAGANIA DECYZJI Rozproszone programowanie produkcji z wykorzystaniem
Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa
Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa M. Czoków, J. Piersa 2012-01-10 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego 3 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego
Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu
Data Mining Wykład 9 Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster Plan wykładu Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Sformułowanie problemu
Wstęp do Biologii Obliczeniowej
Wstęp do Biologii Obliczeniowej Zagadnienia na kolokwium Bartek Wilczyński 5. czerwca 2018 Sekwencje DNA i grafy Sekwencje w biologii, DNA, RNA, białka, alfabety, transkrypcja DNA RNA, translacja RNA białko,
Matematyka Dyskretna. Andrzej Szepietowski. 25 czerwca 2002 roku
Matematyka Dyskretna Andrzej Szepietowski 25 czerwca 2002 roku ( Rozdział 1 Grafy skierowane W tym rozdziale zajmiemy siȩ algorytmami wyszukiwania najkrótszej drogi w grafach skierowanych Każdej krawȩdzi
CZEŚĆ PIERWSZA. Wymagania na poszczególne oceny,,matematyka wokół nas Klasa III I. POTĘGI
Wymagania na poszczególne oceny,,matematyka wokół nas Klasa III CZEŚĆ PIERWSZA I. POTĘGI Zamienia potęgi o wykładniku całkowitym ujemnym na odpowiednie potęgi o wykładniku naturalnym. Oblicza wartości
operacje porównania, a jeśli jest to konieczne ze względu na złe uporządkowanie porównywanych liczb zmieniamy ich kolejność, czyli przestawiamy je.
Problem porządkowania zwanego również sortowaniem jest jednym z najważniejszych i najpopularniejszych zagadnień informatycznych. Dane: Liczba naturalna n i ciąg n liczb x 1, x 2,, x n. Wynik: Uporządkowanie
Procesy stochastyczne
Wykład IV: dla łańcuchów Markowa 14 marca 2017 Wykład IV: Klasyfikacja stanów Kiedy rozkład stacjonarny jest jedyny? Przykład Macierz jednostkowa I wymiaru #E jest macierzą stochastyczną. Dla tej macierzy
E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne
E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne Przypominajka: 152 drzewo filogenetyczne to drzewo, którego liśćmi są istniejące gatunki, a węzły wewnętrzne mają stopień większy niż jeden i reprezentują
Algorytmy stochastyczne laboratorium 03
Algorytmy stochastyczne laboratorium 03 Jarosław Piersa 10 marca 2014 1 Projekty 1.1 Problem plecakowy (1p) Oznaczenia: dany zbiór przedmiotów x 1,.., x N, każdy przedmiot ma określoną wagę w(x i ) i wartość
Wyk lad 7 Metoda eliminacji Gaussa. Wzory Cramera
Wyk lad 7 Metoda eliminacji Gaussa Wzory Cramera Metoda eliminacji Gaussa Metoda eliminacji Gaussa polega na znalezieniu dla danego uk ladu a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x n =
Systemy liczbowe. 1. Przedstawić w postaci sumy wag poszczególnych cyfr liczbę rzeczywistą R = (10).
Wprowadzenie do inżynierii przetwarzania informacji. Ćwiczenie 1. Systemy liczbowe Cel dydaktyczny: Poznanie zasad reprezentacji liczb w systemach pozycyjnych o różnych podstawach. Kodowanie liczb dziesiętnych
Wyk lad 9 Baza i wymiar przestrzeni liniowej
Wyk lad 9 Baza i wymiar przestrzeni liniowej 1 Operacje elementarne na uk ladach wektorów Niech α 1,..., α n bed dowolnymi wektorami przestrzeni liniowej V nad cia lem K. Wyróżniamy nastepuj ace operacje
Wybrane podstawowe rodzaje algorytmów
Wybrane podstawowe rodzaje algorytmów Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych
Teoretyczne podstawy programowania liniowego
Teoretyczne podstawy programowania liniowego Elementy algebry liniowej Plan Kombinacja liniowa Definicja Kombinacja liniowa wektorów (punktów) x 1, x 2,, x k R n to wektor x R n k taki, że x = i=1 λ i
Dopasowanie sekwencji Sequence alignment. Bioinformatyka, wykłady 3 i 4 (16, 23.X.2012)
Dopasowanie sekwencji Sequence alignment Bioinformatyka, wykłady 3 i 4 (16, 23.X.2012) krzysztof_pawlowski@sggw.pl terminologia alignment 33000 dopasowanie sekwencji 119 uliniowienie sekwencji 82 uliniowianie
Wyk lad 9 Baza i wymiar przestrzeni liniowej
Wyk lad 9 Baza i wymiar liniowej Baza liniowej Niech V bedzie nad cia lem K Powiemy, że zbiór wektorów {α,, α n } jest baza V, jeżeli wektory α,, α n sa liniowo niezależne oraz generuja V tzn V = L(α,,
Wstęp do programowania
Wstęp do programowania Algorytmy zachłanne, algoritme Dijkstry Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. XI Jesień 2013 1 / 25 Algorytmy zachłanne Strategia polegająca na
Metodologia badań psychologicznych. Wykład 12. Korelacje
Metodologia badań psychologicznych Lucyna Golińska SPOŁECZNA AKADEMIA NAUK Wykład 12. Korelacje Korelacja Korelacja występuje wtedy gdy dwie różne miary dotyczące tych samych osób, zdarzeń lub obiektów
3. Macierze i Układy Równań Liniowych
3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x
Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11,
1 Kwantyzacja skalarna Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11, 10.05.005 Kwantyzacja polega na reprezentowaniu dużego zbioru wartości (być może nieskończonego) za pomocą wartości
Działanie algorytmu oparte jest na minimalizacji funkcji celu jako suma funkcji kosztu ( ) oraz funkcji heurystycznej ( ).
Algorytm A* Opracowanie: Joanna Raczyńska 1.Wstęp Algorytm A* jest heurystycznym algorytmem służącym do znajdowania najkrótszej ścieżki w grafie. Jest to algorytm zupełny i optymalny, co oznacza, że zawsze
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
Elementy modelowania matematycznego
Elementy modelowania matematycznego Modelowanie algorytmów klasyfikujących. Podejście probabilistyczne. Naiwny klasyfikator bayesowski. Modelowanie danych metodą najbliższych sąsiadów. Jakub Wróblewski
ALGORYTMY GENETYCZNE ćwiczenia
ćwiczenia Wykorzystaj algorytmy genetyczne do wyznaczenia minimum globalnego funkcji testowej: 1. Wylosuj dwuwymiarową tablicę 100x2 liczb 8-bitowych z zakresu [-100; +100] reprezentujących inicjalną populację
Wstęp do programowania
Wstęp do programowania Algorytmy zachłanne, programowanie dynamiczne Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk(Wydział Fizyki) WP w. IX Jesień 2014 1 / 26 Algorytmy zachłanne Strategia polegająca
Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład 7 Prof. dr hab. inż. Jan Magott Problemy NP-zupełne Transformacją wielomianową problemu π 2 do problemu π 1 (π 2 π 1 ) jest funkcja f: D π2 D π1 spełniająca
W. Guzicki Próbna matura, grudzień 2014 r. poziom rozszerzony 1
W. Guzicki Próbna matura, grudzień 01 r. poziom rozszerzony 1 Próbna matura rozszerzona (jesień 01 r.) Zadanie 18 kilka innych rozwiązań Wojciech Guzicki Zadanie 18. Okno na poddaszu ma mieć kształt trapezu
Temat: Algorytm kompresji plików metodą Huffmana
Temat: Algorytm kompresji plików metodą Huffmana. Wymagania dotyczące kompresji danych Przez M oznaczmy zbiór wszystkich możliwych symboli występujących w pliku (alfabet pliku). Przykład M = 2, gdy plik
Grafy i sieci wybrane zagadnienia wykład 3: modele służące porównywaniu sieci
Grafy i sieci wybrane zagadnienia wykład 3: modele służące porównywaniu sieci prof. dr hab. inż. Marta Kasprzak Instytut Informatyki, Politechnika Poznańska Plan wykładu 1. Sieci jako modele interakcji
Spacery losowe generowanie realizacji procesu losowego
Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z
Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów
Wykład 2. Reprezentacja komputerowa grafów 1 / 69 Macierz incydencji Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach (x 1, x 2,..., x n) i m krawędziach (e 1, e 2,..., e m). 2 / 69
A. Kasperski, M. Kulej Badania Operacyjne- metoda sympleks 1
A. Kasperski, M. Kulej Badania Operacyjne- metoda sympleks 1 ALGORYTM SYMPLEKS Model liniowy nazywamy modelem w postaci standardowej jeżeli wszystkie ograniczenia s a w postaci równości i wszystkie zmienne
Algorytmy przeszukiwania wzorca
Algorytmy i struktury danych Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski Algorytmy przeszukiwania wzorca 1 Wstęp Algorytmy
Liczba 2, to jest jedyna najmniejsza liczba parzysta i pierwsza. Oś liczbowa. Liczba 1, to nie jest liczba pierwsza
1 SZKO LA PODSTAWOWA HELIANTUS 02-892 WARSZAWA ul. BAŻANCIA 16 3 Liczba 2, to jest jedyna najmniejsza liczba parzysta i pierwsza 2 1 0 1 2 3 x Oś liczbowa. Liczba 1, to nie jest liczba pierwsza MATEMATYKA
Algorytmy wyznaczania centralności w sieci Szymon Szylko
Algorytmy wyznaczania centralności w sieci Szymon Szylko Zakład systemów Informacyjnych Wrocław 10.01.2008 Agenda prezentacji Cechy sieci Algorytmy grafowe Badanie centralności Algorytmy wyznaczania centralności
Programowanie liniowe metoda sympleks
Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 13. wykład z algebry liniowej Warszawa, styczeń 2018 Mirosław Sobolewski (UW) Warszawa, 2018 1 /
Wykład 5 Dopasowywanie lokalne
Wykład 5 Dopasowywanie lokalne Dopasowanie par (sekwencji) Dopasowanie globalne C A T W A L K C A T W A L K C O W A R D C X X O X W X A X R X D X Globalne dopasowanie Schemat punktowania (uproszczony)
1 Układy równań liniowych
II Metoda Gaussa-Jordana Na wykładzie zajmujemy się układami równań liniowych, pojawi się też po raz pierwszy macierz Formalną (i porządną) teorią macierzy zajmiemy się na kolejnych wykładach Na razie
Programowanie liniowe metoda sympleks
Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2009 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 13
Wykład 10 2008-04-30. Bioinformatyka. Wykład 9. E. Banachowicz. Zakład Biofizyki Molekularnej IF UAM
Bioinformatyka Wykład 9 E. Banachowicz Zakład Biofizyki Molekularnej IF UAM http://www.amu.edu.pl/~ewas 1 Konsekwencje zestawieo wielu sekwencji - rodziny białkowe, domeny, motywy i wzorce 2 Bioinformatyka,
0.1 Sposȯb rozk ladu liczb na czynniki pierwsze
1 Temat 5: Liczby pierwsze Zacznijmy od definicji liczb pierwszych Definition 0.1 Liczbȩ naturaln a p > 1 nazywamy liczb a pierwsz a, jeżeli ma dok ladnie dwa dzielniki, to jest liczbȩ 1 i sam a siebie
Bioinformatyka 2 (BT172) Progresywne metody wyznaczania MSA: T-coffee
Bioinformatyka 2 (BT172) Wykład 5 Progresywne metody wyznaczania MSA: T-coffee Krzysztof Murzyn 14.XI.2005 PLAN WYKŁADU Ostatnio : definicje, zastosowania MSA, złożoność obliczeniowa algorytmu wyznaczania
Metody numeryczne I Równania nieliniowe
Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem
ZAGADNIENIE DUALNE Rozważmy zagadnienie liniowe(zagadnienie to nazywamy prymalnym) o postaci kanonicznej:
A Kasperski, M Kulej Badania Operacyjne- programowanie liniowe 1 ZAGADNIENIE DUALNE Rozważmy zagadnienie liniowe(zagadnienie to nazywamy prymalnym) o postaci kanonicznej: max z = c 1 x 1 + c 2 x 2 + +
Adaptacyjne sterowanie robotem IRb-6 instrukcja nr 508
Adaptacyjne sterowanie robotem IRb-6 instrukcja nr 508 1 Cel ćwiczenia. Celem ćwiczenia jest praktyczne zapoznanie sie z programowaniem robota przemysłowego IRb-6 wyposażonego w czujnik zbliżeniowy z wykorzystaniem
Kodowanie i kompresja Tomasz Jurdziński Studia Wieczorowe Wykład Kody liniowe - kodowanie w oparciu o macierz parzystości
Kodowanie i kompresja Tomasz Jurdziński Studia Wieczorowe Wykład 13 1 Kody liniowe - kodowanie w oparciu o macierz parzystości Przykład Różne macierze parzystości dla kodu powtórzeniowego. Co wiemy z algebry
Wykład 4. Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym. 2. Rozkłady próbkowe. 3. Centralne twierdzenie graniczne
Wykład 4 Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym 2. Rozkłady próbkowe 3. Centralne twierdzenie graniczne Przybliżenie rozkładu dwumianowego rozkładem normalnym Niech Y ma rozkład
KONSPEKT FUNKCJE cz. 1.
KONSPEKT FUNKCJE cz. 1. DEFINICJA FUNKCJI Funkcją nazywamy przyporządkowanie, w którym każdemu elementowi zbioru X odpowiada dokładnie jeden element zbioru Y Zbiór X nazywamy dziedziną, a jego elementy
Kody blokowe Wykład 2, 10 III 2011
Kody blokowe Wykład 2, 10 III 2011 Literatura 1. R.M. Roth, Introduction to Coding Theory, 2006 2. W.C. Huffman, V. Pless, Fundamentals of Error-Correcting Codes, 2003 3. D.R. Hankerson et al., Coding
Zagadnienie Dualne Zadania Programowania Liniowego. Seminarium Szkoleniowe Edyta Mrówka
Zagadnienie Dualne Zadania Programowania Liniowego Seminarium Szkoleniowe Edyta Mrówka Ogólne zagadnienie PL Znajdź taki wektor X = (x 1, x 2,..., x n ), który minimalizuje kombinacje liniow a przy ograniczeniach
Wstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami
Wstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami Przykład 1. Napisz program, który dla podanej liczby n wypisze jej rozkład na czynniki pierwsze. Oblicz asymptotyczną złożoność
Trigonometria. Funkcje trygonometryczne
1 Trigonometria. Funkcje trygonometryczne Trigonometria to wiedza o zwi azkach miarowych pomiedzy bokami i k atami trójk atów. Takie znaczenie s lowa Trigonometria by lo używane w czasach starożytnych
Bioinformatyka Laboratorium, 30h. Michał Bereta
Bioinformatyka Laboratorium, 30h Michał Bereta mbereta@pk.edu.pl www.michalbereta.pl 1 Filogenetyka molekularna wykorzystuje informację zawartą w sekwencjach aminokwasów lub nukleotydów do kontrukcji drzew
OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) Algorytmy i Struktury Danych PIŁA
OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) 16.01.2003 Algorytmy i Struktury Danych PIŁA ALGORYTMY ZACHŁANNE czas [ms] Porównanie Algorytmów Rozwiązyjących problem TSP 100 000 000 000,000 10 000 000
Przyrównywanie sekwencji
Instytut Informatyki i Matematyki Komputerowej UJ, opracowanie: mgr Ewa Matczyńska, dr Jacek Śmietański Przyrównywanie sekwencji 1. Porównywanie sekwencji wprowadzenie Sekwencje porównujemy po to, aby
5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki
Porównanie algorytmów wyszukiwania najkrótszych ścieżek między wierzchołkami grafu. Instytut Informatyki 22 listopada 2015 Algorytm DFS w głąb Algorytm przejścia/przeszukiwania w głąb (ang. Depth First
4.1 Mapy hybrydyzacyjne
Spis treści 4 Mapy fizyczne genomów 4. Mapy hybrydyzacyjne........................ 4.. Własność kolejnych jedynek (CP)............ 2 4..2 Algorytm heurystyczny pozwalaj acy odkrywać klony chimeryczne..........................
Programowanie dynamiczne cz. 2
Programowanie dynamiczne cz. 2 Wykład 7 16 kwietnia 2019 (Wykład 7) Programowanie dynamiczne cz. 2 16 kwietnia 2019 1 / 19 Outline 1 Mnożenie ciągu macierzy Konstruowanie optymalnego rozwiązania 2 Podstawy
Bioinformatyka Laboratorium, 30h. Michał Bereta
Bioinformatyka Laboratorium, 30h Michał Bereta mbereta@pk.edu.pl www.michalbereta.pl 1 Często dopasować chcemy nie dwie sekwencje ale kilkanaście lub więcej 2 Istnieją dokładne algorytmy, lecz są one niewydajne
Procesy Markowa zawdzięczają swoją nazwę ich twórcy Andriejowi Markowowi, który po raz pierwszy opisał problem w 1906 roku.
Procesy Markowa zawdzięczają swoją nazwę ich twórcy Andriejowi Markowowi, który po raz pierwszy opisał problem w 1906 roku. Uogólnienie na przeliczalnie nieskończone przestrzenie stanów zostało opracowane
Macierze. Rozdział Działania na macierzach
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy
Wyk lad 11 Przekszta lcenia liniowe a macierze
Wyk lad 11 Przekszta lcenia liniowe a macierze 1 Izomorfizm przestrzeni L(V ; W ) i M m n (R) Twierdzenie 111 Niech V i W bed a przestrzeniami liniowymi o bazach uporzadkowanych (α 1,, α n ) i (β 1,, β
celu przyjmijmy: min x 0 = n t Zadanie transportowe nazywamy zbilansowanym gdy podaż = popyt, czyli n
123456789 wyk lad 9 Zagadnienie transportowe Mamy n punktów wysy lajacych towar i t punktów odbierajacych. Istnieje droga od każdego dostawcy do każdego odbiorcy i znany jest koszt transportu jednostki
Tablice z haszowaniem
Tablice z haszowaniem - efektywna metoda reprezentacji słowników (zbiorów dynamicznych, na których zdefiniowane są operacje Insert, Search i Delete) - jest uogólnieniem zwykłej tablicy - przyspiesza operacje
Porównywanie sekwencji białek i kwasów nukleinowych
Porównywanie sekwencji białek i kwasów nukleinowych Krzysztof Lewiński 1. Podobieństwo i jego miara Wprawdzie podobieństwo jest pojęciem często używanym w życiu codziennym ale nie oznacza to, że możemy
Podobieństwo dwóch sekwencji. Motywacje
Motywacje Podobieństwo dwóch sekwencji Odkrywanie podobieństw pomiedzy dwoma sekwencjami ma fundamentalne znaczenie w biologii molekularnej Jest to zwiazane z obserwacja że wiele podobnych sekwencji ma
Generator testów 1.3.1 Bioinformatyka_zdalne wer. 1.0.13 / 0 Strona: 1
Przedmiot: Bioinformatyka Nazwa testu: Bioinformatyka_zdalne wer. 1.0.13 Nr testu 0 Klasa: WNB UZ Odpowiedzi zaznaczamy TYLKO w tabeli! 1. Model Markowa substytucji aminokwasów w mutagenezie białek zakłada...