Bioinformatyka Laboratorium, 30h. Michał Bereta

Wielkość: px
Rozpocząć pokaz od strony:

Download "Bioinformatyka Laboratorium, 30h. Michał Bereta"

Transkrypt

1 Bioinformatyka Laboratorium, 30h Michał Bereta 1

2 Filogenetyka molekularna wykorzystuje informację zawartą w sekwencjach aminokwasów lub nukleotydów do kontrukcji drzew filogonetycznych, pozwalających odtworzyd dogę ewolucyjną. 2

3 Podstawowe pojęcia: Równoważnośd drzew Drzewo ukorzenione vs drzewo nieukorzenione Korzeo reprezentuje wspólnego (nieznanego przodka) Długośd gałęzi może (lecz nie musi) reprezentowad oszacowanej odległości ewolucyjnej 3

4 Drzewo nieukorzenione A i j C B D 4

5 Drzewo ukorzenione niesie więcej informacji niż drzewo nieukorzenione Przekształcenie drzewa nieukorzenionego w ukorzenione poprzez Określenie grupy zewnętrzenej Np. Torbacze dla ssaków łożyskowych Metodę punktu środkowego Umieszczenie korzenia w środku najdłuższej gałęzi drzewa nieukorzenionego 5

6 Uwaga: Wiele programów zakłada, że pierwsza podana sekwencja powinna byd użyta jako grupa zewnętrzna. 6

7 Klad grupa wszystkich gatunków wychodzących od wspólnego przodka 7

8 Procedura Wybierz sekwencje (homologiczne) Zbyt odległe sekwencje nie dają dobrych wyników Zbyt podobne nie niosą wystarczająco informacji Przyjmij pewien model ewolucji (np. JC lub nowsze) Wykonaj dopasowanie wielu sekwencji Częste ręczne poprawki Określ tablice odległości każdej z par sekwencji Wybierz algorytm tworzenia drzewa 8

9 Ogólna procedura tworzenia drzewa Połącz najbliższe dwa skupiska w jedno większa skupisko Oblicz odległości między wszystkimi skupiskami Powtarzaj poprzednie kroki dopóki wszystkie gatunki nie zostaną połączone w jedno skupisko 9

10 Poszczególne algorytmy różnią się konkretną realizacją. Np. Jak policzyd odległości między skupiskami, które zawierają po więcej niż jednej sekwencji? 10

11 Metoda średnich połączeo (UPGMA ang. unweighted pair group method with arithmetic mean) Hipoteza zegara molekularnego (ewolucja wszystkich gatunków zachodzi w tym samym tempie) Wysokośd drzewa to połowa średniej odległości pomiędzy sekwencjami z dwóch skupisk łączonych jako ostatnie Najprostsza metoda Odległośd między skupiskami liczona jest jako średnia z odległości każdej możliwej pary sekwencji Bezpośrednio tworzy korzeo (połączenie dwóch ostatnich skupisk) Ma szereg ograniczeo 11

12 Ultrametrycznośd Dla dowolnych trzech gatunków opisywanych przez drzewo UPGMA najdłuższe dwie z trzech łączących je odległości są sobie równe. UPGMA tworzy macierz czasów specjacji, która jest dokładnie ultrametryczna. Jeśli spełniona jest hipoteza zegara ewolucyjnego, to odległości ewolucyjne są tylko w przybliżeniu ultrametryczne (gdyż wciąż ewolucja jest losowa). Jeśli ewolucja zachodzi w różnym tempie zasada ultrametrycznośd jest złamana (bardziej rzeczywisty przypadek). Stąd UPGMA często nie daje wiarygodnych wyników 12

13 Metoda przyłączania sąsiadów (NJ - ang. Neighbourhood Joining) Tworzy nieukorzenione drzewo Drzewa mają własnośd addytywności tzn. odległości między gatunkami (liśdmi)są równe sumie długości łączących je gałęzi. Jeśli macierz jest ultrametryczna to jest addytywna; w drugą stronę zależnośd nie zawsze jest spełniona W rzeczywistości oryginalne macierze odległości nie są dokładnie addytywne, dlatego metoda NJ również będzie miała przybliżony charakter 13

14 Metoda bootstrap Ewolucja jest procesem losowym, zatem zmierzone odległości również podlegają wahaniom Celem metody bootstrap jest zmierzenie jak ta losowośd wpływa na konstruowanie drzewa Porównaniu podlegają drzewa skonstruowane na podstawie losowo wygenerowanych dopasowao sekwencji, nieznaczenie różniących się od zadanego dopasowania oryginalnego. 14

15 Generowanie dopasowao Każde wygenerowane dopasowanie ma taką samą długośd jak oryginalne Generowane dopasowanie jest tworzone przez losowanie kolumn z doapsowania oryginalego Losowanie jest z powtórzeniami, tzn. Kolumny mogą się powtarzad Uwaga: metody filogenetyczne traktują każdą kolumnę niezależnie od innych (tzn. kolejnośd kolumn nie ma znaczenia) 15

16 Wykonuje się od 100 do 1000 generowao losowych dopasowao Dla każdego tworzy się drzewo W drzewie oryginalnym każdy węzeł otrzymuje tzw. wartość bootstrap, czyli odsetek wygenerowanych drzew, w których obserwowano dokładnie takie samo rozgałęzienie. Im mniejsza taka wartośd tym mniej wiarygodne dane rozgałęzienie 16

17 Drzewo konsensusowe Określ zestaw wszystkich kladów, które pojawiają się podczas generowania drzew Sortuj zgodnie z malejącą wartością bootstrap Konstruuj drzewo konsensusowe rozpoczynając od kladu z nawiększą wartością bootstrap, takiego, który nie wprowadza sprzeczności z wcześniej przyłączonymi kladami. 17

18 Jakie opcje udostępnia tworzenia drzew filogenetycznych udostępnia program UGENE w zakresie? Algorytmu Modelu ewolucji (określania macierzy odległości) Możliwośd użycia rozkładu gamma do modelowania nierównomierności ewolucji Różne czestości transwersji / tranzycji Możliwości wykorzystania metody bootstrap I tworzenia drzewa konsensusowego 18

19 19

20 Zadanie: Dla danych z pliku CytBDNA.txt przygotuj drzewa filogenetyczne wychodząc z dopasowania wielosekwencyjnego otrzymanego z każdego dostępnego algortymu (użyj domyślnych wartości parametrów) Dla każdego takiego drzewa zbuduj również drzewo konsensusowe Czy / w jakich przypadkach widad różnice między otrzymanymi drzewami Upenij się, że potrafisz odczytad wartości bootstrap każdego węzla w drzewie konsensusowym 20

21 Przykładowe drzewo konsensusowe z wartościami bootstrap 21

Genomika Porównawcza. Agnieszka Rakowska Instytut Informatyki i Matematyki Komputerowej Uniwersytet Jagiellooski

Genomika Porównawcza. Agnieszka Rakowska Instytut Informatyki i Matematyki Komputerowej Uniwersytet Jagiellooski Genomika Porównawcza Agnieszka Rakowska Instytut Informatyki i Matematyki Komputerowej Uniwersytet Jagiellooski 1 Plan prezentacji 1. Rodzaje i budowa drzew filogenetycznych 2. Metody ukorzeniania drzewa

Bardziej szczegółowo

Bioinformatyka Laboratorium, 30h. Michał Bereta mbereta@pk.edu.pl www.michalbereta.pl

Bioinformatyka Laboratorium, 30h. Michał Bereta mbereta@pk.edu.pl www.michalbereta.pl Bioinformatyka Laboratorium, 30h Michał Bereta mbereta@pk.edu.pl www.michalbereta.pl 1 Filogenetyka molekularna wykorzystuje informację zawartą w sekwencjach aminokwasów lub nukleotydów do kontrukcji drzew

Bardziej szczegółowo

Bioinformatyka Laboratorium, 30h. Michał Bereta

Bioinformatyka Laboratorium, 30h. Michał Bereta Bioinformatyka Laboratorium, 30h Michał Bereta mbereta@pk.edu.pl www.michalbereta.pl 1 Metoda NJ (przyłączania sąsiadów) umożliwia tworzenie drzewa addytywnego: odległości ewolucyjne między sekwencjami

Bardziej szczegółowo

PODSTAWY BIOINFORMATYKI 6 ANALIZA FILOGENETYCZNA

PODSTAWY BIOINFORMATYKI 6 ANALIZA FILOGENETYCZNA PODSTAWY BIOINFORMATYKI 6 ANALIZA FILOGENETYCZNA ANALIZA FILOGENETYCZNA 1. Wstęp - filogenetyka 2. Struktura drzewa filogenetycznego 3. Metody konstrukcji drzewa - przykłady 4. Etapy konstrukcji drzewa

Bardziej szczegółowo

PODSTAWY BIOINFORMATYKI WYKŁAD 5 ANALIZA FILOGENETYCZNA

PODSTAWY BIOINFORMATYKI WYKŁAD 5 ANALIZA FILOGENETYCZNA PODSTAWY BIOINFORMATYKI WYKŁAD 5 ANALIZA FILOGENETYCZNA ANALIZA FILOGENETYCZNA 1. Wstęp - filogenetyka 2. Struktura drzewa filogenetycznego 3. Metody konstrukcji drzewa 4. Etapy konstrukcji drzewa filogenetycznego

Bardziej szczegółowo

Konstruowanie drzew filogenetycznych. Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu

Konstruowanie drzew filogenetycznych. Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu Konstruowanie drzew filogenetycznych Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu Drzewa filogenetyczne ukorzenione i nieukorzenione binarność konstrukcji topologia (sposób rozgałęziana

Bardziej szczegółowo

Bioinformatyka Laboratorium, 30h. Michał Bereta

Bioinformatyka Laboratorium, 30h. Michał Bereta Bioinformatyka Laboratorium, 30h Michał Bereta mbereta@pk.edu.pl www.michalbereta.pl 1 Często dopasować chcemy nie dwie sekwencje ale kilkanaście lub więcej 2 Istnieją dokładne algorytmy, lecz są one niewydajne

Bardziej szczegółowo

E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne

E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne Przypominajka: 152 drzewo filogenetyczne to drzewo, którego liśćmi są istniejące gatunki, a węzły wewnętrzne mają stopień większy niż jeden i reprezentują

Bardziej szczegółowo

Drzewa filogenetyczne jako matematyczny model relacji pokrewieństwa. dr inż. Damian Bogdanowicz

Drzewa filogenetyczne jako matematyczny model relacji pokrewieństwa. dr inż. Damian Bogdanowicz Drzewa filogenetyczne jako matematyczny model relacji pokrewieństwa dr inż. Damian Bogdanowicz Sprawa R. Schmidt a z Lafayette Podczas rutynowych badań u pielęgniarki Janet Allen stwierdzono obecność wirusa

Bardziej szczegółowo

Acknowledgement. Drzewa filogenetyczne

Acknowledgement. Drzewa filogenetyczne Wykład 8 Drzewa Filogenetyczne Lokalizacja genów Some figures from: Acknowledgement M. Zvelebil, J.O. Baum, Introduction to Bioinformatics, Garland Science 2008 Tradycyjne drzewa pokrewieństwa Drzewa oparte

Bardziej szczegółowo

Filogenetyka molekularna. Dr Anna Karnkowska Zakład Filogenetyki Molekularnej i Ewolucji

Filogenetyka molekularna. Dr Anna Karnkowska Zakład Filogenetyki Molekularnej i Ewolucji Filogenetyka molekularna Dr Anna Karnkowska Zakład Filogenetyki Molekularnej i Ewolucji Co to jest filogeneza? Filogeneza=drzewo filogenetyczne=drzewo rodowe=drzewo to rozgałęziający się diagram, który

Bardziej szczegółowo

Analizy filogenetyczne

Analizy filogenetyczne BIOINFORMATYKA edycja 2016 / 2017 wykład 6 Analizy filogenetyczne dr Jacek Śmietański jacek.smietanski@ii.uj.edu.pl http://jaceksmietanski.net Plan wykładu 1. Cele i zastosowania 2. Podstawy ewolucyjne

Bardziej szczegółowo

MSA i analizy filogenetyczne

MSA i analizy filogenetyczne Instytut Informatyki i Matematyki Komputerowej UJ, opracowanie: mgr Ewa Matczyńska, dr Jacek Śmietański MSA i analizy filogenetyczne 1. Dopasowania wielosekwencyjne - wprowadzenie Dopasowanie wielosekwencyjne

Bardziej szczegółowo

Filogeneza: problem konstrukcji grafu (drzewa) zależności pomiędzy gatunkami.

Filogeneza: problem konstrukcji grafu (drzewa) zależności pomiędzy gatunkami. 181 Filogeneza: problem konstrukcji grafu (drzewa) zależności pomiędzy gatunkami. 3. D T(D) poprzez algorytm łączenia sąsiadów 182 D D* : macierz łącząca sąsiadów n Niech TotDist i = k=1 D i,k Definiujemy

Bardziej szczegółowo

Bioinformatyka Laboratorium, 30h. Michał Bereta

Bioinformatyka Laboratorium, 30h. Michał Bereta Bioinformatyka Laboratorium, 30h Michał Bereta mbereta@pk.edu.pl www.michalbereta.pl 1 Wyszukiwanie sekwencji Jak wyszukad z baz danych bioinformatycznych sekwencje podobne do sekwencji zadanej (ang. query

Bardziej szczegółowo

Wszystkie wyniki w postaci ułamków należy podawać z dokładnością do czterech miejsc po przecinku!

Wszystkie wyniki w postaci ułamków należy podawać z dokładnością do czterech miejsc po przecinku! Pracownia statystyczno-filogenetyczna Liczba punktów (wypełnia KGOB) / 30 PESEL Imię i nazwisko Grupa Nr Czas: 90 min. Łączna liczba punktów do zdobycia: 30 Czerwona Niebieska Zielona Żółta Zaznacz znakiem

Bardziej szczegółowo

klasyfikacja fenetyczna (numeryczna)

klasyfikacja fenetyczna (numeryczna) Teorie klasyfikacji klasyfikacja fenetyczna (numeryczna) systematyka powinna być wolna od wszelkiej teorii (a zwłaszcza od teorii ewolucji) filogeneza jako ciąg zdarzeń jest niepoznawalna opiera się na

Bardziej szczegółowo

Filogenetyka molekularna I. Krzysztof Spalik Zakład Filogenetyki Molekularnej i Ewolucji

Filogenetyka molekularna I. Krzysztof Spalik Zakład Filogenetyki Molekularnej i Ewolucji Filogenetyka molekularna I Krzysztof Spalik Zakład Filogenetyki Molekularnej i Ewolucji 3 Literatura Krzysztof Spalik, Marcin Piwczyński (2009), Rekonstrukcja filogenezy i wnioskowanie filogenetyczne w

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Wprowadzenie i biologiczne bazy danych. 1 Wprowadzenie... 3. 2 Wprowadzenie do biologicznych baz danych...

Spis treści. Przedmowa... XI. Wprowadzenie i biologiczne bazy danych. 1 Wprowadzenie... 3. 2 Wprowadzenie do biologicznych baz danych... Przedmowa... XI Część pierwsza Wprowadzenie i biologiczne bazy danych 1 Wprowadzenie... 3 Czym jest bioinformatyka?... 5 Cele... 5 Zakres zainteresowań... 6 Zastosowania... 7 Ograniczenia... 8 Przyszłe

Bardziej szczegółowo

Filogenetyka molekularna I. Krzysztof Spalik

Filogenetyka molekularna I. Krzysztof Spalik Filogenetyka molekularna I Krzysztof Spalik Literatura Krzysztof Spalik, Marcin Piwczyński (2009), Rekonstrukcja filogenezy i wnioskowanie filogenetyczne w badaniach ewolucyjnych, Kosmos 58(3-4): 485-498

Bardziej szczegółowo

Bioinformatyka Laboratorium, 30h. Michał Bereta mbereta@pk.edu.pl www.michalbereta.pl

Bioinformatyka Laboratorium, 30h. Michał Bereta mbereta@pk.edu.pl www.michalbereta.pl Laboratorium, 30h Michał Bereta mbereta@pk.edu.pl www.michalbereta.pl Zasady zaliczenia przedmiotu Kolokwia (3 4 ) Ocena aktywności i przygotowania Obecnośd Literatura, materiały Bioinformatyka i ewolucja

Bardziej szczegółowo

Filogenetyka molekularna I

Filogenetyka molekularna I 2 Literatura Krzysztof Spalik, Marcin Piwczyński (2009), Rekonstrukcja filogenezy i wnioskowanie filogenetyczne w badaniach ewolucyjnych, Kosmos 58(3-4): 485-498 Filogenetyka molekularna I John C. Avise

Bardziej szczegółowo

Rycina 1. Zasięg i zagęszczenie łosi (liczba osobników/1000 ha) w Polsce w roku 2010 oraz rozmieszczenie 29 analizowanych populacji łosi.

Rycina 1. Zasięg i zagęszczenie łosi (liczba osobników/1000 ha) w Polsce w roku 2010 oraz rozmieszczenie 29 analizowanych populacji łosi. Ryciny 193 Rycina 1. Zasięg i zagęszczenie łosi (liczba osobników/1000 ha) w Polsce w roku 2010 oraz rozmieszczenie 29 analizowanych populacji łosi. Na fioletowo zaznaczone zostały populacje (nr 1 14)

Bardziej szczegółowo

Bioinformatyka. Ocena wiarygodności dopasowania sekwencji.

Bioinformatyka. Ocena wiarygodności dopasowania sekwencji. Bioinformatyka Ocena wiarygodności dopasowania sekwencji www.michalbereta.pl Załóżmy, że mamy dwie sekwencje, które chcemy dopasować i dodatkowo ocenić wiarygodność tego dopasowania. Interesujące nas pytanie

Bardziej szczegółowo

46 Olimpiada Biologiczna

46 Olimpiada Biologiczna 46 Olimpiada Biologiczna Pracownia statystyczno-filogenetyczna Łukasz Banasiak i Jakub Baczyński 22 kwietnia 2017 r. Statystyka i filogenetyka / 30 Liczba punktów (wypełnia KGOB) PESEL Imię i nazwisko

Bardziej szczegółowo

Algorytmy kombinatoryczne w bioinformatyce

Algorytmy kombinatoryczne w bioinformatyce lgorytmy kombinatoryczne w bioinformatyce wykład 7: drzewa filogenetyczne prof. dr hab. inż. Marta Kasprzak Instytut Informatyki, Politechnika Poznańska rzewa filogenetyczne rzewa filogenetyczne odzwierciedlają

Bardziej szczegółowo

Bioinformatyka Laboratorium, 30h. Michał Bereta

Bioinformatyka Laboratorium, 30h. Michał Bereta Laboratorium, 30h Michał Bereta mbereta@pk.edu.pl www.michalbereta.pl Zasady zaliczenia przedmiotu Kolokwia (3 4 ) Ocena aktywności i przygotowania Obecnośd Literatura, materiały i ewolucja molekularna

Bardziej szczegółowo

Wstęp do Biologii Obliczeniowej

Wstęp do Biologii Obliczeniowej Wstęp do Biologii Obliczeniowej Zagadnienia na kolokwium Bartek Wilczyński 5. czerwca 2018 Sekwencje DNA i grafy Sekwencje w biologii, DNA, RNA, białka, alfabety, transkrypcja DNA RNA, translacja RNA białko,

Bardziej szczegółowo

Porównywanie i dopasowywanie sekwencji

Porównywanie i dopasowywanie sekwencji Porównywanie i dopasowywanie sekwencji Związek bioinformatyki z ewolucją Wraz ze wzrostem dostępności sekwencji DNA i białek pojawiła się nowa możliwość śledzenia ewolucji na poziomie molekularnym Ewolucja

Bardziej szczegółowo

46 Olimpiada Biologiczna

46 Olimpiada Biologiczna 46 Olimpiada Biologiczna Pracownia statystyczno-filogenetyczna Łukasz Banasiak i Jakub Baczyński 22 kwietnia 2017 r. Zasady oceniania rozwiązań zadań Zadanie 1 1.1 Kodowanie cech (5 pkt) 0,5 pkt za poprawne

Bardziej szczegółowo

Bioinformatyka. Program UGENE

Bioinformatyka. Program UGENE Bioinformatyka Program UGENE www.michalbereta.pl UGENE jest darmowym programem do zadań bioinformatycznych. Można go pobrać ze strony http://ugene.net/. 1 1. Wczytanie rekordu z bazy ENA do programu UGENE

Bardziej szczegółowo

ep do obliczeniowej biologii molekularnej (J. Tiuryn, wykĺady nr. 12 i 13; 25 stycznia 2006) 8 Konstrukcja drzew filogenetycznych

ep do obliczeniowej biologii molekularnej (J. Tiuryn, wykĺady nr. 12 i 13; 25 stycznia 2006) 8 Konstrukcja drzew filogenetycznych Wst ep do obliczeniowej biologii molekularnej (J. Tiuryn, wykĺady nr. 2 i 3; 25 stycznia 2006) Spis treści 8 Konstrukcja drzew filogenetycznych 82 8. Metoda UPGMA......................... 82 8.2 Metoda

Bardziej szczegółowo

Wykład Bioinformatyka 2012-09-24. Bioinformatyka. Wykład 7. E. Banachowicz. Zakład Biofizyki Molekularnej IF UAM. Ewolucyjne podstawy Bioinformatyki

Wykład Bioinformatyka 2012-09-24. Bioinformatyka. Wykład 7. E. Banachowicz. Zakład Biofizyki Molekularnej IF UAM. Ewolucyjne podstawy Bioinformatyki Bioinformatyka Wykład 7 E. Banachowicz Zakład Biofizyki Molekularnej IF UAM http://www.amu.edu.pl/~ewas 1 Plan Bioinformatyka Ewolucyjne podstawy Bioinformatyki Filogenetyka Bioinformatyczne narzędzia

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska

SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska DRZEWO REGRESYJNE Sposób konstrukcji i przycinania

Bardziej szczegółowo

Pracownia Astronomiczna. Zapisywanie wyników pomiarów i niepewności Cyfry znaczące i zaokrąglanie Przenoszenie błędu

Pracownia Astronomiczna. Zapisywanie wyników pomiarów i niepewności Cyfry znaczące i zaokrąglanie Przenoszenie błędu Pracownia Astronomiczna Zapisywanie wyników pomiarów i niepewności Cyfry znaczące i zaokrąglanie Przenoszenie błędu Każdy pomiar obarczony jest błędami Przyczyny ograniczeo w pomiarach: Ograniczenia instrumentalne

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza

Bardziej szczegółowo

Modelowanie motywów łańcuchami Markowa wyższego rzędu

Modelowanie motywów łańcuchami Markowa wyższego rzędu Modelowanie motywów łańcuchami Markowa wyższego rzędu Uniwersytet Warszawski Wydział Matematyki, Informatyki i Mechaniki 23 października 2008 roku Plan prezentacji 1 Źródła 2 Motywy i ich znaczenie Łańcuchy

Bardziej szczegółowo

Algorytmy rozpoznawania obrazów. 11. Analiza skupień. dr inż. Urszula Libal. Politechnika Wrocławska

Algorytmy rozpoznawania obrazów. 11. Analiza skupień. dr inż. Urszula Libal. Politechnika Wrocławska Algorytmy rozpoznawania obrazów 11. Analiza skupień dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Analiza skupień Określenia: analiza skupień (cluster analysis), klasteryzacja (clustering), klasyfikacja

Bardziej szczegółowo

Java Podstawy. Michał Bereta

Java Podstawy. Michał Bereta Prezentacja współfinansowana przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach projektu Wzmocnienie znaczenia Politechniki Krakowskiej w kształceniu przedmiotów ścisłych i propagowaniu

Bardziej szczegółowo

Data Mining z wykorzystaniem programu Rapid Miner

Data Mining z wykorzystaniem programu Rapid Miner Data Mining z wykorzystaniem programu Rapid Miner Michał Bereta www.michalbereta.pl Program Rapid Miner jest dostępny na stronie: http://rapid-i.com/ Korzystamy z bezpłatnej wersji RapidMiner Community

Bardziej szczegółowo

Definicja sieci. Sieć Petriego jest czwórką C = ( P, T, I, O ), gdzie: P = { p 1, p 2,, p n } T = { t 1, t 2,, t m }

Definicja sieci. Sieć Petriego jest czwórką C = ( P, T, I, O ), gdzie: P = { p 1, p 2,, p n } T = { t 1, t 2,, t m } Sieci Petriego Źródła wykładu: 1. http://www.ia.pw.edu.pl/~sacha/petri.html 2.M. Szpyrka: Sieci Petriego w modelowaniu i analizie systemów współbieżnych, WNT 2008 Definicja sieci Sieć Petriego jest czwórką

Bardziej szczegółowo

ALGORYTMY KONSTRUOWANIA DENDROGRAMÓW STOSOWANYCH PRZY ANALIZIE FILOGENETYCZNEJ MIKROORGANIZMÓW

ALGORYTMY KONSTRUOWANIA DENDROGRAMÓW STOSOWANYCH PRZY ANALIZIE FILOGENETYCZNEJ MIKROORGANIZMÓW ALGORYTMY KONSTRUOWANIA DENDROGRAMÓW STOSOWANYCH PRZY ANALIZIE FILOGENETYCZNEJ MIKROORGANIZMÓW Filip Zdziennicki, Anna Misiewicz Instytut Biotechnologii Przemysłu Rolno-Spożywczego im. prof. Wacława Dąbrowskiego

Bardziej szczegółowo

Zofia Kruczkiewicz, Algorytmu i struktury danych, Wykład 14, 1

Zofia Kruczkiewicz, Algorytmu i struktury danych, Wykład 14, 1 Wykład Algorytmy grafowe metoda zachłanna. Właściwości algorytmu zachłannego:. W przeciwieństwie do metody programowania dynamicznego nie występuje etap dzielenia na mniejsze realizacje z wykorzystaniem

Bardziej szczegółowo

Ewolucja molekularna człowieka okiem bioinformatyka. Justyna Wojtczak Jarosław Jeleniewicz

Ewolucja molekularna człowieka okiem bioinformatyka. Justyna Wojtczak Jarosław Jeleniewicz Ewolucja molekularna człowieka okiem bioinformatyka Justyna Wojtczak Jarosław Jeleniewicz Informatyka w biologii - bioinformatyka Jest to szeroka dziedzina zajmująca się tworzeniem zaawansowanych baz danych,

Bardziej szczegółowo

MultiSETTER: web server for multiple RNA structure comparison. Sandra Sobierajska Uniwersytet Jagielloński

MultiSETTER: web server for multiple RNA structure comparison. Sandra Sobierajska Uniwersytet Jagielloński MultiSETTER: web server for multiple RNA structure comparison Sandra Sobierajska Uniwersytet Jagielloński Wprowadzenie Budowa RNA: - struktura pierwszorzędowa sekwencja nukleotydów w łańcuchu: A, U, G,

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska. SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska INFORMACJE WSTĘPNE Hipotezy do uczenia się lub tworzenia

Bardziej szczegółowo

Wyróżniamy dwa typy zadań projektowych.

Wyróżniamy dwa typy zadań projektowych. Obowiązkowymi do zaliczenia projektu jest realizacja 2-3 zadań programistycznych. Zadania realizowane są w grupach 2-3 osobowych (zależnie od stopnia trudności zadania i liczebności całej klasy laboratoryjnej).

Bardziej szczegółowo

Technologie cyfrowe. Artur Kalinowski. Zakład Cząstek i Oddziaływań Fundamentalnych Pasteura 5, pokój 4.15

Technologie cyfrowe. Artur Kalinowski. Zakład Cząstek i Oddziaływań Fundamentalnych Pasteura 5, pokój 4.15 Technologie cyfrowe Artur Kalinowski Zakład Cząstek i Oddziaływań Fundamentalnych Pasteura 5, pokój 4.15 Artur.Kalinowski@fuw.edu.pl Semestr letni 2014/2015 Zadanie algorytmiczne: wyszukiwanie dane wejściowe:

Bardziej szczegółowo

Modelowanie sieci złożonych

Modelowanie sieci złożonych Modelowanie sieci złożonych B. Wacław Instytut Fizyki UJ Czym są sieci złożone? wiele układów ma strukturę sieci: Internet, WWW, sieć cytowań, sieci komunikacyjne, społeczne itd. sieć = graf: węzły połączone

Bardziej szczegółowo

PODSTAWY BIOINFORMATYKI WYKŁAD 4 DOPASOWANIE SEKWENCJI

PODSTAWY BIOINFORMATYKI WYKŁAD 4 DOPASOWANIE SEKWENCJI PODSTAWY BIOINFORMATYKI WYKŁAD 4 DOPASOWANIE SEKWENCJI DOPASOWANIE SEKWENCJI 1. Dopasowanie sekwencji - definicja 2. Wizualizacja dopasowania sekwencji 3. Miary podobieństwa sekwencji 4. Przykłady programów

Bardziej szczegółowo

CMAES. Zapis algorytmu. Generacja populacji oraz selekcja Populacja q i (t) w kroku t generowana jest w następujący sposób:

CMAES. Zapis algorytmu. Generacja populacji oraz selekcja Populacja q i (t) w kroku t generowana jest w następujący sposób: CMAES Covariance Matrix Adaptation Evolution Strategy Opracowanie: Lidia Wojciechowska W algorytmie CMAES, podobnie jak w algorytmie EDA, adaptowany jest rozkład prawdopodobieństwa generacji punktów, opisany

Bardziej szczegółowo

Filogenetyka. Dr inż. Magdalena Święcicka, dr hab. Marcin Filipecki. Katedra Genetyki, Hodowli i Biotechnologii Roślin, SGGW

Filogenetyka. Dr inż. Magdalena Święcicka, dr hab. Marcin Filipecki. Katedra Genetyki, Hodowli i Biotechnologii Roślin, SGGW Filogenetyka Dr inż. Magdalena Święcicka, dr hab. Marcin Filipecki Katedra Genetyki, Hodowli i Biotechnologii Roślin, SGGW Filogenetyka Cel rekonstrukcja historii ewolucji wszystkich organizmów Klasyczne

Bardziej szczegółowo

Badanie doboru naturalnego na poziomie molekularnym

Badanie doboru naturalnego na poziomie molekularnym Badanie doboru naturalnego na poziomie molekularnym Podstawy ewolucji molekulanej Jak ewoluują sekwencje Zmiany genetyczne w ewolucji Mutacje tworzą nowe allele genów Inwersje zmieniają układ genów na

Bardziej szczegółowo

Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu

Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu Data Mining Wykład 9 Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster Plan wykładu Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Sformułowanie problemu

Bardziej szczegółowo

Bioinformatyka 2 (BT172) Progresywne metody wyznaczania MSA: T-coffee

Bioinformatyka 2 (BT172) Progresywne metody wyznaczania MSA: T-coffee Bioinformatyka 2 (BT172) Wykład 5 Progresywne metody wyznaczania MSA: T-coffee Krzysztof Murzyn 14.XI.2005 PLAN WYKŁADU Ostatnio : definicje, zastosowania MSA, złożoność obliczeniowa algorytmu wyznaczania

Bardziej szczegółowo

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zad. 1 Średnia ocen z semestru letniego w populacji studentów socjologii w roku akademickim 2011/2012

Bardziej szczegółowo

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka. Wstęp teoretyczny Zmienne losowe Zmienne losowe

Bardziej szczegółowo

Teoria ewolucji. Podstawowe pojęcia. Wspólne pochodzenie.

Teoria ewolucji. Podstawowe pojęcia. Wspólne pochodzenie. Teoria ewolucji Podstawowe pojęcia. Wspólne pochodzenie. Ewolucja Znaczenie ogólne: zmiany zachodzące stopniowo w czasie W biologii ewolucja biologiczna W astronomii i kosmologii ewolucja gwiazd i wszechświata

Bardziej szczegółowo

Algorytmy genetyczne. Paweł Cieśla. 8 stycznia 2009

Algorytmy genetyczne. Paweł Cieśla. 8 stycznia 2009 Algorytmy genetyczne Paweł Cieśla 8 stycznia 2009 Genetyka - nauka o dziedziczeniu cech pomiędzy pokoleniami. Geny są czynnikami, które decydują o wyglądzie, zachowaniu, rozmnażaniu każdego żywego organizmu.

Bardziej szczegółowo

Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II

Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II Wykład 6. Drzewa cz. II 1 / 65 drzewa spinające Drzewa spinające Zliczanie drzew spinających Drzewo T nazywamy drzewem rozpinającym (spinającym) (lub dendrytem) spójnego grafu G, jeżeli jest podgrafem

Bardziej szczegółowo

TEORETYCZNE PODSTAWY INFORMATYKI

TEORETYCZNE PODSTAWY INFORMATYKI 1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 14c 2 Definicje indukcyjne Twierdzenia dowodzone przez indukcje Definicje indukcyjne Definicja drzewa

Bardziej szczegółowo

Przyrównanie sekwencji. Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu

Przyrównanie sekwencji. Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu Przyrównanie sekwencji Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu Sequence alignment - przyrównanie sekwencji Poszukiwanie ciągów znaków (zasad nukleotydowych lub reszt aminokwasowych),

Bardziej szczegółowo

Sortowanie. Bartman Jacek Algorytmy i struktury

Sortowanie. Bartman Jacek Algorytmy i struktury Sortowanie Bartman Jacek jbartman@univ.rzeszow.pl Algorytmy i struktury danych Sortowanie przez proste wstawianie przykład 41 56 17 39 88 24 03 72 41 56 17 39 88 24 03 72 17 41 56 39 88 24 03 72 17 39

Bardziej szczegółowo

Pętle instrukcje powtórzeo

Pętle instrukcje powtórzeo Pętle instrukcje powtórzeo Pętle - zbiór instrukcji, które należy wykonad wielokrotnie. Program dyktuje: - ile razy pętla ta wykona zawarty w niej blok instrukcji - jakie mają byd warunki zakooczenia jej

Bardziej szczegółowo

Procesy Markowa zawdzięczają swoją nazwę ich twórcy Andriejowi Markowowi, który po raz pierwszy opisał problem w 1906 roku.

Procesy Markowa zawdzięczają swoją nazwę ich twórcy Andriejowi Markowowi, który po raz pierwszy opisał problem w 1906 roku. Procesy Markowa zawdzięczają swoją nazwę ich twórcy Andriejowi Markowowi, który po raz pierwszy opisał problem w 1906 roku. Uogólnienie na przeliczalnie nieskończone przestrzenie stanów zostało opracowane

Bardziej szczegółowo

Algorytmy zrandomizowane

Algorytmy zrandomizowane Algorytmy zrandomizowane http://zajecia.jakubw.pl/nai ALGORYTMY ZRANDOMIZOWANE Algorytmy, których działanie uzależnione jest od czynników losowych. Algorytmy typu Monte Carlo: dają (po pewnym czasie) wynik

Bardziej szczegółowo

METODY STATYSTYCZNE W BIOLOGII

METODY STATYSTYCZNE W BIOLOGII METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne

Bardziej szczegółowo

Porównanie systemów automatycznej generacji reguł działających w oparciu o algorytm sekwencyjnego pokrywania oraz drzewa decyzji

Porównanie systemów automatycznej generacji reguł działających w oparciu o algorytm sekwencyjnego pokrywania oraz drzewa decyzji Porównanie systemów automatycznej generacji reguł działających w oparciu o algorytm sekwencyjnego pokrywania oraz drzewa decyzji Wstęp Systemy automatycznego wyodrębniania reguł pełnią bardzo ważną rolę

Bardziej szczegółowo

SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO

SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO. Rzeczywistość (istniejąca lub projektowana).. Model fizyczny. 3. Model matematyczny (optymalizacyjny): a. Zmienne projektowania

Bardziej szczegółowo

Monte Carlo, bootstrap, jacknife

Monte Carlo, bootstrap, jacknife Monte Carlo, bootstrap, jacknife Literatura Bruce Hansen (2012 +) Econometrics, ze strony internetowej: http://www.ssc.wisc.edu/~bhansen/econometrics/ Monte Carlo: rozdział 8.8, 8.9 Bootstrap: rozdział

Bardziej szczegółowo

Filogenetyka. Dr Marek D. Koter, dr hab. Marcin Filipecki. Katedra Genetyki, Hodowli i Biotechnologii Roślin, SGGW

Filogenetyka. Dr Marek D. Koter, dr hab. Marcin Filipecki. Katedra Genetyki, Hodowli i Biotechnologii Roślin, SGGW Filogenetyka Dr Marek D. Koter, dr hab. Marcin Filipecki Katedra Genetyki, Hodowli i Biotechnologii Roślin, SGGW 1 Twórcy teorii ewolucji Charles Darwin Jean Baptiste de Lamarck Podróż HMS Beagle 2 i zbrodniczy

Bardziej szczegółowo

Spacery losowe generowanie realizacji procesu losowego

Spacery losowe generowanie realizacji procesu losowego Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z

Bardziej szczegółowo

PODSTAWY BIOINFORMATYKI WYKŁAD 4 DOPASOWANIE SEKWENCJI

PODSTAWY BIOINFORMATYKI WYKŁAD 4 DOPASOWANIE SEKWENCJI PODSTAWY BIOINFORMATYKI WYKŁAD 4 DOPASOWANIE SEKWENCJI DOPASOWANIE SEKWENCJI 1. Dopasowanie sekwencji - definicja 2. Wizualizacja dopasowania sekwencji 3. Miary podobieństwa sekwencji 4. Przykłady programów

Bardziej szczegółowo

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu Wykład 11-12 Centralne twierdzenie graniczne Statystyka matematyczna: Estymacja parametrów rozkładu Centralne twierdzenie graniczne (CTG) (Central Limit Theorem - CLT) Centralne twierdzenie graniczne (Lindenberga-Levy'ego)

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elementy modelowania matematycznego Łańcuchy Markowa: zagadnienia graniczne. Ukryte modele Markowa. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ KLASYFIKACJA STANÓW Stan i jest osiągalny

Bardziej szczegółowo

Def. Kod jednoznacznie definiowalny Def. Kod przedrostkowy Def. Kod optymalny. Przykłady kodów. Kody optymalne

Def. Kod jednoznacznie definiowalny Def. Kod przedrostkowy Def. Kod optymalny. Przykłady kodów. Kody optymalne Załóżmy, że mamy źródło S, które generuje symbole ze zbioru S={x, x 2,..., x N } z prawdopodobieństwem P={p, p 2,..., p N }, symbolom tym odpowiadają kody P={c, c 2,..., c N }. fektywność danego sposobu

Bardziej szczegółowo

Algorytmy i struktury danych

Algorytmy i struktury danych Algorytmy i struktury danych ĆWICZENIE 2 - WYBRANE ZŁOŻONE STRUKTURY DANYCH - (12.3.212) Prowadząca: dr hab. inż. Małgorzata Sterna Informatyka i3, poniedziałek godz. 11:45 Adam Matuszewski, nr 1655 Oliver

Bardziej szczegółowo

Mikroekonometria 5. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 5. Mikołaj Czajkowski Wiktor Budziński Mikroekonometria 5 Mikołaj Czajkowski Wiktor Budziński Zadanie 1. Wykorzystując dane me.medexp3.dta przygotuj model regresji kwantylowej 1. Przygotuj model regresji kwantylowej w którym logarytm wydatków

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych 9 października 2008 ...czyli definicje na rozgrzewkę n-elementowa próba losowa - wektor n zmiennych losowych (X 1,..., X n ); intuicyjnie: wynik n eksperymentów realizacja próby (X 1,..., X n ) w ω Ω :

Bardziej szczegółowo

ALGORYTMY I STRUKTURY DANYCH

ALGORYTMY I STRUKTURY DANYCH ALGORYTMY I STRUKTURY DANYCH Temat : Drzewa zrównoważone, sortowanie drzewiaste Wykładowca: dr inż. Zbigniew TARAPATA e-mail: Zbigniew.Tarapata@isi.wat.edu.pl http://www.tarapata.strefa.pl/p_algorytmy_i_struktury_danych/

Bardziej szczegółowo

Wprowadzenie do programu RapidMiner, część 4 Michał Bereta

Wprowadzenie do programu RapidMiner, część 4 Michał Bereta Wprowadzenie do programu RapidMiner, część 4 Michał Bereta www.michalbereta.pl 1. Wybór atrybutów (ang. attribute selection, feature selection). Jedną z podstawowych metod analizy współoddziaływania /

Bardziej szczegółowo

Przedziały ufności. Poziom istotności = α (zwykle 0.05) Poziom ufności = 1 α Przedział ufności dla parametru μ = taki przedział [a,b], dla którego

Przedziały ufności. Poziom istotności = α (zwykle 0.05) Poziom ufności = 1 α Przedział ufności dla parametru μ = taki przedział [a,b], dla którego Przedziały ufności Poziom istotności = α (zwykle 0.05) Poziom ufności = 1 α Przedział ufności dla parametru μ = taki przedział [a,b], dla którego czyli P( μ [a,b] ) = 1 α P( μ < a ) = α/2 P( μ > b ) =

Bardziej szczegółowo

SPOSÓB WYKONANIA OBLICZEŃ I FORMATOWANIA KOMÓREK

SPOSÓB WYKONANIA OBLICZEŃ I FORMATOWANIA KOMÓREK SPOSÓB WYKONANIA OBLICZEŃ I FORMATOWANIA KOMÓREK Tworzenie Listy wyboru Tworzenie obliczeo z wykorzystaniem adresowania mieszanego (symbol $) Tworzenie wykresu i zmiana jego parametrów Wszelkie wskazówki

Bardziej szczegółowo

BIOINFORMATYKA. Copyright 2011, Joanna Szyda

BIOINFORMATYKA. Copyright 2011, Joanna Szyda BIOINFORMATYKA 1. Wykład wstępny 2. Struktury danych w badaniach bioinformatycznych 3. Bazy danych: projektowanie i struktura 4. Bazy danych: projektowanie i struktura 5. Powiązania pomiędzy genami: równ.

Bardziej szczegółowo

PROBLEM: SORTOWANIE PRZEZ ODWRÓCENIA METODA: ALGORYTMY ZACHŁANNE

PROBLEM: SORTOWANIE PRZEZ ODWRÓCENIA METODA: ALGORYTMY ZACHŁANNE D: PROBLEM: SORTOWANIE PRZEZ ODWRÓCENIA METODA: ALGORYTMY ZACHŁANNE I. Strategia zachłanna II. Problem przetasowań w genomie III. Sortowanie przez odwrócenia IV. Algorytmy przybliżone V. Algorytm zachłanny

Bardziej szczegółowo

Wybór / ocena atrybutów na podstawie oceny jakości działania wybranego klasyfikatora.

Wybór / ocena atrybutów na podstawie oceny jakości działania wybranego klasyfikatora. Wprowadzenie do programu RapidMiner Studio 7.6, część 7 Podstawy metod wyboru atrybutów w problemach klasyfikacyjnych, c.d. Michał Bereta www.michalbereta.pl Wybór / ocena atrybutów na podstawie oceny

Bardziej szczegółowo

MODELE SIECIOWE 1. Drzewo rozpinające 2. Najkrótsza droga 3. Zagadnienie maksymalnego przepływu źródłem ujściem

MODELE SIECIOWE 1. Drzewo rozpinające 2. Najkrótsza droga 3. Zagadnienie maksymalnego przepływu źródłem ujściem MODELE SIECIOWE 1. Drzewo rozpinające (spanning tree) w grafie liczącym n wierzchołków to zbiór n-1 jego krawędzi takich, że dowolne dwa wierzchołki grafu można połączyć za pomocą krawędzi należących do

Bardziej szczegółowo

Struktury Danych i Złożoność Obliczeniowa

Struktury Danych i Złożoność Obliczeniowa Struktury Danych i Złożoność Obliczeniowa Zajęcia 3 Struktury drzewiaste drzewo binarne szczególny przypadek drzewa, które jest szczególnym przypadkiem grafu skierowanego, stopień każdego wierzchołka jest

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4 Inne układy doświadczalne 1) Układ losowanych bloków Stosujemy, gdy podejrzewamy, że może występować systematyczna zmienność między powtórzeniami np. - zmienność

Bardziej szczegółowo

Zad. 4 Należy określić rodzaj testu (jedno czy dwustronny) oraz wartości krytyczne z lub t dla określonych hipotez i ich poziomów istotności:

Zad. 4 Należy określić rodzaj testu (jedno czy dwustronny) oraz wartości krytyczne z lub t dla określonych hipotez i ich poziomów istotności: Zadania ze statystyki cz. 7. Zad.1 Z populacji wyłoniono próbę wielkości 64 jednostek. Średnia arytmetyczna wartość cechy wyniosła 110, zaś odchylenie standardowe 16. Należy wyznaczyć przedział ufności

Bardziej szczegółowo

Zaliczenie. Ćwiczenia (zaliczenie = min. 15 punktów)

Zaliczenie. Ćwiczenia (zaliczenie = min. 15 punktów) Zaliczenie Ćwiczenia (zaliczenie = min. 15 punktów) Kolokwium (8/10 czerwca) = maks. 30 punktów Dwa zadania z listy pod linkiem = maks. 1 punkt http://www.fuw.edu.pl/~prozanski/ws/upload/20150415-zadania.php

Bardziej szczegółowo

prof. dr hab. inż. Marta Kasprzak Instytut Informatyki, Politechnika Poznańska Dopasowanie sekwencji

prof. dr hab. inż. Marta Kasprzak Instytut Informatyki, Politechnika Poznańska Dopasowanie sekwencji Bioinformatyka wykład 5: dopasowanie sekwencji prof. dr hab. inż. Marta Kasprzak Instytut Informatyk Politechnika Poznańska Dopasowanie sekwencji Badanie podobieństwa sekwencji stanowi podstawę wielu gałęzi

Bardziej szczegółowo

Porównywanie i dopasowywanie sekwencji

Porównywanie i dopasowywanie sekwencji Porównywanie i dopasowywanie sekwencji Związek bioinformatyki z ewolucją Wraz ze wzrostem dostępności sekwencji DNA i białek narodziła się nowa dyscyplina nauki ewolucja molekularna Ewolucja molekularna

Bardziej szczegółowo

8. Drzewa decyzyjne, bagging, boosting i lasy losowe

8. Drzewa decyzyjne, bagging, boosting i lasy losowe Algorytmy rozpoznawania obrazów 8. Drzewa decyzyjne, bagging, boosting i lasy losowe dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Drzewa decyzyjne Drzewa decyzyjne (ang. decision trees), zwane

Bardziej szczegółowo

Podstawy OpenCL część 2

Podstawy OpenCL część 2 Podstawy OpenCL część 2 1. Napisz program dokonujący mnożenia dwóch macierzy w wersji sekwencyjnej oraz OpenCL. Porównaj czasy działania obu wersji dla różnych wielkości macierzy, np. 16 16, 128 128, 1024

Bardziej szczegółowo

PRZYRÓWNANIE SEKWENCJI

PRZYRÓWNANIE SEKWENCJI http://theta.edu.pl/ Podstawy Bioinformatyki III PRZYRÓWNANIE SEKWENCJI 1 Sequence alignment - przyrównanie sekwencji Poszukiwanie ciągów znaków (zasad nukleotydowych lub reszt aminokwasowych), które posiadają

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.

Bardziej szczegółowo

Temat 1: Pojęcie gry, gry macierzowe: dominacje i punkty siodłowe

Temat 1: Pojęcie gry, gry macierzowe: dominacje i punkty siodłowe Temat 1: Pojęcie gry, gry macierzowe: dominacje i punkty siodłowe Teorię gier można określić jako teorię podejmowania decyzji w szczególnych warunkach. Zajmuje się ona logiczną analizą sytuacji konfliktu

Bardziej szczegółowo

Układy VLSI Bramki 1.0

Układy VLSI Bramki 1.0 Spis treści: 1. Wstęp... 2 2. Opis edytora schematów... 2 2.1 Dodawanie bramek do schematu:... 3 2.2 Łączenie bramek... 3 2.3 Usuwanie bramek... 3 2.4 Usuwanie pojedynczych połączeń... 4 2.5 Dodawanie

Bardziej szczegółowo

Algorytmy Równoległe i Rozproszone Część V - Model PRAM II

Algorytmy Równoległe i Rozproszone Część V - Model PRAM II Algorytmy Równoległe i Rozproszone Część V - Model PRAM II Łukasz Kuszner pokój 209, WETI http://www.sphere.pl/ kuszner/ kuszner@sphere.pl Oficjalna strona wykładu http://www.sphere.pl/ kuszner/arir/ 2005/06

Bardziej szczegółowo