O AKSJOMATYCZNYCH OPISACH JEZYKA NATURALNEGO 1
|
|
- Krystian Konrad Janiszewski
- 7 lat temu
- Przeglądów:
Transkrypt
1 O AKSJOMATYCZNYCH OPISACH JEZYKA NATURALNEGO 1 JERZY POGONOWSKI Zakład Logiki Stosowanej UAM Współczesną lingwistykę strukturalną charakteryzuje się jako naukę zajmującą się badaniem modeli języka (por. np. [1]). Należy oczywiście wyraźnie określić, co rozumie się w tym przypadku przez model języka. W pracy J.A. SZREJDERA [8] pokazuje się, że rozumienie terminu model w lingwistyce jest odmienne od rozumienia tego terminu w matematyce. Mianowicie w matematyce przez model rozumie się strukturę relacyjną (tj. zbiór z określonymi na nim relacjami), spełniającą pewne zdania zapisane w odpowiednim języku formalnym. W tym sensie np. para (Z, +) złożona ze zbioru liczb całkowitych i operacji dodawania jest modelem tzw. teorii grup. Inaczej mówiąc, w (Z, +) prawdziwe są pewne zdania, przyjmowane za aksjomaty teorii grup (łączność dodawania, istnienie elementu neutralnego i elementu odwrotnego). Widzimy zatem, że modelem (pewnej teorii formalnej) nazywa się w matematyce konstrukt mnogościowy, posiadający własności wymagane przez aksjomaty (tej teorii). Natomiast w lingwistyce rozumienie terminu model jest całkiem odmienne: jak wynika z analizowanych przez J.A. SZREJDERA cytatów ([8], s. 67), za model języka uważają lingwiści teorię (ewentualnie formalną) opisującą wewnętrzną strukturę języka. Za J.A. SZREJDEREM będziemy oznaczać przez model l model w sensie lingwistycznym (a więc pewną teorię), a przez model m model w sensie matematycznym (czyli pewien konstrukt mnogościowy). Dalszą część tej pracy poświęcimy zbadaniu zależności między modelami l a modelami m. Jest widoczne, że ściśle określony, jednoznaczny sens ma mówienie o modelu m dla modelu l (model m dla pewnej teorii, którą jest model l por. uwagi J.A. SZREJDERA [8], str ). Wykorzystamy niektóre znane rezultaty otrzymane w jednym z działów logiki matematycznej teorii modeli dla pokazania, przy jakich założeniach możliwa jest realizacja programu dotyczącego zbudowania aksjomatycznego opisu języka naturalnego. W celu uniknięcia ewentualnych nieporozumień, postaramy się na wstępie z grubsza chociażby określić, co rozumiemy przez aksjomatyczny opis języka. Istotą metody aksjomatycznej (w matematyce) jest określenie obiektów matematycznych oraz relacji między nimi. W odniesieniu do lingwistyki metoda aksjomatyczna polega na: sformalizowaniu języka danej teorii lingwistycznej; wybraniu z otrzymanego w powyższy sposób języka formalnego pewnej ilości zdań, przyjmowanych bez dowodu (aksjomaty); 1 Opublikowano w: Lingua Posnaniensis XXII, 1979,
2 wyprowadzaniu (za pomocą ustalonych reguł wnioskowania) twierdzeń z przyjętych aksjomatów twierdzenia te mają opisywać wewnętrzną strukturę języka. Proces tworzenia modelu l, czyli teorii opisującej strukturę języka, omawiany był przez wielu autorów (por. np. [4], [6]). Najkrócej mówiąc, skonstruowanie teorii lingwistycznej polega na ustaleniu oraz opisie jednostek językowych i zależności między tymi jednostkami. Analizując wypowiedzi lingwistów, można uznać, że przyjmowane są przy tym następujące założenia (por. [4], [5]): 1. Bezpośrednio dane dla teorii lingwistycznej są jedynie konkretne wypowiedzi (dowolnej rozciągłości). 2. Wypowiedzi dzielone są na konstytuujące je jednostki. 3. Podstawą dzielenia wypowiedzi (kryterium wydzielania jednostek z wypowiedzi) są zależności między jednostkami, wiążące je w całą wypowiedź. 4. W języku wyodrębnia się poziomy, tj. zbiory takich wypowiedzi, w których zależności łączące jednostki składowe wypowiedzi mają taką samą naturę. Zależności między jednostkami językowymi są różnego rodzaju na różnych poziomach językowych. 5. Dla każdych dwóch sąsiednich poziomów językowych, wypowiedzi należące do jednego z tych poziomów traktowane są jako określonego rodzaju kombinacje wypowiedzi należących do drugiego z rozpatrywanych poziomów. Z powyższych założeń wynika, że każdej wypowiedzi językowej przyporządkowuje się pewien konstrukt, składający się ze zbioru jednostek językowych oraz wiążących te jednostki zależności (np. zdanie złożone z wyrazów z zaznaczonym związkiem rządu, zgody, itp.). Naturalne jest nazywanie tych konstruktów tekstami zanalizowanymi. Zbiór tekstów zanalizowanych (otrzymanych w opisany powyżej sposób) stanowi materiał wyjściowy dla matematyzacji danej teorii lingwistycznej. Naturalnym sposobem matematyzacji teorii lingwistycznej, utworzonej z uwzględnieniem założeń 1. 5., jest następująca procedura (+): każdemu tekstowi zanalizowanemu przyporządkowujemy strukturę relacyjną o dziedzinie mającej tyle elementów, z ilu jednostek składa się dany tekst, a której relacje odpowiadają zależnościom między jednostkami w tym tekście. W wyniku zastosowania tej procedury każdemu poziomowi językowemu przyporządkowana zostaje rodzina struktur relacyjnych o tej samej sygnaturze. Można zapisać (w języku teorii mnogości) warunki stwierdzające powiązanie poszczególnych poziomów językowych. Dokładniejsze rozważania na ten temat znaleźć można w [5]. Procedura (+) stanowi przejście od modelu l do modelu m. Opiszemy tę zależność nieco dokładniej. Zakładamy przy tym, że czytelnik zna rachunek predykatów i teorię modeli w zakresie elementarnym. Dla ustalenia uwagi zajmować się będziemy dalej jednym, dowolnie wybranym poziomem językowym. Niech S będzie rodziną struktur 2
3 relacyjnych przyporządkowanych tekstom z tego poziomu za pomocą (+). Oznaczmy przez L język rachunku predykatów pierwszego rzędu, którego stałymi pozalogicznymi są nazwy relacji występujących w strukturach z S. Potrzebnych nam będzie w dalszym ciągu jeszcze kilka oznaczeń: niech M ω oznacza klasę wszystkich struktur relacyjnych o sygnaturze ω; niech L ω oznacza język rachunku predykatów pierwszego rzędu o zbiorze stałych pozalogicznych równym ω; dla K M ω niech T h(k) oznacza zbiór tych zdań z języka L ω, które prawdziwe są we wszystkich strukturach należących do K; jeśli F jest zbiorem zdań z L ω, to niech Mod(F ) będzie zbiorem tych struktur należących do M ω, w których prawdziwe są wszystkie zdania z F ; mówimy, że K M ω jest aksjomatyzowalną klasą struktur, jeśli istnieje zbiór F zdań z języka L ω taki, że K = Mod(F ); dla A, B M ω zapis A B oznacza, że A i B są elementarnie równoważne, tj. spełniają dokładnie te same zdania z języka L ω. Wróćmy jeszcze do analizowanej teorii lingwistycznej. W przyjętych przez nas oznaczeniach, jeśli S jest zbiorem struktur relacyjnych odpowiadających tekstom zanalizowanym z ustalonego poziomu językowego, to L jest językiem formalnym odpowiadającym językowi rozpatrywanej teorii lingwistycznej (zrelatywizowanej do ustalonego poziomu językowego). Zbiór T h(s) jest zbiorem wszystkich zdań języka L, prawdziwych we wszystkich strukturach należących do S. Zatem T h(s) jest formalnym zapisem własności rozpatrywanego poziomu językowego. Zgodnie z poprzednimi uwagami, zbiór T h(s) nazywać możemy modelem l danego poziomu językowego. Tenże poziom językowy będzie opisany w sposób aksjomatyczny, jeśli znajdziemy zbiór F zdań z języka L taki, że S = Mod(F ). Widzimy zatem, że pojęcia: model l i aksjomatyczny opis języka nie muszą oznaczać tego samego. Pokażemy to zresztą za chwilę w sposób ścisły, używając niektórych twierdzeń logiki matematycznej. Najpierw jednak rozpatrzmy konkretny przykład. Niech mianowicie S będzie rodziną struktur relacyjnych odpowiadającą poziomowi zdań w jakimś ustalonym języku (np. angielskim). Wtedy S składa się oczywiście ze struktur skończonych. Przypuśćmy, że analizowana przez nas teoria lingwistyczna nie nakłada żadnych ograniczeń na długość zdania (przykładem takiej teorii jest teoria gramatyk generatywnych). Wtedy w S istnieć będą struktury dowolnej mocy skończonej. Można w takim przypadku udowodnić, że S nie jest aksjomatyzowalnym zbiorem struktur, czyli że własność być zdaniem (np. języka angielskiego) nie daje się opisać w sposób aksjomatyczny w sformalizowanym języku danej teorii lingwistycznej. Mianowicie prawdziwe jest następujące twierdzenie: Twierdzenie 1. Załóżmy, że S zawiera struktury dowolnie dużej mocy skończonej. Wtedy nie istnieje zbiór F zdań z języka L taki, że S = Mod(F ) (inaczej mówiąc, S nie jest wtedy aksjomatyzowalnym zbiorem struktur nie istnieje aksjomatyczny opis zbioru S w języku L). 3
4 Dowód powyższego twierdzenia znaleźć można np. w [3]. Przeprowadza się go przy użyciu konstrukcji tzw. ultraproduktu struktur relacyjnych. Twierdzenie 1 jest szczególnym przypadkiem z szerokiej klasy faktów dotyczących aksjomatyzowalności zbiorów struktur relacuyjnych. Mówi ono kiedy nie można aksjomatycznie opisać zbioru S w języku L. Powstaje oczywiście problem, jakie są warunki konieczne i wystarczające na to, żeby istniała taka aksjomatyka. Warunki takie podaje znane w teorii modeli twierdzenie: Twierdzenie 2. S jest aksjomatyzowalnym zbiorem struktur wtedy i tylko wtedy, gdy S = Mod(T h(s)). Dowód powyższego twierdzenia wykorzystuje następujący prosty fakt: dla dowolnego zbioru F zdań z języka L zachodzi równość Mod(T h(mod(f ))) = Mod(F ) (fakt ten wynika z twierdzenia o pełności dla rachunku predykatów zbiór T h(mod(f )) jest zbiorem wszystkich zdań dowodliwych z F ). W odniesieniu do teorii lingwistycznych twierdzenie 2 podaje warunki konieczne i wystarczające na to, żeby dany poziom językowy mógł być opisany w sposób aksjomatyczny. Korzystając z uczynionych poprzednio uwag i przyjmując, że S jest modelem m danego poziomu językowego, widzimy, że twierdzenie 2 pokazuje związki między modelem m, modelem l oraz aksjomatycznym opisem rozpatrywanego poziomu językowego. Z drugiej strony, twierdzenia 1 i 2 wydają się uzasadniać pewien pesymizm, jeśli chodzi o aksjomatyczne opisy języka naturalnego (poziomów językowych) w formalnym języku rachunku predykatów pierwszego rzędu. Na poparcie tego stanowiska przytoczyć można jeszcze jeden fakt. W tym celu, oznaczmy dla A M ω przez th(a) zbiór wszystkich zdań z języka L ω prawdziwych w A. Zachodzi następująca równoważność: dla dowolnych A, B M ω : A B wtedy i tylko wtedy, gdy B Mod(th(A)). Wynika stąd, że S daje się przedstawić w postaci sumy aksjomatyzowalnych zbiorów struktur wtedy i tylko wtedy, gdy S jest zamknięty na elementarną równoważność. Inaczej mówiąc, prawdziwe jest następujące twierdzenie: Twierdzenie 3. Następujące warunki są równoważne: a) istnieje rodzina {F 1, F 2,...} zbiorów zdań z języka L taka, że S = n Mod(F n ) b) jeśli A S oraz A B, to B S. 4
5 Fakt powyższy ma następujące, ważkie dla lingwistyki konsekwencje: jeżeli matematyzacja danej teorii lingwistycznej nie spełnia warunku b), to nie istnieje zbiór (nawet nieskończony) teorii pierwszego rzędu, który stanowiłby rodzinę aksjomatyk dla zbioru tekstów z danego poziomu językowego. Porównajmy wnioski wynikające z twierdzeń z uwagami J.A. SZREJDERA ([7], str. 216): Mówiliśmy już, że teksty języka naturalnego można rozpatrywać jako modele. Zagadnienia lingwistyki matematycznej byłyby w pewnym sensie wyczerpane, jeżeli udałoby się wykazać, że teksty języka naturalnego tworzą aksjomatyzowalną klasę modeli oraz udało się skonstruować odpowiednią teorię. Najprawdopodobniej zadanie to w takiej formi jest nierozwiązalne. Wydaje się jednak, że nie należy popadać w zbyt głęboki pesymizm, jeżeli chodzi o aksjomatyczne opisy języka. Posługując się ścisłymi metodami dedukcyjnymi można udowodnić bardzo wiele interesujących faktów na temat modeli m i modeli l dla języka naturalnego. Ciekawe wydają się także niektóre propozycje J.A. SZREJDERA dotyczące uczynienia bardziej adekwatnymi formalnych procedur używanych w badaniu języka. Znane są też aksjomatyczne opisy języka w językach formalnych o większej mocy wyrażania niż język rachunku predykatów pierwszego rzędu (por. np. [2]). BIBLIOGRAFIA 1. APRESJAN, J., Koncepcje i metody współczesnej lingwistyki strukturalnej, PIW, Warszawa BATÓG, T., The axiomatic method in phonology, Routledge & Kegan Paul, London BELL, J.L., SLOMSON, A.B, Models and ultraproducts, North-Holland Publishing Company, Amsterdam London HJELMSLEV, L., Prolegomena to a theory of language, The University of Wisconsin Press, Madison POGONOWSKI, J., Mathematical model of linguistic analysis, Studia Anglica Posnaniensia X, 1979, REWZIN, I.I., Modeli jazyka, Izd. AH CCCP, Moskwa SZREJDER, J.A., Równość, podobieństwo, porzadek, Wydawnictwa Naukowo- Techniczne, Warszawa SZREJDER, J.A., Modeli w lingwistikie i w matiematikie. W: Matiematiczeskaja lingwistika, Nauka, Moskwa Allatum die 18 mensis Martii
LOGIKA I TEORIA ZBIORÓW
LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja
domykanie relacji, relacja równoważności, rozkłady zbiorów
1 of 8 2012-03-28 17:45 Logika i teoria mnogości/wykład 5: Para uporządkowana iloczyn kartezjański relacje domykanie relacji relacja równoważności rozkłady zbiorów From Studia Informatyczne < Logika i
Wykład 4. Określimy teraz pewną ważną klasę pierścieni.
Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia
Wstęp do Matematyki (4)
Wstęp do Matematyki (4) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Liczby kardynalne Jerzy Pogonowski (MEG) Wstęp do Matematyki (4) Liczby kardynalne 1 / 33 Wprowadzenie
Wstęp do Matematyki (2)
Wstęp do Matematyki (2) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Własności relacji Jerzy Pogonowski (MEG) Wstęp do Matematyki (2) Własności relacji 1 / 24 Wprowadzenie
5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów.
5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. Algebra jest jednym z najstarszych działów matematyki dotyczącym początkowo tworzenia metod rozwiązywania równań
O pewnych związkach teorii modeli z teorią reprezentacji
O pewnych związkach teorii modeli z teorią reprezentacji na podstawie referatu Stanisława Kasjana 5 i 12 grudnia 2000 roku 1. Elementy teorii modeli Będziemy rozważać język L składający się z przeliczalnej
Uwaga 1. Zbiory skończone są równoliczne wtedy i tylko wtedy, gdy mają tyle samo elementów.
Logika i teoria mnogości Wykład 11 i 12 1 Moce zbiorów Równoliczność zbiorów Def. 1. Zbiory X i Y są równoliczne (X ~ Y), jeśli istnieje bijekcja f : X Y. O funkcji f mówimy wtedy, że ustala równoliczność
Logika Matematyczna (1)
Logika Matematyczna (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 4 X 2007 Jerzy Pogonowski (MEG) Logika Matematyczna (1) 4 X 2007 1 / 18 Plan konwersatorium Dzisiaj:
Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.
Grupy. Permutacje 1 1 Definicja grupy Niech G będzie zbiorem. Działaniem na zbiorze G nazywamy odwzorowanie (oznaczane, jak mnożenie, przez ) przyporządkowujące każdej parze uporządkowanej (a, b) G G element
Rekurencyjna przeliczalność
Rekurencyjna przeliczalność Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Funkcje rekurencyjne Jerzy Pogonowski (MEG) Rekurencyjna przeliczalność Funkcje rekurencyjne
Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 15. Trójwartościowa logika zdań Łukasiewicza
Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 15. Trójwartościowa logika zdań Łukasiewicza 1 Wprowadzenie W logice trójwartościowej, obok tradycyjnych wartości logicznych,
Równoliczność zbiorów
Logika i Teoria Mnogości Wykład 11 12 Teoria mocy 1 Równoliczność zbiorów Def. 1. Zbiory X i Y nazywamy równolicznymi, jeśli istnieje bijekcja f : X Y. O funkcji f mówimy wtedy,że ustala równoliczność
Zbiory, relacje i funkcje
Zbiory, relacje i funkcje Zbiory będziemy zazwyczaj oznaczać dużymi literami A, B, C, X, Y, Z, natomiast elementy zbiorów zazwyczaj małymi. Podstawą zależność między elementem zbioru a zbiorem, czyli relację
Wykład 11: Podstawowe pojęcia rachunku prawdopodobieństwa
Wykład : Podstawowe pojęcia rachunku prawdopodobieństwa dr Mariusz Grządziel 3 maja 203 Doświadczenie losowe Doświadczenie nazywamy losowym, jeśli: może być powtarzane (w zasadzie) w tych samych warunkach;
Matematyka dyskretna. Andrzej Łachwa, UJ, /10
Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 10/10 Podziały i liczby Stirlinga Liczba Stirlinga dla cykli (często nazywana liczbą Stirlinga pierwszego rodzaju) to liczba permutacji
DODATEK 1: Wtedy h(α) = 1 oraz h(β) = 0. Jak pamiętamy ze szkoły, obraz sumy zbiorów jest sumą obrazów tych zbiorów. Mamy zatem:
DODATEK 1: DOWODY NIEKTÓRYCH TWIERDZEŃ DOTYCZACYCH SEMANTYKI KLASYCZNEGO RACHUNKU ZDAŃ 2.2. TWIERDZENIE O DEDUKCJI WPROST (wersja semantyczna). Dla dowolnych X F KRZ, α F KRZ, β F KRZ zachodzą następujące
Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany
Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany Załóżmy, że wiemy co to są liczby naturalne... Język (I-go rzędu): V, { F n : n IN
Indukcja matematyczna
Indukcja matematyczna 1 Zasada indukcji Rozpatrzmy najpierw następujący przykład. Przykład 1 Oblicz sumę 1 + + 5 +... + (n 1). Dyskusja. Widzimy że dla n = 1 ostatnim składnikiem powyższej sumy jest n
Metody dowodzenia twierdzeń i automatyzacja rozumowań Systemy aksjomatyczne I
Metody dowodzenia twierdzeń i automatyzacja rozumowań Systemy aksjomatyczne I Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@.edu.pl OSTRZEŻENIE Niniejszy plik nie zawiera wykładu z Metod dowodzenia...
KONGRUENCJE. 1. a a (mod m) a b (mod m) b a (mod m) a b (mod m) b c (mod m) a c (mod m) Zatem relacja kongruencji jest relacją równoważności.
KONGRUENCJE Dla a, b, m Z mówimy, że liczba a przystaje do liczby b modulo m a b (mod m) m (a b) (a b (mod m) można też zapisać jako: a = km + b, k Z). Liczbę m nazywamy modułem kongruencji. Własności:
1 Określenie pierścienia
1 Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące
Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI
Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Matematyka dla liceum ogólnokształcącego i technikum w zakresie podstawowym i rozszerzonym Z E S Z Y T M E T O D Y C Z N Y Miejski
Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017
Logika Stosowana Wykład 1 - Logika zdaniowa Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 30 Plan wykładu 1 Język
Andrzej Wiśniewski Logika II. Wykłady 10b i 11. Semantyka relacyjna dla normalnych modalnych rachunków zdań
Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykłady 10b i 11. Semantyka relacyjna dla normalnych modalnych rachunków zdań 1 Struktury modelowe Przedstawimy teraz pewien
Matematyka Dyskretna Zestaw 2
Materiały dydaktyczne Matematyka Dyskretna (Zestaw ) Matematyka Dyskretna Zestaw 1. Wykazać, że nie istnieje liczba naturalna, która przy dzieleniu przez 18 daje resztę 13, a przy dzieleniu przez 1 daje
Dlaczego nie wystarczają liczby wymierne
Dlaczego nie wystarczają liczby wymierne Analiza zajmuje się problemami, w których pojawia się przejście graniczne. Przykładami takich problemów w matematyce bądź fizyce mogą być: 1. Pojęcie prędkości
Teoria miary. WPPT/Matematyka, rok II. Wykład 5
Teoria miary WPPT/Matematyka, rok II Wykład 5 Funkcje mierzalne Niech (X, F) będzie przestrzenią mierzalną i niech f : X R. Twierdzenie 1. NWSR 1. {x X : f(x) > a} F dla każdego a R 2. {x X : f(x) a} F
ZALICZENIE WYKŁADU: 30.I.2019
MATEMATYCZNE PODSTAWY KOGNITYWISTYKI ZALICZENIE WYKŁADU: 30.I.2019 KOGNITYWISTYKA UAM, 2018 2019 Imię i nazwisko:.......... POGROMCY PTAKÓW STYMFALIJSKICH 1. [2 punkty] Podaj definicję warunku łączności
Logika Matematyczna (1)
Logika Matematyczna (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Wprowadzenie Jerzy Pogonowski (MEG) Logika Matematyczna (1) Wprowadzenie 1 / 20 Plan konwersatorium
Uwaga 1.2. Niech (G, ) będzie grupą, H 1, H 2 < G. Następujące warunki są równoważne:
1. Wykład 1: Produkty grup. Produkty i koprodukty grup abelowych. Przypomnijmy konstrukcje słabych iloczynów (sum) prostych i iloczynów (sum) prostych grup znane z kursowego wykładu algebry. Ze względu
Dowód pierwszego twierdzenia Gödela o. Kołmogorowa
Dowód pierwszego twierdzenia Gödela o niezupełności arytmetyki oparty o złożoność Kołmogorowa Grzegorz Gutowski SMP II rok opiekun: dr inż. Jerzy Martyna II UJ 1 1 Wstęp Pierwsze twierdzenie o niezupełności
Relacje. opracował Maciej Grzesiak. 17 października 2011
Relacje opracował Maciej Grzesiak 17 października 2011 1 Podstawowe definicje Niech dany będzie zbiór X. X n oznacza n-tą potęgę kartezjańską zbioru X, tzn zbiór X X X = {(x 1, x 2,..., x n ) : x k X dla
Elementy logiki i teorii mnogości
Elementy logiki i teorii mnogości Zdanie logiczne Zdanie logiczne jest to zdanie oznajmujące, któremu można przypisać określoną wartość logiczną. W logice klasycznej zdania dzielimy na: prawdziwe (przypisujemy
Wykład 1. Na początku zajmować się będziemy zbiorem liczb całkowitych
Arytmetyka liczb całkowitych Wykład 1 Na początku zajmować się będziemy zbiorem liczb całkowitych Z = {0, ±1, ±2,...}. Zakładamy, że czytelnik zna relację
Metody dowodzenia twierdzeń i automatyzacja rozumowań Na początek: teoria dowodu, Hilbert, Gödel
Metody dowodzenia twierdzeń i automatyzacja rozumowań Na początek: teoria dowodu, Hilbert, Gödel Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@.edu.pl OSTRZEŻENIE Niniejszy plik nie zawiera
Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki
Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 5. Wprowadzenie do semantyki teoriomodelowej cz.5. Wynikanie logiczne 1 Na poprzednim wykładzie udowodniliśmy m.in.:
LX Olimpiada Matematyczna
LX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 13 lutego 2009 r. (pierwszy dzień zawodów) Zadanie 1. Liczby rzeczywiste a 1, a 2,..., a n (n 2) spełniają warunek a 1
Andrzej Wiśniewski Logika II. Wykład 6. Wprowadzenie do semantyki teoriomodelowej cz.6. Modele i pełność
Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 6. Wprowadzenie do semantyki teoriomodelowej cz.6. Modele i pełność 1 Modele Jak zwykle zakładam, że pojęcia wprowadzone
Monoidy wolne. alfabetem. słowem długością słowa monoidem wolnym z alfabetem Twierdzenie 1.
3. Wykłady 3 i 4: Języki i systemy dedukcyjne. Klasyczny rachunek zdań. 3.1. Monoidy wolne. Niech X będzie zbiorem niepustym. Zbiór ten będziemy nazywać alfabetem. Skończony ciąg elementów alfabetu X będziemy
Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych
Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych Marcin Michalski 14.11.014 1 Wprowadzenie Jedną z intuicji na temat liczb rzeczywistych jest myślenie o nich jako liczbach,
Podstawowe struktury algebraiczne
Maciej Grzesiak Podstawowe struktury algebraiczne 1. Wprowadzenie Przedmiotem algebry było niegdyś przede wszystkim rozwiązywanie równań. Obecnie algebra staje się coraz bardziej nauką o systemach matematycznych.
Przykładowe zadania z teorii liczb
Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę
VI. Równania różniczkowe liniowe wyższych rzędów
VI. 1. Równanie różniczkowe liniowe n-tego rzędu o zmiennych współczynnikach Niech podobnie jak w poprzednim paragrafie K = C lub K = R. Podobnie jak w dziedzinie rzeczywistej wprowadzamy pochodne wyższych
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ 1 Inferencyjna równoważność formuł Definicja 9.1. Formuła A jest
Egzamin z logiki i teorii mnogości, rozwiązania zadań
Egzamin z logiki i teorii mnogości, 08.02.2016 - rozwiązania zadań 1. Niech φ oraz ψ będą formami zdaniowymi. Czy formuła [( x : φ(x)) ( x : ψ(x))] [ x : (φ(x) ψ(x))] jest prawem rachunku kwantyfikatorów?
Logika Matematyczna (10)
Logika Matematyczna (10) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Rezolucja w KRZ Jerzy Pogonowski (MEG) Logika Matematyczna (10) Rezolucja w KRZ 1 / 39 Plan
Matematyka dyskretna. Andrzej Łachwa, UJ, /14
Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 4/14 Indukcja matematyczna Poprawność indukcji matematycznej wynika z dobrego uporządkowania liczb naturalnych, czyli z następującej
Matematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2015 andrzej.lachwa@uj.edu.pl 3/15 Indukcja matematyczna Poprawność indukcji matematycznej wynika z dobrego uporządkowania liczb naturalnych, czyli z następującej
Informacja o przestrzeniach Hilberta
Temat 10 Informacja o przestrzeniach Hilberta 10.1 Przestrzenie unitarne, iloczyn skalarny Niech dana będzie przestrzeń liniowa X. Załóżmy, że każdej parze elementów x, y X została przyporządkowana liczba
Analiza funkcjonalna 1.
Analiza funkcjonalna 1. Wioletta Karpińska Semestr letni 2015/2016 0 Bibliografia [1] Banaszczyk W., Analiza matematyczna 3. Wykłady. (http://math.uni.lodz.pl/ wbanasz/am3/) [2] Birkholc A., Analiza matematyczna.
Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011).
Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011). Poprzedniczka tej notatki zawierała błędy! Ta pewnie zresztą też ; ). Ćwiczenie 3 zostało zmienione, bo żądałem, byście dowodzili czegoś,
1 Działania na zbiorach
M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej
Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i
Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i A (symbol F i oznacza ilość argumentów funkcji F i ). W rozważanych przez nas algebrach
Semiotyka logiczna. Jerzy Pogonowski. Dodatek 4. Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl
Semiotyka logiczna Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Dodatek 4 Jerzy Pogonowski (MEG) Semiotyka logiczna Dodatek 4 1 / 17 Wprowadzenie Plan na dziś Plan
Kongruencje twierdzenie Wilsona
Kongruencje Wykład 5 Twierdzenie Wilsona... pojawia się po raz pierwszy bez dowodu w Meditationes Algebraicae Edwarda Waringa (1770), profesora (Lucasian Professor) matematyki w Cambridge, znanego głównie
Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Indukcja Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Charakteryzacja zbioru liczb naturalnych Arytmetyka liczb naturalnych Jedną z najważniejszych teorii matematycznych jest arytmetyka
RACHUNEK ZDAŃ 7. Dla każdej tautologii w formie implikacji, której poprzednik również jest tautologią, następnik także jest tautologią.
Semantyczne twierdzenie o podstawianiu Jeżeli dana formuła rachunku zdań jest tautologią i wszystkie wystąpienia pewnej zmiennej zdaniowej w tej tautologii zastąpimy pewną ustaloną formułą, to otrzymana
Zadania z algebry liniowej - sem. I Struktury algebraiczne
Zadania z algebry liniowej - sem. I Struktury algebraiczne Definicja 1. Działaniem dwuargumentowym w niepustym zbiorze A nazywamy każdą funkcję : A A A, tzn. taką funkcję, że zachodzi a,b A (a, b) ((a,
Indukcja matematyczna. Zasada minimum. Zastosowania.
Indukcja matematyczna. Zasada minimum. Zastosowania. Arkadiusz Męcel Uwagi początkowe W trakcie zajęć przyjęte zostaną następujące oznaczenia: 1. Zbiory liczb: R - zbiór liczb rzeczywistych; Q - zbiór
Układy równań i nierówności liniowych
Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +
Elementy logiki matematycznej
Elementy logiki matematycznej Przedmiotem logiki matematycznej jest badanie tzw. wyrażeń logicznych oraz metod rozumowania i sposobów dowodzenia używanych w matematyce, a także w innych dziedzinach, w
(4) x (y z) = (x y) (x z), x (y z) = (x y) (x z), (3) x (x y) = x, x (x y) = x, (2) x 0 = x, x 1 = x
2. Wykład 2: algebry Boole a, kraty i drzewa. 2.1. Algebra Boole a. 1 Ważnym dla nas przykładem algebr są algebry Boole a, czyli algebry B = (B,,,, 0, 1) typu (2, 2, 1, 0, 0) spełniające własności: (1)
Prawa wielkich liczb, centralne twierdzenia graniczne
, centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne
Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone
Rozdział 4 Ciągi nieskończone W rozdziale tym wprowadzimy pojęcie granicy ciągu. Dalej rozszerzymy to pojęcie na przypadek dowolnych funkcji. Jak zauważyliśmy we wstępie jest to najważniejsze pojęcie analizy
Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:
Ciągi rekurencyjne Zadanie 1 Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: w dwóch przypadkach: dla i, oraz dla i. Wskazówka Należy poszukiwać rozwiązania w postaci, gdzie
Paradygmaty dowodzenia
Paradygmaty dowodzenia Sprawdzenie, czy dana formuła rachunku zdań jest tautologią polega zwykle na obliczeniu jej wartości dla 2 n różnych wartościowań, gdzie n jest liczbą zmiennych zdaniowych tej formuły.
Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);
Ciała i wielomiany 1 Ciała i wielomiany 1 Definicja ciała Niech F będzie zbiorem, i niech + ( dodawanie ) oraz ( mnożenie ) będą działaniami na zbiorze F. Definicja. Zbiór F wraz z działaniami + i nazywamy
0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań.
Wykłady z Analizy rzeczywistej i zespolonej w Matematyce stosowanej Wykład ELEMENTY LOGIKI ALGEBRA BOOLE A Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek
F t+ := s>t. F s = F t.
M. Beśka, Całka Stochastyczna, wykład 1 1 1 Wiadomości wstępne 1.1 Przestrzeń probabilistyczna z filtracją Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną i niech F = {F t } t 0 będzie rodziną
KARTA KURSU. Kod Punktacja ECTS* 7
KARTA KURSU Nazwa Nazwa w j. ang. Wstęp do logiki i teorii mnogości Introduction to Logic and Set Theory Kod Punktacja ECTS* 7 Koordynator Dr hab. prof. UP Piotr Błaszczyk Zespół dydaktyczny: Dr hab. prof.
- Dla danego zbioru S zbiór wszystkich jego podzbiorów oznaczany symbolem 2 S.
1 Zbiór potęgowy - Dla danego zbioru S zbiór wszystkich jego podzbiorów oznaczany symbolem 2 S. - Dowolny podzbiór R zbioru 2 S nazywa się rodziną zbiorów względem S. - Jeśli S jest n-elementowym zbiorem,
Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z 21 grudnia 2014)
dr inż. Ryszard Rębowski DEFINICJA CIĄGU LICZBOWEGO Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z grudnia 04) Definicja ciągu liczbowego Spośród
Wykład 4 Przebieg zmienności funkcji. Badanie dziedziny oraz wyznaczanie granic funkcji poznaliśmy na poprzednich wykładach.
Wykład Przebieg zmienności funkcji. Celem badania przebiegu zmienności funkcji y = f() jest poznanie ważnych własności tej funkcji na podstawie jej wzoru. Efekty badania pozwalają naszkicować wykres badanej
Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi
M. Beśka, Wstęp do teorii miary, Dodatek 158 10 Dodatek 10.1 Przestrzenie metryczne Niech X będzie niepustym zbiorem. Funkcję d : X X [0, ) spełniającą dla x, y, z X warunki (i) d(x, y) = 0 x = y, (ii)
Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność?
Semina Nr 3 Scientiarum 2004 Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność? W tym krótkim opracowaniu chciałbym przedstawić dowody obu twierdzeń Gödla wykorzystujące
RACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA
Wydział: WiLiŚ, Transport, sem.2 dr Jolanta Dymkowska RACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA Przestrzeń probabilistyczna Modelem matematycznym (tj. teoretycznym, wyidealizowanym,
Definicja odwzorowania ciągłego i niektóre przykłady
Odwzorowania Pojęcie odwzorowania pomiędzy dwoma zbiorami było już definiowane, ale dawno, więc nie od rzeczy będzie przypomnieć, że odwzorowaniem nazywamy sposób przyporządkowania (niekoniecznie każdemu)
Logika i teoria mnogości Wykład 14
Teoria rekursji Teoria rekursji to dział logiki matematycznej zapoczątkowany w latach trzydziestych XX w. Inicjatorzy tej dziedziny to: Alan Turing i Stephen Kleene. Teoria rekursji bada obiekty (np. funkcje,
A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.
M. Beśka, Wstęp do teorii miary, rozdz. 3 25 3 Miara 3.1 Definicja miary i jej podstawowe własności Niech X będzie niepustym zbiorem, a A 2 X niepustą rodziną podzbiorów. Wtedy dowolne odwzorowanie : A
0 + 0 = 0, = 1, = 1, = 0.
5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,
1. Synteza automatów Moore a i Mealy realizujących zadane przekształcenie 2. Transformacja automatu Moore a w automat Mealy i odwrotnie
Opracował: dr hab. inż. Jan Magott KATEDRA INFORMATYKI TECHNICZNEJ Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych ćwiczenie 207 Temat: Automaty Moore'a i Mealy 1. Cel ćwiczenia Celem ćwiczenia jest
Algebra abstrakcyjna
Algebra abstrakcyjna Przykłady 1. Sama liczba 0 tworzy grupę (rzędu 1) ze względu na zwykłe dodawanie, również liczba 1 tworzy grupę (rzędu 1) ze względu na zwykłe mnożenie.. Liczby 1 i 1 stanowią grupą
Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)
Zał nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : Logika i Struktury Formalne Nazwa w języku angielskim : Logic and Formal Structures Kierunek studiów : Informatyka
Wykład z równań różnicowych
Wykład z równań różnicowych 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp.
Pochodną funkcji w punkcie (ozn. ) nazywamy granicę ilorazu różnicowego:
Podstawowe definicje Iloraz różnicowy funkcji Def. Niech funkcja będzie określona w pewnym przedziale otwartym zawierającym punkt. Ilorazem różnicowym funkcji w punkcie dla przyrostu nazywamy funkcję Pochodna
Wykład 5. Ker(f) = {v V ; f(v) = 0}
Wykład 5 Niech f : V W będzie przekształceniem liniowym przestrzeni wektorowych Wtedy jądrem przekształcenia nazywamy zbiór tych elementów z V, których obrazem jest wektor zerowy w przestrzeni W Jądro
n=0 (n + r)a n x n+r 1 (n + r)(n + r 1)a n x n+r 2. Wykorzystując te obliczenia otrzymujemy, że lewa strona równania (1) jest równa
Równanie Bessela Będziemy rozważać następujące równanie Bessela x y xy x ν )y 0 ) gdzie ν 0 jest pewnym parametrem Rozwiązania równania ) nazywamy funkcjami Bessela rzędu ν Sprawdzamy, że x 0 jest regularnym
Schemat rekursji. 1 Schemat rekursji dla funkcji jednej zmiennej
Schemat rekursji 1 Schemat rekursji dla funkcji jednej zmiennej Dla dowolnej liczby naturalnej a i dowolnej funkcji h: N 2 N istnieje dokładnie jedna funkcja f: N N spełniająca następujące warunki: f(0)
2. Wymagania wstępne w zakresie wiedzy, umiejętności oraz kompetencji społecznych (jeśli obowiązują): BRAK
OPIS MODUŁU KSZTAŁCENIA (SYLABUS) I. Informacje ogólne 1. Nazwa modułu kształcenia: JĘZYKOZNAWSTWO OGÓLNE 2. Kod modułu kształcenia: 08-KODM-JOG 3. Rodzaj modułu kształcenia: OBLIGATORYJNY 4. Kierunek
Matematyka dyskretna. Andrzej Łachwa, UJ, /10
Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 3/10 indukcja matematyczna Poprawność indukcji matematycznej wynika z dobrego uporządkowania liczb naturalnych, czyli z następującej
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ 1 Tezy KRZ Pewien system aksjomatyczny KRZ został przedstawiony
ZAŁOŻENIA FILOZOFICZNE
ZAŁOŻENIA FILOZOFICZNE Koło Wiedeńskie Karl Popper Thomas Kuhn FILOZOFIA A NAUKA ZAŁOŻENIA W TEORIACH NAUKOWYCH ZAŁOŻENIA ONTOLOGICZNE Jaki jest charakter rzeczywistości językowej? ZAŁOŻENIA EPISTEMOLOGICZNE
Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.
Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy
Rachunku prawdopodobieństwa: rys historyczny, aksjomatyka, prawdopodobieństwo warunkowe,
Rachunku prawdopodobieństwa: rys historyczny, aksjomatyka, prawdopodobieństwo warunkowe, niezależność zdarzeń dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu Semestr letni
Logika binarna. Prawo łączności mówimy, że operator binarny * na zbiorze S jest łączny gdy (x * y) * z = x * (y * z) dla każdego x, y, z S.
Logika binarna Logika binarna zajmuje się zmiennymi mogącymi przyjmować dwie wartości dyskretne oraz operacjami mającymi znaczenie logiczne. Dwie wartości jakie mogą te zmienne przyjmować noszą przy tym
KARTA KURSU. Wstęp do logiki i teorii mnogości Introduction to Logic and Set Theory
KARTA KURSU Nazwa Nazwa w j. ang. Wstęp do logiki i teorii mnogości Introduction to Logic and Set Theory Kod Punktacja ECTS* 6 Koordynator Dr hab. prof. UP Piotr Błaszczyk Zespół dydaktyczny dr Antoni
Temat: Zastosowanie wyrażeń regularnych do syntezy i analizy automatów skończonych
Opracował: dr inż. Zbigniew Buchalski KATEDRA INFORMATYKI TECHNICZNEJ Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych ćwiczenie Temat: Zastosowanie wyrażeń regularnych do syntezy i analizy automatów
Wartość przyszła, wartość bieżąca, synergia kapitału. arytmetyki finansowej opisujących wartość przyszłą. Uzyskano w ten sposób
KRZYSZTOF PIASECKI * EFEKT SYNERGII KAPITAŁU W ARYTMETYCE FINANSOWEJ Słowa kluczowe: Wartość przyszła, wartość bieżąca, synergia kapitału Streszczenie: W pracy implementowano warunek synergii kapitału
Całki niewłaściwe. Całki w granicach nieskończonych
Całki niewłaściwe Całki w granicach nieskończonych Wiemy, co to jest w przypadku skończonego przedziału i funkcji ograniczonej. Okazuje się potrzebne uogólnienie tego pojęcia w różnych kierunkach (przedział