Porównywanie sekwencji białek i kwasów nukleinowych
|
|
- Ludwika Owczarek
- 7 lat temu
- Przeglądów:
Transkrypt
1 Porównywanie sekwencji białek i kwasów nukleinowych Krzysztof Lewiński 1. Podobieństwo i jego miara Wprawdzie podobieństwo jest pojęciem często używanym w życiu codziennym ale nie oznacza to, że możemy łatwo i precyzyjnie podać jego ogólną definicję. Dwa wyrazy, np. rozmnażać i rozmrażać są do siebie podobne chociaż oznaczają zupełnie inne czynności, z kolei znaczenie wyrazów kapcie i pantofle jest to samo chociaż same wyrazy nie są do siebie podobne. W przypadku porównywania ze sobą sekwencji aminokwasów dwóch białek, szukamy podobieństw wyrazów czyli ciągów liter symbolizujących sekwencję w nadziei, że kryje się za nimi również podobieństwo budowy i funkcji obu cząsteczek czyli to samo znaczenie. Kiedy mówimy o podobieństwie do siebie dwóch osób zazwyczaj nie możemy w sposób ilościowy określić na czym to podobieństwo polega. Mówimy, że wyglądają tak samo ale nie, że długość nosa w stosunku do rozstawu oczu jest wyrażona tą samą liczbą szczególnie, że nie musi to być prawdą. A zatem, nasza opinia nie jest ani ilościowa ani nawet nie jest obiektywna gdyż ktoś inny może być innego zdania i twierdzić, że te dwie osoby wcale nie są do siebie podobne. Chcąc porównywać sekwencje białek musimy zatem określić zasady przy pomocy których podobieństwo sekwencji da się opisać w sposób obiektywny i ilościowy. W tym celu należy wprowadzić pojęcie miary podobieństwa, parametru pozwalającego w sposób ilościowy określić stopień podobieństwa. Miara podobieństwa jest funkcją, która przypisuje wartość liczbową parze sekwencji w taki sposób, że większa wartość funkcji oznacza większe podobieństwo. Im większe jest podobieństwo tym mniejsze są różnice i na odwrót, a zatem jako kryterium oceny podobieństwa możemy także przyjąć większy lub mniejszy brak tegoż podobieństwa. en parametr określa się jako miarę dystansu i jest on często używany do porównań zamiennie z miarą podobieństwa. Dla dwóch sekwencji s i t (w tym przypadku nukleotydów) o równych długościach możemy wyznaczyć zarówno podobieństwo (liczbę identycznych par) jak i dystans (liczbę par różnych) 1
2 sekwencja s AA AGCAA AGCACACA sekwencja t AA ACAA ACACACA dystans podobieństwo aka miara podobieństwa jest użyteczna ale dla wielu rzeczywistych przypadków bywa zbyt ograniczona. Nie uwzględnia ona faktu, że porównywane sekwencje mogą mieć różne długości oraz, że możemy je złożyć ze sobą na wiele sposobów. Przedstawiona powyżej trzecia para zawiera sekwencje najwyraźniej mało podobne do siebie, z ośmiu par nukleotydów aż 6 jest różnych. Ale zauważmy, że jeśli usuniemy G z sekwencji s i z sekwencji t to obie sekwencje staną się identyczne! A zatem możemy powiedzieć, że różnią się one nie aż sześcioma ale tylko dwoma nukleotydami. W przyrodzie, w trakcie replikacji DNA zachodzą dość często przypadki powstawania błędów polegających na braku jakiegoś nukleotydu (delecja) lub wbudowaniu dodatkowego (insercja). Możemy zatem (a nawet musimy) dodać znak - jako oznaczenie przerwy w sekwencji. Dzięki niemu nasze dwie sekwencje mogą zostać zmodyfikowane i przyjmą postać: s: AGCACAC-A t: A-CACACA Zamiast usuwać z pierwszej sekwencji nukleotyd dla którego nie mamy pary, wprowadzamy do drugiej sekwencji znak przerwy. ak złożone sekwencje mają teraz taką samą długość i aż siedem par identycznych a tylko dwie pary różne. Przyjmijmy następujące oznaczenia dla operacji, które musimy wykonać aby otrzymać identyczność par sekwencji s i t: (a,a) (a,-) (a,b) (-,b) zgodność (brak zmian) delecja symbolu a w sekwencji s zamiana symbolu a w sekwencji s na symbol b w sekwencji t insercja symbolu b w sekwencji s Dla każdej operacji możemy określić arbitralnie koszt w (zwany też wagą ) jej wykonania i w ten sposób wyznaczyć wartość liczbową miary dystansu. Na przykład, dla symboli a i b przyjmujemy że koszt poszczególnych operacji wynosi: w(a,a) = 0 2
3 w(a,b) = 1 gdy a b w(a,-) = w(-,b) = 1 Umożliwia nam to zdefiniowanie następujących pojęć: Koszt zrównania dwóch sekwencji s i t jest sumą kosztów wszystkich operacji, które trzeba wykonać aby z sekwencji s otrzymać sekwencję t. ptymalne zrównanie sekwencji s i t jest to takie zrównanie, którego koszt jest najniższy ze wszystkich możliwych kosztów zrównań. Dystans sekwencji s i t jest to koszt optymalnego zrównania tych sekwencji przy użyciu funkcji w. znaczamy go jako d w (s,t) Korzystając z podanej powyżej funkcji kosztu możemy obliczyć, że koszt zrównania sekwencji tak jak poniżej s: AGCACAC-A t: A-CACACA wynosi 2, natomiast koszt zrównania tych sekwencji w inny sposób, np.: s: AG-CACACA t: ACACAC-A wynosi 4. Wykonując próby zrównania przedstawionych powyżej sekwencji na jeszcze inne sposoby przekonamy się, że zrównanie pierwsze jest optymalne dla użytej funkcji kosztu. 3
4 2. Porównywanie dwóch sekwencji Przypuśćmy, że mamy dwie sekwencje (nukleotydów) o różnych długościach i chcemy je optymalnie zrównać. Dla uproszczenia porównywania będziemy używać macierzy jednostkowej i nie będą wprowadzane przerwy w sekwencji. sekwencja 1: sekwencja 2: Sekwencja 2 jest przesuwana względem sekwencji pierwszej w zakresie od +4 do 5 pozycji i dla każdego przesunięcia jest obliczany wynik zgodności. Pionowa kreska oznacza identyczność symboli w parze odpowiadających sobie nukleotydów. PRZESUNIĘCIE WYNIK
5 Powyższy przykład pokazuje, że dwie sekwencje mogą zostać porównane bez względu na to czy są do siebie podobne czy też nie. Dla każdego zrównania możemy wyliczyć parametr umożliwiający ilościową ocenę jego jakości przy czym widać, że możliwych jest wiele zrównań o podobnych wynikach. Najlepszy wynik równy 15 otrzymaliśmy dla przesunięcia o 4 natomiast dla przesunięć o 2, -5 i 3 otrzymaliśmy bardzo zbliżone wyniki. cena jakości tych zrównań nie jest jednak prosta, szczególnie jeśli sekwencje są długie. Pewnym ułatwieniem jest wykonanie wykresu punktowego (ang. dot plot ). Na wykresie punktowym dwie sekwencje są drukowane tak aby tworzyły wiersz i kolumnę macierzy, której pola zawierają znak kropki (w naszym przypadku jest to x ) gdy symbole w odpowiednim wierszu i kolumnie są identyczne (Rys. 1). aki sposób przedstawienia daje dla odpowiadających sobie fragmentów sekwencji znaki układające się wzdłuż linii równoległych do przekątnej macierzy co ułatwia wyszukanie podobieństw. W przypadku gdy obie sekwencje, tak jak w przedstawianym przykładzie, różnią się dość znacznie od siebie, a równocześnie są kombinacją tylko czterech różnych symboli, otrzymany obraz wcale nie jest prosty w interpretacji a wręcz przeciwnie, trudno się w nim doszukać jakichś regularności. znacza to, że szukany sygnał jest zbyt słaby i ginie w szumie. Aby zmniejszyć ten szum należy zastosować dodatkowe kryterium selekcji, które usunie z wykresu przypadkowe pary symboli. Możemy na przykład uznać, że obserwujemy odpowiedniość sekwencji wtedy gdy dwa kolejne symbole są identyczne w obu sekwencjach. Miejsca te zaznaczone są na rysunku 2 znakiem o. Widać, że w kilku miejscach znaki te układają się wzdłuż linii równoległych do przekątnej. Kropki na wykresie wskazują odpowiedniość sekwencji zgodną z dwoma najlepszymi wyrównaniami z poprzedniego przykładu. 5
6 t x x x x x x x x x x x x x t x x x x x x x x x x x x x t x x x x x x x x x x x x x 25g x x x x x x x a x x x x x x x x x x g x x x x x x x a x x x x x x x x x x a x x x x x x x x x x 20g x x x x x x x t x x x x x x x x x x x x x a x x x x x x x x x x t x x x x x x x x x x x x x c x x x x x x 15a x x x x x x x x x x a x x x x x x x x x x a x x x x x x x x x x t x x x x x x x x x x x x x g x x x x x x x 10a x x x x x x x x x x a x x x x x x x x x x c x x x x x x t x x x x x x x x x x x x x g x x x x x x x 5 g x x x x x x x t x x x x x x x x x x x x x a x x x x x x x x x x g x x x x x x x t x x x x x x x x x x x x x a t g g t a a t g g c a c a a t t g a c t t t c c t g a a t t t c t g a Rys. 1. Wykres punktowy. Znak x oznacza parę identycznych symboli o o o o o o o o o o o 25G A o o G A o o A o o o 20G o o o o o o o A o o o o.o o o C o.o 15A o. o. o A o. o. o A.. o.. G.. 10A o.. o o A. o. o C.. o o.o. G.o.o 5 G.o.o o o.o.o o o A. o o G o o o o o A G G A A G G C A C A A G A C C C G A A C G A Rys. 2. Wykres punktowy dla identycznych par dinukleotydów 6
7 Pomimo to, ze względu na niskie podobieństwo sekwencji, wykres nie jest zbyt czytelny i nie dostarcza jednoznacznej odpowiedzi, które zrównanie sekwencji jest najlepsze. Aby uzyskać bardziej przejrzysty obraz należy udoskonalić technikę oddzielenia sygnału od szumu poprzez znaczenie na wykresie tylko tych punktów gdzie podobieństwo jest większe niż założony próg. Wykonuje się to w ten sposób, że porównuje się nie pojedyncze symbole ale ciągi symboli tworzące okna o określonej szerokości. Uznajemy, że dwa okna są podobne jeśli liczba identycznych par przekroczy wymagane minimum i rysujemy symbol zgodności dla pozycji środka okna. Na rysunku 3 zamieszczonym poniżej używane było okno o długości 9 a minimalna liczba zgodnych par w oknie (ang. stringency ) wynosiła 5. 25G A G A A 20G A C 15A A A G 10A A C G 5 G A G A G G A A G G C A C A A G A C C C G A A C G A Rys. 3. Wykres punktowy dla co najmniej 5 zgodnych par w oknie o szerokości 9 Wprawdzie wykres ten znacznie wyraźniej niż poprzedni wskazuje na położenie zrównania dającego najlepszy wynik gdyż zdecydowanie mniejszy jest udział przypadkowych podobieństw, jednak z wykresu nie możemy dowiedzieć się gdzie jest położony początek i koniec obu wyrównanych sekwencji, wiemy tylko że mieści się on gdzieś we wnętrzu okna. Widać też, że fragment sekwencji pionowej w zakresie od 5 do 10 odpowiada dwóm różnym fragmentom sekwencji poziomej. Jeżeli porównamy jeszcze raz ze sobą te sekwencje to zobaczymy, że wcale nie są one aż tak bardzo podobne jak sugeruje to wykres punktowy. 7
8 Musimy użyć dodatkowych informacji aby zadecydować, które zrównanie sekwencji kryje w sobie istotne znaczenie biologiczne, duże podobieństwo krótkiego fragmentu czy też słabsze podobieństwo ale na większej długości. ak więc, bez względu na liczbowe parametry określające podobieństwo tych sekwencji do siebie w obu złożeniach, ostateczna decyzja o tym, które zrównanie jest lepsze musi należeć do człowieka. 8
9 3. Analityczne porównywanie dwóch sekwencji Liczba możliwych sposobów zrównania ze sobą dwóch długich sekwencji mogących dodatkowo zawierać przerwy jest gigantyczna i nawet przy użyciu szybkich komputerów trwało by to niezwykle długo gdyby nie algorytm Dynamic Programming, pozwalający w szybki i systematyczny sposób znaleźć optymalne rozwiązanie problemu. Rozważmy dwa fragmenty sekwencji s i t o elementach w zakresie od 0 do i oraz od 0 do j i oznaczmy je jako 0:s:i oraz 0:t:j gdzie i,j 1. Przyjmijmy, że znamy optymalne wyrównanie wszystkich krótszych fragmentów, w szczególności: 0:s:(i-1) oraz 0:t:(j-1) 0:s:(i-1) oraz 0:t:j 0:s:i oraz 0:t:(j-1) ptymalne wyrównanie 0:s:i oraz 0:t:j musi być rozszerzeniem o kolejny symbol jednego z wcześniejszych wyrównań poprzez:: zastąpienie lub zgodność (s i,t j ) delecję (s i,-) lub insercję (-,t j ) Jako kryterium wyboru operacji przyjmujemy minimum funkcji kosztu d w wynoszącej: d w (0:s:i, 0:t:j) = min { d w (0:s:(i-1), 0:t:(j-1)) + w(s i, t j ), d w (0:s:(i-1), 0:t:j) + w(s i, -), d w (0:s:i, 0:t:(j-1)) + w(-, t j ) } Jeśli jeden z indeksów i lub j jest równy zero wówczas d w (0:s:0, 0:t:0) = 0 d w (0:s:i, 0:t:0) = d w (0:s:(i-1), 0:t:0) + w(s i, -) dla i 1,..., m d w (0:s:0, 0:t:j) = d w (0:s:0, 0:t:(j-1)) + w(-, t j ) dla j 1,..., n ak więc wartość funkcji kosztu w punkcie (i, j) zależy od wartości tej funkcji w trzech komórkach poprzedzających ją: (i-1, j-1), (i-1, j) oraz (i, j-1). Dla uproszczenia, zapis (i,j) oznacza wartość funkcji kosztu dla d w (0:s:i, 0:t:j), możemy te wartości wpisać do macierzy o odpowiednich elementach (i, j). 9
10 Dla naszych przykładowych sekwencji obliczone wartości funkcji kosztu wynoszą: s: AGCACACA t: ACACACA (0, 0) = 0 (1, 0) = (0, 0) + (1, -) = 1 (0, 1) = (0, 0) + (-, 1) = 1 Dla kolejnych coraz dłuższych fragmentów przyjmują one zawsze najmniejszą z trzech możliwych wartości:(zaznaczoną czcionką pogrubioną): (1, 1) = [ (0, 0) + (1, 1) = = 0 ] lub [ (0, 1) + (1, -) = = 2 ] lub [ (1, 0) + (-, 1) = = 2 ] (1, 2) = [ (0, 1) + (1, 2) = = 2 ] lub [ (0, 2) + (1, -) = = 3 ] lub [ (1, 1) + (-, 2) = = 1 ] (2, 1) = [ (1, 0) + (2, 1) = = 2 ] lub [ (1, 1) + (2, -) = = 1 ] lub [ (2, 0) + (-, 1) = = 3 ] (2, 2) = [ (1, 1) + (2, 2) = = 1 ] lub [ (1, 2) + (2, -) = = 2 ] lub [ (2, 1) + (-, 2) = = 2 ] (3, 1) = [ (2, 0) + (3, 1) = = 3 ] lub [ (2, 1) + (3, -) = = 2 ] lub [ (3, 0) + (-, 1) = =4 ] (3, 2) = [ (2, 1) + (3, 2) = = 1 ] lub [ ( 2, 2) + (3, -) = = 2 ] lub [ (3, 1) + (-, 2) = = 3 ] (1, 3) = [ (0, 2) + (1, 3) = = 2 ] lub [ ( 0, 3) + (1, -) = = 4 ] lub [ (1, 2) + (-, 3) = = 2 ] (2, 3) = [ (1, 2) + (2, 3) = = 2 ] lub [ ( 1, 3) + (2, -) = = 3 ] lub [ (2, 2) + (-, 3) = = 2 ] (3, 3) = [ (2, 2) + (3, 3) = = 2 ] lub [ (2, 3) + (3, -) = = 3 ] lub [ (3, 2) + (-, 3) = = 2 ] Wyniki obliczeń dla wszystkich wartości i oraz j przedstawione są w poniższej tablicy. 10
11 A C A C A C A A G C A C A C A Interpretację tych wyników zaczynamy od ostatniej komórki czyli w tym przypadku (8, 8). Aby odtworzyć optymalne wyrównanie musimy wiedzieć która komórka została użyta do wyznaczenia wartości w komórce bieżącej, w tym przypadku z trzech możliwych komórek (8, 7), (7, 7) lub (7, 8) użyta była (7, 7). znacza to, że do wyrównanych sekwencji (0:s:7) i (0:t:7) dodane zostały kolejne symbole (8:s:8) i (8:t:8) czyli A i A. Do obliczenia optymalnej funkcji kosztu w komórce (7, 7) użyto komórki (7, 6) a zatem d w (0:s:7, 0:t:7) = d w (0:s:7, 0:t:6) + w(-, t 7 ) co oznacza operację wstawienia przerwy do sekwencji s. Uzyskaliśmy w ten sposób dwa ostatnie symbole w obu sekwencjach s:(-a) i t:(a). Kontynuując analizę dla kolejnych komórek otrzymamy na końcu optymalne wyrównanie obu sekwencji, które ma postać: s: AGCACAC-A t: A-CACACA Kolejne komórki użyte do tego wyrównania są zaznaczone w tabeli poprzez pogrubienie i podkreślenie wartości funkcji kosztu. 11
12 4. Macierze wag dla aminokwasów Wszystkie algorytmy służące do porównywania sekwencji oparte są na jakimś schemacie ważenia operacji (a,b) zdefiniowanym dla wszystkich możliwych par aminokwasów lub kwasów nukleinowych. Przedstawia się je w postaci macierzy o wymiarach n n gdzie n jest liczbą użytych symboli bez znaku przerwy. Często macierze są tak zdefiniowane żeby zamiast minimalizować koszt optymalnego zrównania, maksymalizować wynik (ang. score ) otrzymany z sumowania wag dla otrzymanych par. Najprostszą macierzą używaną do zrównywania sekwencji aminokwasów jest macierz jednostkowa. Wynik dla par różnych aminokwasów wynosi 0 natomiast dla par aminokwasów identycznych wynosi 1. aka macierz jest mało efektywna w przypadku gdy sekwencje nie są bardzo podobne do siebie. Liczba par zgodnych w stosunku do liczby wszystkich par jest określana jako procent identyczności i ten parametr jest często używany przy dyskutowaniu podobieństw sekwencji aczkolwiek należy pamiętać, że dla krótkich sekwencji wysoki procent identyczności może być przypadkowy. Schemat ważenia dla macierzy genetycznych oparty jest na częstotliwości obserwowanych podstawień aminokwasów w zrównanych sekwencjach podobnych do siebie białek. Metoda ta jest ilustracją klasycznego problemu jajka i kury, gdyż aby można było zrównać ze sobą sekwencje, trzeba było wcześniej ustalić kryteria ważenia. Początkowe wagi wyznaczane były w oparciu o sekwencje tak podobne do siebie, że zrównanie można było wykonać po prostu ręcznie. becnie najczęściej używa się macierzy wyznaczonych przez Dayhoffa i współpracowników w oparciu o model ewolucyjny. Porównywali oni sekwencje o wysokim stopniu podobieństwa tak aby można było założyć, że obserwowane mutacje np. A D są bezpośrednimi podstawieniami a nie wynikiem kolejnych mutacji A B C D. Liczba obserwowanych mutacji określonego rodzaju była normalizowana w stosunku do częstości występowania danego aminokwasu w analizowanych sekwencjach a następnie wyznaczane było prawdopodobieństwo mutacji dla założonego dystansu ewolucyjnego PAM (Percentage of Acceptable point Mutations per 10 8 years). Najczęściej używana jest tzw. macierz PAM250. en dystans ewolucyjny odpowiada w przybliżeniu sytuacji gdy 80% aminokwasów pierwotnie obserwowanych zostało zamienionych w wyniku kolejnych mutacji punktowych. Można spotkać się też z innymi typami macierzy opartych na obserwowanych podstawieniach aminokwasów, tzw. macierzach BLSUM. Zostały one wyznaczone dla złożeń wielu wyrównanych krótszych fragmentów sekwencji nie zawierających przerw ale bardziej oddalonych ewolucyjnie od siebie. Wyrównania były grupowane w oparciu o 12
13 C 12 S P A G N D E Q H R K M I L V F Y W C S P A G N D E Q H R K M I L V F Y W Rys. 4. Macierz PAM250 kryterium progu identyczności, przykładowo macierz BLSUM80 była wyznaczona przy użyciu progu 80%. Porównania efektywności działania różnych macierzy nie dają jednoznacznej odpowiedzi na pytania, która macierz jest najlepsza. Wydaje się, że dla zrównań nie zawierających przerw, optymalna jest macierz PAM około 200. Jeśli natomiast porównujemy sekwencje o których nie wiemy z góry czy są spokrewnione, lepiej jest użyć macierzy PAM120. Generalnie, macierze PAM o niskich dystansach ewolucyjnych (np. PAM40) mają tendencję do wyszukiwania krótkich fragmentów o dużym podobieństwie podczas gdy macierze PAM o wysokich dystansach znajdują dłuższe ale słabiej podobne zrównania. esty wyszukiwania znanych sekwencji należących do określonych rodzin białek wykazały przewagę macierzy BLSUM62, jednak w innych przypadkach była ona mniej efektywna od pozostałych macierzy. sobnym zagadnieniem jest kwestia ważenia wprowadzanych przerw w sekwencjach. Stosowany jest system zmiennych wag w zależności od długości przerwy. Pierwsze przerwanie ciągłości sekwencji ma stosunkowo wysoki koszt g i (ang. gap insertion penalty ) natomiast wydłużenie tej przerwy jest obarczone kosztem g e (ang. gap elongation penalty ) wyraźnie niższym niż wprowadzenie kolejnej przerwy w innym miejscu sekwencji. Możemy to zapisać w postaci wzoru: 13
14 w g = g i + (n-1) g e gdzie n oznacza długość wprowadzonej przerwy. Jest to uzasadnione obserwacją, że często spotyka się usunięte lub wstawione ciągłe odcinki sekwencji o długości co najmniej kilku aminokwasów tworzące w strukturze białka fragmenty, których usunięcie lub dodanie nie wpłynęło istotnie na strukturę i działanie białka a zatem wstawienie jednej długiej przerwy jest bardziej usprawiedliwione niż wstawienie wielu pojedynczych przerw. czywiście, jak zawsze ostateczna decyzja musi być podjęta przez człowieka w oparciu o inne informacje, na przykład wiedzę o tym, które aminokwasy tworzą miejsce aktywne i są w związku z tym zachowane we wszystkich sekwencjach danego białka. W zależności od zastosowanego kosztu wstawienia i przedłużenia przerwy możemy otrzymać bardzo różne wyniki. Rozpatrzmy parę sekwencji s:caaaaga i t:cgagggg stosując jednostkowy koszt dla każdej różnicy oraz przerwy. ptymalne wyrównanie tych sekwencji będzie miało postać: CAAAAGA CGAGGGG a koszt tego wyrównania wynosi 4. Jeżeli natomiast użyjemy dla przedłużenia przerwy kosztu g e = 0.2 wówczas optymalne wyrównanie przybierze postać: CAAAAGA---- C----GAGGGG przy całkowitym koszcie wynoszącym
0 + 0 = 0, = 1, = 1, = 0.
5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,
Metoda Karnaugh. B A BC A
Metoda Karnaugh. Powszechnie uważa się, iż układ o mniejszej liczbie elementów jest tańszy i bardziej niezawodny, a spośród dwóch układów o takiej samej liczbie elementów logicznych lepszy jest ten, który
WYRAŻENIA ALGEBRAICZNE
WYRAŻENIA ALGEBRAICZNE Wyrażeniem algebraicznym nazywamy wyrażenie zbudowane z liczb, liter, nawiasów oraz znaków działań, na przykład: Symbole literowe występujące w wyrażeniu algebraicznym nazywamy zmiennymi.
PRZYRÓWNANIE SEKWENCJI
http://theta.edu.pl/ Podstawy Bioinformatyki III PRZYRÓWNANIE SEKWENCJI 1 Sequence alignment - przyrównanie sekwencji Poszukiwanie ciągów znaków (zasad nukleotydowych lub reszt aminokwasowych), które posiadają
Programowanie dynamiczne
Programowanie dynamiczne Patryk Żywica 5 maja 2008 1 Spis treści 1 Problem wydawania reszty 3 1.1 Sformułowanie problemu...................... 3 1.2 Algorytm.............................. 3 1.2.1 Prosty
Porównywanie populacji
3 Porównywanie populacji 2 Porównywanie populacji Tendencja centralna Jednostki (w grupie) według pewnej zmiennej porównuje się w ten sposób, że dokonuje się komparacji ich wartości, osiągniętych w tej
Programowanie celowe #1
Programowanie celowe #1 Problem programowania celowego (PC) jest przykładem problemu programowania matematycznego nieliniowego, który można skutecznie zlinearyzować, tzn. zapisać (i rozwiązać) jako problem
Macierze. Rozdział Działania na macierzach
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy
Porównywanie i dopasowywanie sekwencji
Porównywanie i dopasowywanie sekwencji Związek bioinformatyki z ewolucją Wraz ze wzrostem dostępności sekwencji DNA i białek pojawiła się nowa możliwość śledzenia ewolucji na poziomie molekularnym Ewolucja
INŻYNIERIA BEZPIECZEŃSTWA LABORATORIUM NR 2 ALGORYTM XOR ŁAMANIE ALGORYTMU XOR
INŻYNIERIA BEZPIECZEŃSTWA LABORATORIUM NR 2 ALGORYTM XOR ŁAMANIE ALGORYTMU XOR 1. Algorytm XOR Operacja XOR to inaczej alternatywa wykluczająca, oznaczona symbolem ^ w języku C i symbolem w matematyce.
Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F
Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.
Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE Rozwiązania Zadanie 1 Wartość bezwzględna jest odległością na osi liczbowej. Stop Istnieje wzajemnie jednoznaczne przyporządkowanie między punktami
PODSTAWY BIOINFORMATYKI WYKŁAD 4 DOPASOWANIE SEKWENCJI
PODSTAWY BIOINFORMATYKI WYKŁAD 4 DOPASOWANIE SEKWENCJI DOPASOWANIE SEKWENCJI 1. Dopasowanie sekwencji - definicja 2. Wizualizacja dopasowania sekwencji 3. Miary podobieństwa sekwencji 4. Przykłady programów
Programowanie dynamiczne
Programowanie dynamiczne Ciąg Fibonacciego fib(0)=1 fib(1)=1 fib(n)=fib(n-1)+fib(n-2), gdzie n 2 Elementy tego ciągu stanowią liczby naturalne tworzące ciąg o takiej własności, że kolejny wyraz (z wyjątkiem
Spacery losowe generowanie realizacji procesu losowego
Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z
Funkcje wyszukiwania i adresu PODAJ.POZYCJĘ
Funkcje wyszukiwania i adresu PODAJ.POZYCJĘ Mariusz Jankowski autor strony internetowej poświęconej Excelowi i programowaniu w VBA; Bogdan Gilarski właściciel firmy szkoleniowej Perfect And Practical;
Przyrównanie sekwencji. Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu
Przyrównanie sekwencji Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu Sequence alignment - przyrównanie sekwencji Poszukiwanie ciągów znaków (zasad nukleotydowych lub reszt aminokwasowych),
5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
PODSTAWY BIOINFORMATYKI WYKŁAD 4 DOPASOWANIE SEKWENCJI
PODSTAWY BIOINFORMATYKI WYKŁAD 4 DOPASOWANIE SEKWENCJI DOPASOWANIE SEKWENCJI 1. Dopasowanie sekwencji - definicja 2. Wizualizacja dopasowania sekwencji 3. Miary podobieństwa sekwencji 4. Przykłady programów
Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych
Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją
Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje
Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje
FUNKCJA LINIOWA - WYKRES
FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (Postać kierunkowa) Funkcja liniowa jest podstawowym typem funkcji. Jest to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości
FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe
FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (postać kierunkowa) Funkcja liniowa to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości liczbowe Szczególnie ważny w postaci
Funkcja kwadratowa. f(x) = ax 2 + bx + c,
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \
Pochodna i różniczka funkcji oraz jej zastosowanie do rachunku błędów pomiarowych
Pochodna i różniczka unkcji oraz jej zastosowanie do rachunku błędów pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją symbolami:
Uniwersytet Kazimierza Wielkiego w Bydgoszczy Zespół Szkół nr 5 Mistrzostwa Sportowego XV Liceum Ogólnokształcące w Bydgoszczy
Uniwersytet Kazimierza Wielkiego w Bydgoszczy Zespół Szkół nr 5 Mistrzostwa Sportowego XV Liceum Ogólnokształcące w Bydgoszczy Matematyka, królowa nauk Edycja X - etap 2 Bydgoszcz, 16 kwietnia 2011 Fordoński
PODSTAWY > Figury płaskie (1) KĄTY. Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach:
PODSTAWY > Figury płaskie (1) KĄTY Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach: Kąt możemy opisać wpisując w łuk jego miarę (gdy jest znana). Gdy nie znamy miary kąta,
Następnie przypominamy (dla części studentów wprowadzamy) podstawowe pojęcia opisujące funkcje na poziomie rysunków i objaśnień.
Zadanie Należy zacząć od sprawdzenia, co studenci pamiętają ze szkoły średniej na temat funkcji jednej zmiennej. Na początek można narysować kilka krzywych na tle układu współrzędnych (funkcja gładka,
Analiza progu rentowności
Analiza progu rentowności Próg rentowności ( literaturze przedmiotu spotyka się również określenia: punkt równowagi, punkt krytyczny, punkt bez straty punkt zerowy) jest to taki punkt, w którym jednostka
Wykład z równań różnicowych
Wykład z równań różnicowych 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp.
Co to jest arkusz kalkulacyjny?
Co to jest arkusz kalkulacyjny? Arkusz kalkulacyjny jest programem służącym do wykonywania obliczeń matematycznych. Za jego pomocą możemy również w czytelny sposób, wykonane obliczenia przedstawić w postaci
Układy równań liniowych
Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K
Funkcja kwadratowa. f(x) = ax 2 + bx + c = a
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.
b) bc a Rys. 1. Tablice Karnaugha dla funkcji o: a) n=2, b) n=3 i c) n=4 zmiennych.
DODATEK: FUNKCJE LOGICZNE CD. 1 FUNKCJE LOGICZNE 1. Tablice Karnaugha Do reprezentacji funkcji boolowskiej n-zmiennych można wykorzystać tablicę prawdy o 2 n wierszach lub np. tablice Karnaugha. Tablica
macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same
1 Macierz definicja i zapis Macierzą wymiaru m na n nazywamy tabelę a 11 a 1n A = a m1 a mn złożoną z liczb (rzeczywistych lub zespolonych) o m wierszach i n kolumnach (zamiennie będziemy też czasem mówili,
1. A 2. A 3. B 4. B 5. C 6. B 7. B 8. D 9. A 10. D 11. C 12. D 13. B 14. D 15. C 16. C 17. C 18. B 19. D 20. C 21. C 22. D 23. D 24. A 25.
1. A 2. A 3. B 4. B 5. C 6. B 7. B 8. D 9. A 10. D 11. C 12. D 13. B 14. D 15. C 16. C 17. C 18. B 19. D 20. C 21. C 22. D 23. D 24. A 25. A Najłatwiejszym sposobem jest rozpatrzenie wszystkich odpowiedzi
Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb
Współzależność Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb (x i, y i ). Geometrycznie taką parę
Wyrównanie ciągu poligonowego dwustronnie nawiązanego metodą przybliżoną.
Wyrównanie ciągu poligonowego dwustronnie nawiązanego metodą przybliżoną. Uwagi wstępne należy przeczytać przed przystąpieniem do obliczeń W pierwszej kolejności należy wpisać do dostarczonego formularza
Układy równań i nierówności liniowych
Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +
Zadanie 1. Suma silni (11 pkt)
2 Egzamin maturalny z informatyki Zadanie 1. Suma silni (11 pkt) Pojęcie silni dla liczb naturalnych większych od zera definiuje się następująco: 1 dla n = 1 n! = ( n 1! ) n dla n> 1 Rozpatrzmy funkcję
Dopasowywanie sekwencji (ang. sequence alignment) Metody dopasowywania sekwencji. Homologia a podobieństwo sekwencji. Rodzaje dopasowania
Wprowadzenie do Informatyki Biomedycznej Wykład 2: Metody dopasowywania sekwencji Wydział Informatyki PB Dopasowywanie sekwencji (ang. sequence alignment) Dopasowywanie (przyrównywanie) sekwencji polega
1 Macierze i wyznaczniki
1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)
EGZAMIN MATURALNY Z INFORMATYKI MAJ 2010 POZIOM ROZSZERZONY CZĘŚĆ I WYBRANE: Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY
Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:
Ciągi rekurencyjne Zadanie 1 Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: w dwóch przypadkach: dla i, oraz dla i. Wskazówka Należy poszukiwać rozwiązania w postaci, gdzie
Funkcje liniowe i wieloliniowe w praktyce szkolnej. Opracowanie : mgr inż. Renata Rzepińska
Funkcje liniowe i wieloliniowe w praktyce szkolnej Opracowanie : mgr inż. Renata Rzepińska . Wprowadzenie pojęcia funkcji liniowej w nauczaniu matematyki w gimnazjum. W programie nauczania matematyki w
Pętla for. Matematyka dla ciekawych świata -19- Scilab. for i=1:10... end. for k=4:-1:1... end. k=3 k=4. k=1. k=2
Pętle wielokrotne wykonywanie ciągu instrukcji. Bardzo często w programowaniu wykorzystuje się wielokrotne powtarzanie określonego ciągu czynności (instrukcji). Rozróżniamy sytuacje, gdy liczba powtórzeń
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych
Rys Wykres kosztów skrócenia pojedynczej czynności. k 2. Δk 2. k 1 pp. Δk 1 T M T B T A
Ostatnim elementem przykładu jest określenie związku pomiędzy czasem trwania robót na planowanym obiekcie a kosztem jego wykonania. Związek ten określa wzrost kosztów wykonania realizacji całego przedsięwzięcia
Publiczna Szkoła Podstawowa nr 14 w Opolu. Edukacyjna Wartość Dodana
Publiczna Szkoła Podstawowa nr 14 w Opolu Edukacyjna Wartość Dodana rok szkolny 2014/2015 Edukacyjna Wartość Dodana (EWD) jest miarą efektywności nauczania dla szkoły i uczniów, którzy do danej placówki
Opis ćwiczenia. Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Henry ego Katera.
ĆWICZENIE WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO Opis ćwiczenia Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu
Data Mining Wykład 9 Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster Plan wykładu Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Sformułowanie problemu
Trik 1 Autorejestrowanie zmian dokonanych w obliczeniach
:: Trik 1. Autorejestrowanie zmian dokonanych w obliczeniach :: Trik 2. Czytelne formatowanie walutowe :: Trik 3. Optymalny układ wykresu punktowego :: Trik 4. Szybkie oznaczenie wszystkich komórek z formułami
ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia.
ARYTMETYKA BINARNA ROZWINIĘCIE DWÓJKOWE Jednym z najlepiej znanych sposobów kodowania informacji zawartej w liczbach jest kodowanie w dziesiątkowym systemie pozycyjnym, w którym dla przedstawienia liczb
Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne)
Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne) Przygotował: Dr inż. Wojciech Artichowicz Katedra Hydrotechniki PG Zima 2014/15 1 TABLICE ROZKŁADÓW... 3 ROZKŁAD
2. Układy równań liniowych
2. Układy równań liniowych Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 2. Układy równań liniowych zima 2017/2018 1 /
Wyszukiwanie binarne
Wyszukiwanie binarne Wyszukiwanie binarne to technika pozwalająca na przeszukanie jakiegoś posortowanego zbioru danych w czasie logarytmicznie zależnym od jego wielkości (co to dokładnie znaczy dowiecie
Postać Jordana macierzy
Rozdział 8 Postać Jordana macierzy Niech F = R lub F = C Macierz J r λ) F r r postaci λ 1 0 0 0 λ 1 J r λ) = 0 λ 1 0 0 λ gdzie λ F nazywamy klatką Jordana stopnia r Oczywiście J 1 λ) = [λ Definicja 81
O MACIERZACH I UKŁADACH RÓWNAŃ
O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a
A. Kasperski, M. Kulej, Badania operacyjne, Wykład 4, Zagadnienie transportowe1
A. Kasperski, M. Kulej, Badania operacyjne, Wykład 4, Zagadnienie transportowe ZAGADNIENIE TRANSPORTOWE(ZT) Danychjest pdostawców,którychpodażwynosi a,a 2,...,a p i qodbiorców, którychpopytwynosi b,b 2,...,b
Macierze - obliczanie wyznacznika macierzy z użyciem permutacji
Macierze - obliczanie wyznacznika macierzy z użyciem permutacji I LO im. F. Ceynowy w Świeciu Radosław Rudnicki joix@mat.uni.torun.pl 17.03.2009 r. Typeset by FoilTEX Streszczenie Celem wykładu jest wprowadzenie
Temat: Algorytm kompresji plików metodą Huffmana
Temat: Algorytm kompresji plików metodą Huffmana. Wymagania dotyczące kompresji danych Przez M oznaczmy zbiór wszystkich możliwych symboli występujących w pliku (alfabet pliku). Przykład M = 2, gdy plik
Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.
Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy
1 Macierz odwrotna metoda operacji elementarnych
W tej części skupimy się na macierzach kwadratowych. Zakładać będziemy, że A M(n, n) dla pewnego n N. Definicja 1. Niech A M(n, n). Wtedy macierzą odwrotną macierzy A (ozn. A 1 ) nazywamy taką macierz
Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI
Arytmetyka komputera Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka Opracował: Kamil Kowalski klasa III TI Spis treści 1. Jednostki informacyjne 2. Systemy liczbowe 2.1. System
Wykład 5 Dopasowywanie lokalne
Wykład 5 Dopasowywanie lokalne Dopasowanie par (sekwencji) Dopasowanie globalne C A T W A L K C A T W A L K C O W A R D C X X O X W X A X R X D X Globalne dopasowanie Schemat punktowania (uproszczony)
Aproksymacja funkcji a regresja symboliczna
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą
PRZYKŁADY ZADAŃ MATURALNYCH Z MATEMATYKI NA POSZCZEGÓLNE STANDARDY DLA WYBRANYCH TREŚCI PROGRAMOWYCH Z POZIOMU PODSTAWOWEGO I ROZSZERZONEGO
PRZYKŁADY ZADAŃ MATURALNYCH Z MATEMATYKI NA POSZCZEGÓLNE STANDARDY DLA WYBRANYCH TREŚCI PROGRAMOWYCH Z POZIOMU PODSTAWOWEGO I ROZSZERZONEGO ZADANIA OPRACOWANE PRZEZ Agnieszkę Sumicką Katarzynę Hejmanowską
METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH
METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH Jednym z zastosowań metod numerycznych jest wyznaczenie pierwiastka lub pierwiastków równania nieliniowego. W tym celu stosuje się szereg metod obliczeniowych np:
Analiza korespondencji
Analiza korespondencji Kiedy stosujemy? 2 W wielu badaniach mamy do czynienia ze zmiennymi jakościowymi (nominalne i porządkowe) typu np.: płeć, wykształcenie, status palenia. Punktem wyjścia do analizy
Rekurencja. Przykład. Rozważmy ciąg
Rekurencja Definicje rekurencyjne Definicja: Mówimy, iż ciąg jest zdefiniowany rekurencyjnie, jeżeli: (P) Określony jest pewien skończony zbiór wyrazów tego ciągu, zwykle jest to pierwszy wyraz tego ciągu
ABC Excel 2016 PL / Witold Wrotek. Gliwice, cop Spis treści
ABC Excel 2016 PL / Witold Wrotek. Gliwice, cop. 2016 Spis treści 1 Arkusz kalkulacyjny 9 Za co lubimy arkusze kalkulacyjne 12 Excel 2016 12 Przez wygodę do efektywności 14 Podsumowanie 16 2 Uruchamianie
Rachunek wektorowy - wprowadzenie. dr inż. Romuald Kędzierski
Rachunek wektorowy - wprowadzenie dr inż. Romuald Kędzierski Graficzne przedstawianie wielkości wektorowych Długość wektora jest miarą jego wartości Linia prosta wyznaczająca kierunek działania wektora
Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński
Wstęp do teorii niepewności pomiaru Danuta J. Michczyńska Adam Michczyński Podstawowe informacje: Strona Politechniki Śląskiej: www.polsl.pl Instytut Fizyki / strona własna Instytutu / Dydaktyka / I Pracownia
2. Charakterystyki geometryczne przekroju
. CHRKTERYSTYKI GEOMETRYCZNE PRZEKROJU 1.. Charakterystyki geometryczne przekroju.1 Podstawowe definicje Z przekrojem pręta związane są trzy wielkości fizyczne nazywane charakterystykami geometrycznymi
Wprowadzenie do MS Excel
Wprowadzenie do MS Excel Czym jest Excel? Excel jest programem umożliwiającym tworzenie tabel, a także obliczanie i analizowanie danych. Należy do typu programów nazywanych arkuszami kalkulacyjnymi. W
Urządzenia Techniki. Klasa I TI. System dwójkowy (binarny) -> BIN. Przykład zamiany liczby dziesiętnej na binarną (DEC -> BIN):
1. SYSTEMY LICZBOWE UŻYWANE W TECHNICE KOMPUTEROWEJ System liczenia - sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Do zapisu
Politechnika Wrocławska. Dopasowywanie sekwencji Sequence alignment
Dopasowywanie sekwencji Sequence alignment Drzewo filogenetyczne Kserokopiarka zadanie: skopiować 300 stron. Co może pójść źle? 2x ta sama strona Opuszczona strona Nadmiarowa pusta strona Strona do góry
Obliczenia iteracyjne
Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej
Wykład 4 Przebieg zmienności funkcji. Badanie dziedziny oraz wyznaczanie granic funkcji poznaliśmy na poprzednich wykładach.
Wykład Przebieg zmienności funkcji. Celem badania przebiegu zmienności funkcji y = f() jest poznanie ważnych własności tej funkcji na podstawie jej wzoru. Efekty badania pozwalają naszkicować wykres badanej
Graficzne opracowanie wyników pomiarów 1
GRAFICZNE OPRACOWANIE WYNIKÓW POMIARÓW Celem pomiarów jest bardzo często potwierdzenie związku lub znalezienie zależności między wielkościami fizycznymi. Pomiar polega na wyznaczaniu wartości y wielkości
Funkcje Tablicowe podstawy
Funkcje Tablicowe podstawy Funkcje Tablicowe są dość rzadko używane w biznesie, a pomocne przede wszystkim w przypadku zaawansowanych obliczeń matematycznych i statystycznych. Lekcja ta ograniczy się tylko
FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH
FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH PROPORCJONALNOŚĆ PROSTA Proporcjonalnością prostą nazywamy zależność między dwoma wielkościami zmiennymi x i y, określoną wzorem: y = a x Gdzie a jest
Przykładowe zadania z teorii liczb
Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę
Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego
Arytmetyka cyfrowa Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego (binarnego). Zapis binarny - to system liczenia
Hierarchiczna analiza skupień
Hierarchiczna analiza skupień Cel analizy Analiza skupień ma na celu wykrycie w zbiorze obserwacji klastrów, czyli rozłącznych podzbiorów obserwacji, wewnątrz których obserwacje są sobie w jakimś określonym
3. FUNKCJA LINIOWA. gdzie ; ół,.
1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta
Rozdział 4. Macierze szyfrujące. 4.1 Algebra liniowa modulo 26
Rozdział 4 Macierze szyfrujące Opiszemy system kryptograficzny oparty o rachunek macierzowy. W dalszym ciągu przypuszczamy, że dany jest 26 literowy alfabet, w którym utożsamiamy litery i liczby tak, jak
Podstawy programowania. Wykład 7 Tablice wielowymiarowe, SOA, AOS, itp. Krzysztof Banaś Podstawy programowania 1
Podstawy programowania. Wykład 7 Tablice wielowymiarowe, SOA, AOS, itp. Krzysztof Banaś Podstawy programowania 1 Tablice wielowymiarowe C umożliwia definiowanie tablic wielowymiarowych najczęściej stosowane
Wymagania kl. 3. Zakres podstawowy i rozszerzony
Wymagania kl. 3 Zakres podstawowy i rozszerzony Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za
Przewodnik dla każdego po: Dla każdego coś miłego Microsoft Excel 2010
Przewodnik dla każdego po: Dla każdego coś miłego Microsoft Excel 2010 Czym jest Excel 2010 Excel jest programem umożliwiającym tworzenie tabel, a także obliczanie i analizowanie danych. Należy do typu
Zestaw 12- Macierz odwrotna, układy równań liniowych
Zestaw - Macierz odwrotna, układy równań liniowych Przykładowe zadania z rozwiązaniami Załóżmy, że macierz jest macierzą kwadratową stopnia n. Mówimy, że macierz tego samego wymiaru jest macierzą odwrotną
Analiza obrazów - sprawozdanie nr 2
Analiza obrazów - sprawozdanie nr 2 Filtracja obrazów Filtracja obrazu polega na obliczeniu wartości każdego z punktów obrazu na podstawie punktów z jego otoczenia. Każdy sąsiedni piksel ma wagę, która
Rozkład materiału nauczania
Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2017/2018 Przedmiot: MATEMATYKA Klasa: III 60 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat
Treść wykładu. Pierścienie wielomianów. Dzielenie wielomianów i algorytm Euklidesa Pierścienie ilorazowe wielomianów
Treść wykładu Pierścienie wielomianów. Definicja Niech P będzie pierścieniem. Wielomianem jednej zmiennej o współczynnikach z P nazywamy każdy ciąg f = (f 0, f 1, f 2,...), gdzie wyrazy ciągu f są prawie
Spis treści. Definicje prawdopodobieństwa. Częstościowa definicja prawdopodobieństwa. Wnioskowanie_Statystyczne_-_wykład
Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Definicje prawdopodobieństwa 1.1 Częstościowa definicja prawdopodobieństwa 1.1.1 Przykład 1.1.2 Rozwiązanie: 1.1.3 Inne rozwiązanie: 1.1.4 Jeszcze inne
Zadania do wykonania. Rozwiązując poniższe zadania użyj pętlę for.
Zadania do wykonania Rozwiązując poniższe zadania użyj pętlę for. 1. apisz program, który przesuwa w prawo o dwie pozycje zawartość tablicy 10-cio elementowej liczb całkowitych tzn. element t[i] dla i=2,..,9
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie rozszerzonym. Klasa 4 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
5 Wyznaczniki. 5.1 Definicja i podstawowe własności. MIMUW 5. Wyznaczniki 25
MIMUW 5 Wyznaczniki 25 5 Wyznaczniki Wyznacznik macierzy kwadratowych jest funkcją det : K m n K, (m = 1, 2, ) przypisującą każdej macierzy kwadratowej skalar, liniowo ze względu na każdy wiersz osobno
Wykład 2 - model produkcji input-output (Model 1)
Wykład 2 - model produkcji input-output (Model 1) 1 Wprowadzenie Celem wykładu jest omówienie (znanego z wcześniejszych zajęć) modelu produkcji typu input-output w postaci pozwalającej na zaprogramowanie
Kody blokowe Wykład 2, 10 III 2011
Kody blokowe Wykład 2, 10 III 2011 Literatura 1. R.M. Roth, Introduction to Coding Theory, 2006 2. W.C. Huffman, V. Pless, Fundamentals of Error-Correcting Codes, 2003 3. D.R. Hankerson et al., Coding