Janusz Czelakowski Uwagi o teorii mnogości (na marginesie dyskusji o książce prof. Ryszarda Wójcickiego) Filozofia Nauki 10/2, 73-76
|
|
- Magdalena Kasprzak
- 6 lat temu
- Przeglądów:
Transkrypt
1 Janusz Czelakowski Uwagi o teorii mnogości (na marginesie dyskusji o książce prof. Ryszarda Wójcickiego) Filozofia Nauki 10/2,
2 Filozofia Nauki RokX, 2002, Nr 2(38) Janusz Czelakowski Uwagi o teorii mnogości (na marginesie dyskusji o książce prof. Ryszarda Wójcickiego) Książka zaczyna się od przystępnego, prowadzonego w duchu Cantorowskim, wykładu elementów teorii mnogości (w skrócie: TM). Zgrabne jest tu wprowadzenie aksjomatu ekstensjonalności, istnienia zbioru pustego, istnienia pewnych zbiorów jednostkowych. Jest tu też uwaga o zbiorach, które można wyprodukować ze zbioru pustego (co może być zresztą wstępem do omówienia w przyszłości von Neumannowskiego uniwersum zbiorów). Wykład ten odpowiada temu, co żartobliwie określa się przedszkolną teorią mnogości, gdzie mówi się o zbiorach piłek, klocków, jabłek itp. Ta część wykładu jest oczywiście w pełni zgodna zarówno z oczekiwaniami, jak i wiedzą matematyczną «zwykłego» użytkownika teorii mnogości, kształconego w szkołach i uczelniach, na których są wykładane elementy matematyki. Niewątpliwie w taki sposób, jak czyni to Autor, postrzegamy zbiory, zwłaszcza zbiory skończone, tj. jako wyodrębnione myślowo, policzalne zestawy rozróżnialnych jednostek. (Nieco inną perspektywę teorii mnogości wyznaczają rozważania prowadzone nad własnościami przedmiotów, gdzie jak się sądzi właściwym pojęciem pierwotnym jest pojęcie klasy, a nie zbioru.) Potrzebne jest w tym miejscu pewne ostrzeżenie. W wielu, powszechnie przyjętych aksjomatycznych TM, np. w teorii ZF (Zermelo Fraenkela), wymienione wyżej zbiory w ogóle nie są zbiorami. W szczególności np. nie można mówić o zbiorze państw sąsiadujących z Polską. Dlaczego tak jest? Otóż zazwyczaj jeszcze przed przyjęciem takiej czy innej aksjomatyzacji przyjmuje się (explicite bądź implicite) pewne formy tzw. Zasady Czystości, określające relacje miedzy bytami, które nazywać będziemy zbiorami, a innymi bytami. W wersji skrajnej zasada ta mówi, że każdy byt jest zbiorem. W łagodniejszych sformułowaniach mówi się np. o istnieniu rozmaitych pra-elementów, tj. bytów, które same nie są
3 74 Janusz Czelakowski zbiorami, ale z których pewne zbiory można tworzyć. Często przyjmowana jest Zasada Czystości w wersjach umiarkowanych, np.: Każdy element zbioru jest zbiorem. Zasada ta (w wersji powyższej) jest przyjmowana (choć nie dla wszystkich jest to jasne) jako warunek wstępny, umożliwiający standardową formalizację języka TM z epsilonem e i relacją równości =. Jeżeli bowiem zgodzimy się na to, by pisać aksjomaty TM w tym języku, zmuszeni jesteśmy akceptować Zasadę Czystości w powyższej wersji. W języku tym bowiem zmienne indywiduowe przebiegają tylko zbiory. Pisząc zaś, że y e x, przyjmujemy zatem, że zmienne x i y reprezentują zbiory. W szczególności y, reprezentując dowolny element zbioru x, też jest zbiorem. Zasada Czystości ma zatem wpływ nie tyle na wybór i postać aksjomatów TM, ile na sam wybór języka TM. Określa ona to, co można nazwać perspektywą językową TM, określa wybór narzędzi językowych, w tym reguł składni języka, w którym opisujemy zbiory. Zasada Czystości w powyższej wersji i, w konsekwencji, przyjęcie określonego języka TM, wykluczają przedszkolną, naiwno-cantorowską TM. (Odnosi się to oczywiście do TM uprawianej przez matematyków.) Nie można bowiem wtedy mówić, że jeżeli rozpatrywanym zbiorem jest zbiór jabłek w koszyku, to elementy tego zbioru, tj. poszczególne jabłka, same są zbiorami, bo nie ma przekonywujących dowodów, by jabłko było zbiorem (w sensie dystrybutywnym). Co więcej, a nawet gorzej, matematycy uważają za interesujące z matematycznego punktu widzenia jedynie tzw. zbiory regularne, czemu dają wyraz przyjmując tzw. Aksjomat Regularności. (Pogląd ten jest np. explicite wyłożony w znanej książce C. C. Changa i H. J. Keislera Model theory, North-Holland and American Elseviev, Amsterdam London New York 1973) W jednej z wersji aksjomat ten orzeka, że zbiorem jest jedynie to, co należy do znanej kumulatywnej hierarchii zbiorów von Neumanna. Jej podstawą jest zbiór pusty, następnikiem danego szczebla hierarchii jest zbiór wszystkich podzbiorów zbioru tworzącego ten szczebel. W miejscach granicznych sumuje się wcześniej wyprodukowane zbiory. W pewnych «miękkich» ujęciach TM, np. w znanej książce Kuratowskiego i Mostowskiego, Aksjomat Regularności nie jest przyjmowany. Autorzy ci również nie przyjmują (nawet implicite) Zasady Czystości w powyższym ujęciu. Pierwotne jest tam pojęcie przedmiotu. Z przedmiotów można tworzyć zbiory. A zatem elementy zbioru same nie muszą być zbiorami. Autorzy ci, jak sądzę, mają świadomość, że zbyt rygorystyczne wtłaczanie TM w czysty, wysterylizowany język z epsilonem e i równością wyklucza z pola widzenia agregaty, które jesteśmy skłonni uważać za zbiory, jak np. kolekcje krzeseł w pokoju, gruszek na wierzbie, czy klocków w pudełku. Krótko mówiąc powszechnie obecnie stosowane formalizmy teoriomnogościowe są zbyt rygorystyczne, by mogły objąć niektóre agregaty przedmiotów, ważne
4 Uwagi o teorii mnogości 75 z punku widzenia nauk empirycznych, społecznych, czy dydaktyki matematyki. Powstaje oczywiście kwestia, czy wspomniane agregaty, np. pewne zbiorowości ludzkie, żyjące w określonym miejscu i czasie, można reprezentować w terminach zbiorów (w sensie dystrybutywnym) i na czym miałaby polegać taka reprezentacja. Już, na przykład, próba określenia «zbioru» wszystkich ludzi jacy kiedykolwiek żyli na Ziemi ukazuje nam skalę i rodzaj trudności na jakie tu napotykamy. Widać tu od razu, że z teorio-ewolucyjnego punktu widzenia powyższe zagadnienie wydaje się być beznadziejne trudne, a zapewne i źle postawione mówiąc skrótowo, nie wiadomo, kiedy, gdzie i w którym pokoleniu małpa przestała być małpą i stała się człowiekiem. Z punktu widzenia np. ontologii chrześcijańskiej problem ten ma proste i czytelne, pozytywne rozstrzygnięcie ludzie pojawili się z chwilą stworzenia Adama i Ewy. Z drugiej strony naiwne ujęcie TM może sugerować istnienie jakiegoś absolutnego pojęcia zbioru, na wzór pojęcia liczby naturalnej, dobrze i jednakowo rozumianego przez wszystkich użytkowników języków, w których pojawia się termin zbiór. Jest to stanowisko bliskie Gödla, który jako platonik wierzył, że dopracujemy się kiedyś takiego absolutnego pojęcia zbioru. Teraz nie ma jednak przesłanek, które pozwoliłyby nam wierzyć w absolutność pojęcia zbioru. Jest tyle znaczeń terminu zbiór, ile jest rozmaitych teorii mnogości. A są one, jak wiemy, często wzajemnie sprzeczne. Np. teoria zbiorów konstruowalnych jest (relatywnie) sprzeczna z TM dopuszczającą Aksjomat Istnienia Liczb Mierzalnych. Naiwna wiara, że dobrze rozumiemy pojęcie zbioru, załamuje się w konfrontacji z nieskończonością, gdy dopuszczamy istnienie wielkich zbiorów. Dodajmy np. że istnieje kilka, i to nierównoważnych, teorii liczb porządkowych i kardynalnych. W wykładzie TM w książce Kuratowskiego i Mostowskiego potrzebny jest dodatkowy Aksjomat Typów Relacyjnych. Pozwala on zdefiniować w stylu Fregego liczby porządkowe i kardynalne jako typy pewnych relacji równoważności. (Typy są pewnymi bytami pozamnogościowymi.) W ujęciu von Neumanna aksjomat ten nie jest potrzebny określa się tu liczby porządkowe jako ściśle dobrze uporządkowane przez epsilon e zbiory przechodnie, a liczby kardynalne jako początkowe liczby porządkowe, tj. takie, które nie dają się ponumerować elementami mniejszej liczby porządkowej. Przypisanie dowolnemu zbiorowi jego mocy wymaga jednak, w tym ujęciu, przyjęcia bardzo silnego aksjomatu, jakim jest Aksjomat Wyboru. W ujęciu Scotta, do zdefiniowania liczby kardynalnej wystarcza Aksjomat Regularności. Liczby kardynalne nie są tu już liczbami porządkowymi lecz zbiorami o bardziej złożonej strukturze. Wspomniana wyżej TM uprawiana przez Kuratowskiego i Mostowskiego jest, jak zaznaczyłem, teorią «miękką». «Miękkość» danej TM nie polega na przyjęciu założeń, że istnieją różne byty, przy czym niektóre z nich są zbiorami. Idzie tu o to, że już sam akt wyboru języka, w którym sformułowana jest TM, określa do pewnego stopnia znaczenie terminu zbiór. Nie mam tu na myśli kształtu takich, czy innych aksjomatów TM, lecz wybór symboli pozalogicznych języka i reguł składni. Już na tym czysto syntaktycznym poziomie dokonuje się rozstrzygnięć o konsekwencjach, by tak rzec, ontologicznych, tj. wpływających na rozumienie pojęcia zbioru.
5 76 Janusz Czelakowski Kuratowski i Mostowski piszą o przedmiotach, które same nie muszą być zbiorami. Można je myślowo łączyć, układać w pewne całości, abstrahując od natury tych przedmiotów. Całości te są już zbiorami w sensie dystrybutywnym. Co dalej można z nimi robić określają to aksjomaty TM. Przyjmuje się przy tym jedynie dwa aksjomaty egzystencjalne istnienie zbioru pustego i aksjomat nieskończoności. Do czego zmierzają moje uwagi? Na podstawie lektuiy początkowych rozdziałów można sobie wyrobić opinię, że jest to książka, która w przystępnym, prostym języku, bez zawiesistego sosu formalnego, opowiada w jasny sposób o trudnych i zawiłych problemach współczesnej logiki, jak teoria języka i jego funkcji, teoria znaczenia, wynikania, prawdy itp. Dotyczy to również, w skromnym zakresie, TM. Czytelnik powinien mieć tu świadomość, że choć wyda mu się, że dobrze rozumie zasady TM sprawy są dalece bardziej złożone niż mógłby sądzić po lekturze pierwszych rozdziałów. Zapewne w bardziej zaawansowanej wersji książki, którą Autor opracowuje, czytelnik dowie się więcej o trudnościach z pojmowaniem zbiorów i o tym, że terminu zbiór nie da się, w świetle dostępnej wiedzy, wcisnąć w gorset jedynie słusznej interpretacji. Sens powyższych uwag jest taki nasze rozumienie zbioru kształtuje się już na poziomie języka, służącego do opisu zbiorów, tj. zależy ono nie tylko od aksjomatów TM, ale w dużym stopniu jest zależne od wyboru symboli pozalogicznych języka i reguł składni języka, w którym mówimy o zbiorach. Nazywam to perspektywą językową TM. Pojmowanie zbioru jest też kształtowane przez określoną perspektywę poznawczą, tj. przez takie czynniki, jak uznawane wartości, światopogląd itp. Powyższy przykład dotyczący «zbioru» ludzi pokazuje, że perspektywa poznawcza gra tu zapewne jakąś rolę. Omawiane wyżej zasady czystości dla zbiorów są zdeterminowane przez powyższe perspektywy.
Wstęp do Matematyki (4)
Wstęp do Matematyki (4) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Liczby kardynalne Jerzy Pogonowski (MEG) Wstęp do Matematyki (4) Liczby kardynalne 1 / 33 Wprowadzenie
Logika i teoria mnogości Wykład 14 1. Sformalizowane teorie matematyczne
Logika i teoria mnogości Wykład 14 1 Sformalizowane teorie matematyczne W początkowym okresie rozwoju teoria mnogości budowana była w oparciu na intuicyjnym pojęciu zbioru. Operowano swobodnie pojęciem
Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu.
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu. 1 Logika Klasyczna obejmuje dwie teorie:
Logika dla socjologów Część 3: Elementy teorii zbiorów i relacji
Logika dla socjologów Część 3: Elementy teorii zbiorów i relacji Rafał Gruszczyński Katedra Logiki Uniwersytet Mikołaja Kopernika 2011/2012 Spis treści 1 Zbiory 2 Pary uporządkowane 3 Relacje Zbiory dystrybutywne
Logika Matematyczna (1)
Logika Matematyczna (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 4 X 2007 Jerzy Pogonowski (MEG) Logika Matematyczna (1) 4 X 2007 1 / 18 Plan konwersatorium Dzisiaj:
Logika I. Wykład 1. Wprowadzenie do rachunku zbiorów
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 1. Wprowadzenie do rachunku zbiorów 1 Podstawowe pojęcia rachunku zbiorów Uwaga 1.1. W teorii mnogości mówimy o zbiorach
LOGIKA I TEORIA ZBIORÓW
LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja
Informacja o przestrzeniach Sobolewa
Wykład 11 Informacja o przestrzeniach Sobolewa 11.1 Definicja przestrzeni Sobolewa Niech R n będzie zbiorem mierzalnym. Rozważmy przestrzeń Hilberta X = L 2 () z iloczynem skalarnym zdefiniowanym równością
Równoliczność zbiorów
Logika i Teoria Mnogości Wykład 11 12 Teoria mocy 1 Równoliczność zbiorów Def. 1. Zbiory X i Y nazywamy równolicznymi, jeśli istnieje bijekcja f : X Y. O funkcji f mówimy wtedy,że ustala równoliczność
RACHUNEK PREDYKATÓW 7
PODSTAWOWE WŁASNOŚCI METAMATEMATYCZNE KRP Oczywiście systemy dedukcyjne dla KRP budowane są w taki sposób, żeby wszystkie ich twierdzenia były tautologiami; można więc pokazać, że dla KRP zachodzi: A A
Logika dla socjologów Część 2: Przedmiot logiki
Logika dla socjologów Część 2: Przedmiot logiki Rafał Gruszczyński Katedra Logiki Uniwersytet Mikołaja Kopernika 2011/2012 Spis treści 1 Działy logiki 2 Własności semantyczne i syntaktyczne 3 Błędy logiczne
Logika Matematyczna (1)
Logika Matematyczna (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Wprowadzenie Jerzy Pogonowski (MEG) Logika Matematyczna (1) Wprowadzenie 1 / 20 Plan konwersatorium
Uwaga 1. Zbiory skończone są równoliczne wtedy i tylko wtedy, gdy mają tyle samo elementów.
Logika i teoria mnogości Wykład 11 i 12 1 Moce zbiorów Równoliczność zbiorów Def. 1. Zbiory X i Y są równoliczne (X ~ Y), jeśli istnieje bijekcja f : X Y. O funkcji f mówimy wtedy, że ustala równoliczność
Filozofia, ISE, Wykład III - Klasyfikacja dyscyplin filozoficznych
Filozofia, ISE, Wykład III - Klasyfikacja dyscyplin filozoficznych 2011-10-01 Plan wykładu 1 Klasyczny podział dyscyplin filozoficznych 2 Podział dyscyplin filozoficznych Klasyczny podział dyscyplin filozoficznych:
O AKSJOMATYCZNYCH OPISACH JEZYKA NATURALNEGO 1
O AKSJOMATYCZNYCH OPISACH JEZYKA NATURALNEGO 1 JERZY POGONOWSKI Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl Współczesną lingwistykę strukturalną charakteryzuje się jako naukę zajmującą się badaniem
Elementy filozofii i metodologii INFORMATYKI
Elementy filozofii i metodologii INFORMATYKI Filozofia INFORMATYKA Metodologia Wykład 1. Wprowadzenie. Filozofia, metodologia, informatyka Czym jest FILOZOFIA? (objaśnienie ogólne) Filozofią nazywa się
Matematyka dyskretna Literatura Podstawowa: 1. K.A. Ross, C.R.B. Wright: Matematyka Dyskretna, PWN, 1996 (2006) 2. J. Jaworski, Z. Palka, J.
Matematyka dyskretna Literatura Podstawowa: 1. K.A. Ross, C.R.B. Wright: Matematyka Dyskretna, PWN, 1996 (2006) 2. J. Jaworski, Z. Palka, J. Szmański: Matematyka dyskretna dla informatyków, UAM, 2008 Uzupełniająca:
domykanie relacji, relacja równoważności, rozkłady zbiorów
1 of 8 2012-03-28 17:45 Logika i teoria mnogości/wykład 5: Para uporządkowana iloczyn kartezjański relacje domykanie relacji relacja równoważności rozkłady zbiorów From Studia Informatyczne < Logika i
Uwagi wprowadzajace do reguł wnioskowania w systemie tabel analitycznych logiki pierwszego rzędu
Witold Marciszewski: Wykład Logiki, 17 luty 2005, Collegium Civitas, Warszawa Uwagi wprowadzajace do reguł wnioskowania w systemie tabel analitycznych logiki pierwszego rzędu 1. Poniższe wyjaśnienie (akapit
KRZYSZTOF WÓJTOWICZ Instytut Filozofii Uniwersytetu Warszawskiego
KRZYSZTOF WÓJTOWICZ Instytut Filozofii Uniwersytetu Warszawskiego wojtow@uw.edu.pl 1 2 1. SFORMUŁOWANIE PROBLEMU Czy są empiryczne aspekty dowodów matematycznych? Jeśli tak to jakie stanowisko filozoficzne
Algebrę L = (L, Neg, Alt, Kon, Imp) nazywamy algebrą języka logiki zdań. Jest to algebra o typie
3. Wykłady 5 i 6: Semantyka klasycznego rachunku zdań. Dotychczas rozwinęliśmy klasyczny rachunek na gruncie czysto syntaktycznym, a więc badaliśmy metodę sprawdzania, czy dana formuła B jest dowodliwa
Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki
Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 5. Wprowadzenie do semantyki teoriomodelowej cz.5. Wynikanie logiczne 1 Na poprzednim wykładzie udowodniliśmy m.in.:
INFORMATYKA a FILOZOFIA
INFORMATYKA a FILOZOFIA (Pytania i odpowiedzi) Pytanie 1: Czy potrafisz wymienić pięciu filozofów, którzy zajmowali się także matematyką, logiką lub informatyką? Ewentualnie na odwrót: Matematyków, logików
Andrzej L. Zachariasz. ISTNIENIE Jego momenty i absolut czyli w poszukiwaniu przedmiotu einanologii
Andrzej L. Zachariasz ISTNIENIE Jego momenty i absolut czyli w poszukiwaniu przedmiotu einanologii WYDAWNICTWO UNIWERSYTETU RZESZOWSKIEGO RZESZÓW 2004 Opiniowali Prof. zw. dr hab. KAROL BAL Prof. dr hab.
Filozofia przyrody, Wykład V - Filozofia Arystotelesa
Filozofia przyrody, Wykład V - Filozofia Arystotelesa 2011-10-01 Tematyka wykładu 1 Arystoteles - filozof systematyczny 2 3 4 Różnice w metodzie uprawiania nauki Krytyka platońskiej teorii idei Podział
Andrzej Wiśniewski Logika II. Wykład 6. Wprowadzenie do semantyki teoriomodelowej cz.6. Modele i pełność
Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 6. Wprowadzenie do semantyki teoriomodelowej cz.6. Modele i pełność 1 Modele Jak zwykle zakładam, że pojęcia wprowadzone
Zasady krytycznego myślenia (1)
Zasady krytycznego myślenia (1) Andrzej Kisielewicz Wydział Matematyki i Informatyki 2017 Przedmiot wykładu krytyczne myślenie vs logika praktyczna (vs logika formalna) myślenie jasne, bezstronne, oparte
Wykład ze Wstępu do Logiki i Teorii Mnogości
Wykład ze Wstępu do Logiki i Teorii Mnogości rok ak. 2016/2017, semestr zimowy Wykład 1 1 Wstęp do Logiki 1.1 Rachunek zdań, podstawowe funktory logiczne 1.1.1 Formuła atomowa; zdanie logiczne definicje
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykłady 7 i 8. Aksjomatyczne ujęcie Klasycznego Rachunku Zdań
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykłady 7 i 8. Aksjomatyczne ujęcie Klasycznego Rachunku Zdań 1 Istnieje wiele systemów aksjomatycznych Klasycznego Rachunku
Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność?
Semina Nr 3 Scientiarum 2004 Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność? W tym krótkim opracowaniu chciałbym przedstawić dowody obu twierdzeń Gödla wykorzystujące
Modele Obliczeń. Wykład 1 - Wprowadzenie. Marcin Szczuka. Instytut Matematyki, Uniwersytet Warszawski
Modele Obliczeń Wykład 1 - Wprowadzenie Marcin Szczuka Instytut Matematyki, Uniwersytet Warszawski Wykład fakultatywny w semestrze zimowym 2014/2015 Marcin Szczuka (MIMUW) Modele Obliczeń 2014/2015 1 /
Monoidy wolne. alfabetem. słowem długością słowa monoidem wolnym z alfabetem Twierdzenie 1.
3. Wykłady 3 i 4: Języki i systemy dedukcyjne. Klasyczny rachunek zdań. 3.1. Monoidy wolne. Niech X będzie zbiorem niepustym. Zbiór ten będziemy nazywać alfabetem. Skończony ciąg elementów alfabetu X będziemy
Rachunku prawdopodobieństwa: rys historyczny, aksjomatyka, prawdopodobieństwo warunkowe,
Rachunku prawdopodobieństwa: rys historyczny, aksjomatyka, prawdopodobieństwo warunkowe, niezależność zdarzeń dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu Semestr letni
RACHUNEK ZDAŃ 7. Dla każdej tautologii w formie implikacji, której poprzednik również jest tautologią, następnik także jest tautologią.
Semantyczne twierdzenie o podstawianiu Jeżeli dana formuła rachunku zdań jest tautologią i wszystkie wystąpienia pewnej zmiennej zdaniowej w tej tautologii zastąpimy pewną ustaloną formułą, to otrzymana
Metody dowodzenia twierdzeń i automatyzacja rozumowań Na początek: teoria dowodu, Hilbert, Gödel
Metody dowodzenia twierdzeń i automatyzacja rozumowań Na początek: teoria dowodu, Hilbert, Gödel Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@.edu.pl OSTRZEŻENIE Niniejszy plik nie zawiera
Sylabus LICZBA GODZIN. Treści merytoryczne przedmiotu
Sylabus Nazwa Przedmiotu: Teoria bytu (ontologia) Typ przedmiotu: obligatoryjny Poziom przedmiotu: zaawansowany rok studiów, semestr: I rok, semestr II; II rok, semestr I (studia filozoficzne I stopnia)
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Teoria mnogości Set theory Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom kwalifikacji: I stopnia Liczba godzin/tydzień:
Podstawy metod probabilistycznych. dr Adam Kiersztyn
Podstawy metod probabilistycznych dr Adam Kiersztyn Przestrzeń zdarzeń elementarnych i zdarzenia losowe. Zjawiskiem lub doświadczeniem losowym nazywamy taki proces, którego przebiegu i ostatecznego wyniku
Dowody założeniowe w KRZ
Dowody założeniowe w KRZ Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl w styczniu 2007 Jerzy Pogonowski (MEG) Dowody założeniowe w KRZ w styczniu 2007 1 / 10 Dowody
Matematyka dyskretna. Andrzej Łachwa, UJ, /10
Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 10/10 Podziały i liczby Stirlinga Liczba Stirlinga dla cykli (często nazywana liczbą Stirlinga pierwszego rodzaju) to liczba permutacji
Wstęp do Matematyki (1)
Wstęp do Matematyki (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Wprowadzenie Jerzy Pogonowski (MEG) Wstęp do Matematyki (1) Wprowadzenie 1 / 41 Wprowadzenie
U źródeł zbiorów kolektywnych 1
U źródeł zbiorów kolektywnych 1 Lidia Obojska, U źródeł zbiorów kolektywnych. O mereologii nieantysymetrycznej, Wydawnictwo Uniwersytetu Przyrodniczo- -Humanistycznego w Siedlcach, Siedlce 2013, ss. 180.
MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI
MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI Program wykładów: dr inż. Barbara GŁUT Wstęp do logiki klasycznej: rachunek zdań, rachunek predykatów. Elementy semantyki. Podstawy teorii mnogości
ISBN e-isbn
Andrzej Indrzejczak, Marek Nowak Uniwersytet Łódzki Wydział Filozoficzno-Historyczny, Katedra Logiki i Metodologii Nauk 90-131 Łódź, ul. Lindleya 3/5 RECENZENT Dariusz Surowik REDAKTOR INICJUJĄCY Damian
Filozofia, Historia, Wykład V - Filozofia Arystotelesa
Filozofia, Historia, Wykład V - Filozofia Arystotelesa 2010-10-01 Tematyka wykładu 1 Arystoteles - filozof systematyczny 2 3 4 Podział nauk Arystoteles podzielił wszystkie dyscypliny wiedzy na trzy grupy:
Spis treści. Definicje prawdopodobieństwa. Częstościowa definicja prawdopodobieństwa. Wnioskowanie_Statystyczne_-_wykład
Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Definicje prawdopodobieństwa 1.1 Częstościowa definicja prawdopodobieństwa 1.1.1 Przykład 1.1.2 Rozwiązanie: 1.1.3 Inne rozwiązanie: 1.1.4 Jeszcze inne
Etyka Tożsamość i definicja. Ks. dr Artur Aleksiejuk
Etyka Tożsamość i definicja Ks. dr Artur Aleksiejuk 1. ETYKA A FILOZOFIA PYTANIA PROBLEMOWE: Czy etyka musi być dyscypliną filozoficzną? Czy etyka może być wolna od filozoficznych założeń? Czy i jak dalece
Rachunek zdań i predykatów
Rachunek zdań i predykatów Agnieszka Nowak 14 czerwca 2008 1 Rachunek zdań Do nauczenia :! 1. ((p q) p) q - reguła odrywania RO 2. reguła modus tollens MT: ((p q) q) p ((p q) q) p (( p q) q) p (( p q)
Dlaczego matematyka jest wszędzie?
Festiwal Nauki. Wydział MiNI PW. 27 września 2014 Dlaczego matematyka jest wszędzie? Dlaczego świat jest matematyczny? Autor: Paweł Stacewicz (PW) Czy matematyka jest WSZĘDZIE? w życiu praktycznym nie
Wstęp do Matematyki (2)
Wstęp do Matematyki (2) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Własności relacji Jerzy Pogonowski (MEG) Wstęp do Matematyki (2) Własności relacji 1 / 24 Wprowadzenie
Algorytm. Krótka historia algorytmów
Algorytm znaczenie cybernetyczne Jest to dokładny przepis wykonania w określonym porządku skończonej liczby operacji, pozwalający na rozwiązanie zbliżonych do siebie klas problemów. znaczenie matematyczne
Prawdopodobieństwo i statystyka Wykład I: Nieco historii
Prawdopodobieństwo i statystyka Wykład I: Nieco historii 6 października 2015 Prawdopodobieństwo i statystyka Wykład I: Nieco historii Zasady zaliczenia przedmiotu: Zaliczenie ćwiczeń rachunkowych. Zdanie
Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki.
3. Funkcje borelowskie. Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. (1): Jeśli zbiór Y należy do rodziny F, to jego dopełnienie X
BOGDAN ZARĘBSKI ZASTOSOWANIE ZASADY ABSTRAKCJI DO KONSTRUKCJI LICZB CAŁKOWITYCH
BOGDAN ZARĘBSKI ZASTOSOWANIE ZASADY ABSTRAKCJI DO KONSTRUKCJI LICZB CAŁKOWITYCH WSTĘP Zbiór liczb całkowitych można definiować na różne sposoby. Jednym ze sposobów określania zbioru liczb całkowitych jest
Nauka & Wiara. DSW Wrocław 27 kwietnia 2013
Nauka & Wiara DSW Wrocław 27 kwietnia 2013 Nauka & Wiara c, TM, All rights (lefts) reserved, etc... DSW Wrocław 27 kwietnia 2013 Bohaterowie dramatu Bohaterowie dramatu Wiara Nauka Bohaterowie dramatu
Zbiory, relacje i funkcje
Zbiory, relacje i funkcje Zbiory będziemy zazwyczaj oznaczać dużymi literami A, B, C, X, Y, Z, natomiast elementy zbiorów zazwyczaj małymi. Podstawą zależność między elementem zbioru a zbiorem, czyli relację
Struktury formalne, czyli elementy Teorii Modeli
Struktury formalne, czyli elementy Teorii Modeli Szymon Wróbel, notatki z wykładu dra Szymona Żeberskiego semestr zimowy 2016/17 1 Język 1.1 Sygnatura językowa Sygnatura językowa: L = ({f i } i I, {P j
Filozofia, Historia, Wykład IV - Platońska teoria idei
Filozofia, Historia, Wykład IV - Platońska teoria idei 2010-10-01 Tematyka wykładu 1 Metafora jaskini 2 Świat materialny - świat pozoru Świat idei - świat prawdziwy Relacja między światem idei i światem
276 Recenzje recenzja w Wiadomościach Matematycznych, tom 45, nr 1). W roku 2003 w Dolnośląskim Wydawnictwie Edukacyjnym ukazała się książka Jacka Cic
Recenzje 275 formuła boole owska (w postaci koniunkcji alternatyw), w której każda klauzula ma k literałów, a każda zmienna występuje w co najwyżej 2k 4k klauzulach, jest spełnialna (to jest jedno ze sztandarowych
II Matematyka 2 stopnia( 3W). Logika i podstawy matematyki. Janusz Czelakowski. Wykład 8. Arytmetyka
II Matematyka 2 stopnia( 3W). Logika i podstawy matematyki Janusz Czelakowski Wykład 8. Arytmetyka Jak dobrze wiadomo, jednym z kluczowych praw zachodzących w dziedzinie liczb naturalnych jest Zasada Indukcji.
Filozofia, Germanistyka, Wykład I - Wprowadzenie.
2010-10-01 Plan wykładu 1 Czym jest filozofia Klasyczna definicja filozofii Inne próby zdefiniowania filozofii 2 Filozoficzna geneza nauk szczegółowych - przykłady 3 Metafizyka Ontologia Epistemologia
Czy i/lub w jakim sensie można uważać, że świat jest matematyczny? Wprowadzenie do dyskusji J. Lubacz, luty 2018
Czy i/lub w jakim sensie można uważać, że świat jest matematyczny? Wprowadzenie do dyskusji J. Lubacz, luty 2018 Do czego odnoszą się poniższe stwierdzenia? Do tego, czym jest matematyka dla świata, w
Wstęp do logiki. Kto jasno i konsekwentnie myśli, ściśle i z ładem się wyraża,
Prof. UAM, dr hab. Zbigniew Tworak Zakład Logiki i Metodologii Nauk Instytut Filozofii Wstęp do logiki Kto jasno i konsekwentnie myśli, ściśle i z ładem się wyraża, kto poprawnie wnioskuje i uzasadnia
LOGIKA Dedukcja Naturalna
LOGIKA Dedukcja Naturalna Robert Trypuz Katedra Logiki KUL 7 stycznia 2014 Robert Trypuz (Katedra Logiki) Założeniowy system klasycznego rachunku zdań 7 stycznia 2014 1 / 42 PLAN WYKŁADU 1 Przykład dowodów
Opis efektów kształcenia dla programu kształcenia (kierunkowe efekty kształcenia) WIEDZA. rozumie cywilizacyjne znaczenie matematyki i jej zastosowań
TABELA ODNIESIEŃ EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA PROGRAMU KSZTAŁCENIA DO EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA OBSZARU KSZTAŁCENIA I PROFILU STUDIÓW PROGRAM KSZTAŁCENIA: POZIOM KSZTAŁCENIA: PROFIL KSZTAŁCENIA:
Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 14. Wprowadzenie do logiki intuicjonistycznej
Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 14. Wprowadzenie do logiki intuicjonistycznej 1 Przedstawione na poprzednich wykładach logiki modalne możemy uznać
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA SYSTEMY ROZMYTE Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii Biomedycznej Laboratorium
Sposoby prezentacji problemów w statystyce
S t r o n a 1 Dr Anna Rybak Instytut Informatyki Uniwersytet w Białymstoku Sposoby prezentacji problemów w statystyce Wprowadzenie W artykule zostaną zaprezentowane podstawowe zagadnienia z zakresu statystyki
13. Równania różniczkowe - portrety fazowe
13. Równania różniczkowe - portrety fazowe Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny 13. wrównania Krakowie) różniczkowe - portrety fazowe 1 /
Zadania z forcingu. Marcin Kysiak. Semestr zimowy r. ak. 2002/2003
Zadania z forcingu Marcin Kysiak Semestr zimowy r. ak. 2002/2003 Dokument ten zawiera zadania omówione przeze mnie na ćwiczeniach do wykładu monograficznego dr. A. Krawczyka "Zdania nierozstrzygalne w
Logika Matematyczna (10)
Logika Matematyczna (10) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Rezolucja w KRZ Jerzy Pogonowski (MEG) Logika Matematyczna (10) Rezolucja w KRZ 1 / 39 Plan
Wykład 11b. System aksjomatyczny Klasycznego Rachunku Predykatów. Aksjomaty i reguły inferencyjne
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 11b. System aksjomatyczny Klasycznego Rachunku Predykatów. Aksjomaty i reguły inferencyjne Istnieje wiele systemów aksjomatycznych
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty)
Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016-2019 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Wstęp do logiki i teorii
Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne)
Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne) Definicja 1: Tautologia jest to takie wyrażenie, którego wartość logiczna jest prawdą przy wszystkich możliwych wartościowaniach zmiennych
Metodologia badań psychologicznych
Metodologia badań psychologicznych Lucyna Golińska SPOŁECZNA AKADEMIA NAUK Psychologia jako nauka empiryczna Wprowadzenie pojęć Wykład 5 Cele badań naukowych 1. Opis- (funkcja deskryptywna) procedura definiowania
Andrzej Wiśniewski Logika II. Wykłady 9 i 10a. Wybrane modalne rachunki zdań. Ujęcie aksjomatyczne
Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki rok akademicki 2007/2008 Wykłady 9 i 10a. Wybrane modalne rachunki zdań. Ujęcie aksjomatyczne 1 Język aletycznych modalnych
166 Wstęp do statystyki matematycznej
166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej
Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)
Zał nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : Logika i Struktury Formalne Nazwa w języku angielskim : Logic and Formal Structures Kierunek studiów : Informatyka
ZAGADNIENIA SYSTEMOWE PRAWA OCHRONY ŚRODOWISKA. pod redakcją Piotra Korzeniowskiego
POLSKA AKADEMIA NAUK ODDZIAŁ W ŁODZI KOMISJA OCHRONY ŚRODOWISKA ZAGADNIENIA SYSTEMOWE PRAWA OCHRONY ŚRODOWISKA Zagadnienie systemowe prawa ochrony środowiska, którym została poświęcona książka, ma wielkie
Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik
Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik 9 Relacje 9.1 Podstawowe pojęcia 9.1 Definicja (Relacja). Relacją (binarną) nazywamy dowolny podzbiór produktu
Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017
Logika Stosowana Wykład 1 - Logika zdaniowa Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 30 Plan wykładu 1 Język
Matematyka Dyskretna. Andrzej Szepietowski. 25 czerwca 2002 roku
Matematyka Dyskretna Andrzej Szepietowski 25 czerwca 2002 roku Rozdział 1 Poprawność programów Jeżeli projektujemy algorytmy lub piszemy programy, to ważne jest pytanie, czy nasz algorytm lub program
SPIS TREŚCI I. WPROWADZENIE - FILOZOFIA JAKO TYP POZNANIA. 1. Człowiek poznający Poznanie naukowe... 16
SPIS TREŚCI P r z e d m o w a... 5 P r z e d m o w a do d r u g i e g o w y d a n i a... 7 P r z e d m o w a do t r z e c i e g o w y d a n i a... 9 P r z e d m o w a do c z w a r t e g o w y d a n i a...
Wprowadzenie. Teoria automatów i języków formalnych. Literatura (1)
Wprowadzenie Teoria automatów i języków formalnych Dr inŝ. Janusz Majewski Katedra Informatyki Literatura (1) 1. Aho A. V., Sethi R., Ullman J. D.: Compilers. Principles, Techniques and Tools, Addison-Wesley,
Lista 1 (elementy logiki)
Podstawy nauczania matematyki 1. Zdanie Lista 1 (elementy logiki) EE I rok W logice zdaniem logicznym nazywamy wyrażenie oznajmujące o którym można powiedzieć że jest prawdziwe lub fałszywe. Zdania z reguły
ŚWIATOPOGLĄD NEW AGE
ŚWIATOPOGLĄD NEW AGE ŚWIATOPOGLĄD względnie stały zespół sądów (często wartościujących), przekonań i opinii na temat otaczającego świata czerpanych z rozmaitych dziedzin kultury, głównie z nauki, sztuki,
5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów.
5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. Algebra jest jednym z najstarszych działów matematyki dotyczącym początkowo tworzenia metod rozwiązywania równań
Filozofia przyrody - Filozofia Eleatów i Demokryta
5 lutego 2012 Plan wykładu 1 Filozofia Parmenidesa z Elei Ontologia Parmenidesa Epistemologiczny aspekt Parmenidejskiej filozofii 2 3 4 Materializm Ontologia Parmenidesa Epistemologiczny aspekt Parmenidejskiej
HISTORYCZNE I WSPÓŁCZESNE KIERUNKI W FILOZOFII MATEMATYKI
RECENZJE ZAGADNIENIA FILOZOFICZNE W NAUCE XVIII / 1996, s. 133 137 Jan PIKUL HISTORYCZNE I WSPÓŁCZESNE KIERUNKI W FILOZOFII MATEMATYKI Roman Murawski,Filozofia matematyki. Zarys dziejów, Warszawa, PWN
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ SZTUCZNA INTELIGENCJA dwa podstawowe znaczenia Co nazywamy sztuczną inteligencją? zaawansowane systemy informatyczne (np. uczące się), pewną dyscyplinę badawczą (dział
Prawdopodobieństwo i statystyka Wykład I: Przestrzeń probabilistyczna
9 października 2018 Zasady zaliczenia przedmiotu: Zaliczenie ćwiczeń rachunkowych. Zdanie egzaminu ustnego z treści wykładu. Literatura J. Jakubowski i R. Sztencel, Wstęp do teorii prawdopodobieństwa.
Elementy logiki i teorii mnogości
Elementy logiki i teorii mnogości Zdanie logiczne Zdanie logiczne jest to zdanie oznajmujące, któremu można przypisać określoną wartość logiczną. W logice klasycznej zdania dzielimy na: prawdziwe (przypisujemy
Metalogika (1) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM
Metalogika (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Uniwersytet Opolski Jerzy Pogonowski (MEG) Metalogika (1) Uniwersytet Opolski 1 / 21 Wstęp Cel: wprowadzenie
NOWE ODKRYCIA W KLASYCZNEJ LOGICE?
S ł u p s k i e S t u d i a F i l o z o f i c z n e n r 5 * 2 0 0 5 Jan Przybyłowski, Logika z ogólną metodologią nauk. Podręcznik dla humanistów, Wydawnictwo Uniwersytetu Gdańskiego, Gdańsk 2003 NOWE
1 Działania na zbiorach
M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej
Początki informatyki teoretycznej. Paweł Cieśla
Początki informatyki teoretycznej Paweł Cieśla Wstęp Przykładowe zastosowanie dzisiejszych komputerów: edytowanie tekstów, dźwięku, grafiki odbiór telewizji gromadzenie informacji komunikacja Komputery
Internet Semantyczny i Logika II
Internet Semantyczny i Logika II Ontologie Definicja Grubera: Ontologia to formalna specyfikacja konceptualizacji pewnego obszaru wiedzy czy opisu elementów rzeczywistości. W Internecie Semantycznym językiem
Wykład 1. Na początku zajmować się będziemy zbiorem liczb całkowitych
Arytmetyka liczb całkowitych Wykład 1 Na początku zajmować się będziemy zbiorem liczb całkowitych Z = {0, ±1, ±2,...}. Zakładamy, że czytelnik zna relację
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ Wykład 7. O badaniach nad sztuczną inteligencją Co nazywamy SZTUCZNĄ INTELIGENCJĄ? szczególny rodzaj programów komputerowych, a niekiedy maszyn. SI szczególną własność
KLASYCZNA KONCEPCJA RELIGII
KLASYCZNA KONCEPCJA RELIGII Różnice w koncepcjach religii człowiek Bóg człowiek doświadcza Boga człowiek doświadcza Boga i odnosi się do Niego nie za bardzo wiadomo, czy jakiś przedmiot istnieje można