Badania powierzchni kryształów i struktur epitaksjalnych. Bogdan J. Kowalski IF PAN
|
|
- Teodor Ostrowski
- 6 lat temu
- Przeglądów:
Transkrypt
1 Badania powierzchni kryształów i struktur epitaksjalnych Bogdan J. Kowalski IF PAN
2 Co to jest powierzchnia?
3 A o Co to jest powierzchnia? GaN(0001) mm GaAs (110)
4 Przykład: powierzchnia GaAs (110) idealna zrekonstruowana
5 Jak opisać powierzchnie:sieci Bravais 5 dwuwymiarowych sieci Bravais (14 sieci Bravais w 3D) K.Oura et al. Surface Science. An Introduction
6 Jak opisać powierzchnie: wskaźniki Millera 1, 2, 3 1, 1/2, 1/3 (6, 3, 2) - 1 płaszczyzna {6, 3, 2} - zbiór równoważnych płaszczyzn K.Oura et al. Surface Science. An Introduction
7 Struktura atomowa powierzchni - przykłady Kryształ kubiczny powierzchniowo centrowany Kryształ kubiczny objętościowo centrowany K.Oura et al. Surface Science. An Introduction K.Oura et al. Surface Science. An Introduction
8 Struktura atomowa powierzchni - opis a s = G 11 a + G 12 b b s = G 21 a + G 22 b a s = m a Przykłady: X Notacja macierzowa G = G G Notacja Wooda b s = nb Si( 111) 3 3 R30 3Bi ( hkl) m n Rϕ G G K.Oura et al. Surface Science. An Introduction
9 Przykład: powierzchnia Si (111) K.Oura et al. Surface Science. An Introduction dangling bonds Si(111)- (1x1) idealne przecięcie sieci Si(111)- (2x1) kryształ przełupany wzdłuż płaszczyzny (111) Si(111)- (7x7) powstaje z 2x1 po wygrzaniu do C dimer-adatom-stacking fault (DAS) model
10 Niezrelaksowany GaAs(110) Struktura elektronowa powierzchni POWIERZCHNIA NIEZRELAKSOWANE OBJĘTOŚĆ ZRELAKSOWANE E.J. Mele, Phys. Rev. B. 17, 1816 (1978)
11 Struktura elektronowa powierzchni (cd) Strefy Brillouna Przestrzeń rzeczywista Przestrzeń odwrotna (wektora k) - X - Γ (100) - M Powierzchniowa strefa Brillouina Objętościowa strefa Brillouina
12 Struktura elektronowa powierzchni (cd) RelaxedGaAs(110) Theory GaAs(110) Experiment A. Zunger, Phys. Rev. B 22, 959 (1980)
13 Co chcemy wiedzieć o powierzchni? Morfologię Skład chemiczny (czystość, obecność domieszek, rozkład powierzchniowy i głębokościowy ) Strukturę atomową Strukturę elektronową Własności elektryczne Własności optyczne
14 Uwaga! Powierzchnia łatwo się zmienia! Ciśnienie (hpa) Średnia droga swobodna Szybkość osiadania (cm -2 s -1 ) Czas powstania 1 ML Ǻ 3x ns cm 4x ms km 4x hour K.Oura et al. Surface Science. An Introduction 1 ML cm -2, współczynnik przylegania = 1 Próżnia rzędu hpa jest niezbędna przy badaniach właściwości czystej powierzchni!
15 Jak wyseparować sygnał pochodzący z powierzchni? Dobrać odpowiednią sondę nm fotony elektrony nm lub Znaleźć charakterystyczną własność powierzchni nm fotony fotony nm
16 Elektrony Co może służyć jako sonda w Mała głębokość penetracji/ucieczki Dostępne techniki: badaniach powierzchni? Mikroskopia Dyfrakcja (LEED, RHEED) W. Mönch Semiconductorsurfaces and interfaces 1993 Spektroskopia (fotoemisja, spektroskopia elektronów Auger a)
17 Co może służyć jako sonda w badaniach powierzchni (cd)? Jony Rozpraszanie (n.p. RBS) Wzmocniona czułość powierzchniowa przy dobranych kierunkach krystalograficznych (kanałowanie) Rozpylanie powierzchni (SIMS) Fotony Różnicowa spektroskopia powierzchniowa Dyfrakcja promieniowania X Wzmocniona czułość powierzchniowa przy ostrych kątach padania
18 Mikroskopie
19 Skaningowa mikroskopia elektronowa (SEM) Próbki nieprzezroczyste R 1 nm U acc 30 kv
20 CL P. przewodnictwa P. walencyjne Promieniowanie rtg Elektrony augerowskie RTG Elektrony pierwotne Katodoluminescencja (CL) Elektrony wstecznie rozproszone (BSE) BSE Elektrony wtórne (SE) SE
21 Detekcja elektronów w SEM SE (U) + BSE Obiektyw BSE SE (L) 50 ev SE Energia BSE Próbka STEM BF STEM DF
22 Wyspy Au na C ZnO Druty ZnTe
23 Skaningowa mikroskopia tunelowa (STM) Ostrze 90% prądu Próbka K.Oura et al. Surface Science. An Introduction
24 Skaningowa mikroskopia tunelowa (STM) (cd) A o GaN(0001) 8 4 Si(111)- (7x7) mm GaN(0001)- (1x1)
25 Dioda laserowa Mikroskopia sił atomowych (AFM) Detektor siła tryb przerywany tryb kontaktowy odpychanie odległość Próbka Piezoskaner tryb bezkontaktowy przyciąganie Kropki MnAsna GaN(0001) sjhsrc.wikispaces.com
26 Spektroskopie
27 Spektroskopia elektronów Auger a (spektroskopia augerowska) Elektron pierwotny E 0 Energia elektronu augerowskiego: E A =(E K -E L1 )-E L2,3 e - Analizator energii V.L. E F V M hn e - Detektor elektronów L 2,3 L 1 Próbka K fluorescencja rentgenowska
28 elektroda zewnętrzna powielacz elektronowy U ω U ref woltomierz fazoczuły próbka U z +U 0 sin(ωt) kolektor elektronów U z komputer elektroda wewnętrzna źródło elektronów U pow Spektrometr augerowski z cylindrycznym analizatorem zwierciadlanym Energia elektronów pierwotnych: do 3kV Rozdzielczość: ΔE/E < 0.7%
29 Dwa mody rejestracji widm augerowskich całkowy różniczkowy
30 0.002 Widmo augerowskiewarstwy ZnO wyhodowanej metodą ALE dn(e)/de (arb.u.) LMM Zn MNN S Cl LMM { O KLL { Zn LMM C KLL Kinetic Energy (ev)
31 Spektroskopia augerowska: 1. Analiza składu powierzchni próbki -detekcja wszystkich pierwiastków z wyjątkiem wodoru i helu 2. Prosta interpretacja widm duża baza widm wzorcowych 3. Możliwa analiza ilościowa szczególnie przez porównanie z wzorcami 4. Możliwość analizy rozkładu w dwóch lub trzech wymiarach 5. Zależność widm od wiązań chemicznych (w szczególnych przypadkach)
32 Spektroskopia fotoemisyjna Detektor elektronów Próbka Analizator energii N vs Energia, kąt...
33 Spektroskopia fotoemisyjna DOS Poziom rdzeniowy Pasmo walencyjne hn Poziom próżni Energia hn e - Analizator energii Detektor elektronów Natężenie El. wtórne En. kinetyczna E F Próbka En. wiązania
34 Fotoemisja wymaga ultra wysokiej próżni! atom.ik-pan.krakow.pl
35 Przygotowanie powierzchni q Łupanie q Epitaksja insitu q Czyszczenie insitu: -trawienie jonowe -wygrzewanie
36 Rentgenowska spektroskopia fotoemisyjna (XPS) lub Spektroskopia elektronowa do analizy chemicznej (ESCA) XPS: hν>1000 ev; hν= 1000 ev k = Å -1 Źródło laboratoryjne: Al K a1, ev 3x10 4 CdTe (110) hν= ev Intensity (Counts) 2x10 4 1x Cd MNN clean Te MNN Te 3p Cd 3p oxidized in air x2 Te 3d O 1s Cd 3d Binding Energy (ev) C 1s Te 4d Cd 4d B.J. Kowalski, B.A. Orlowski, J. Ghijsen, Appl. Surf. Sci. 166, 237 (2000)
37 CdTe(111)A -utlenianie [111] 12 CdTe(111)A; Θ=0 o Te 3d 1.2x10 5 CdTe(111)A; Θ=0 o Cd 3d Intensity (arb. units) x10 5 LO * B. E. (ev) B. E. (ev) Intensity (counts) 0.46 clean Binding Energy (ev) 8.0x x 10 5 * L O x 10 5 * L O 2 4.0x x 10 4 * L O 2 clean Binding Energy (ev) B.J. Kowalski, B.A. Orlowski, J. Ghijsen, Appl. Surf. Sci. 166, 237 (2000)
38 Emisja pod kątem -wzmocniona czułość powierzchniowa CdTe(111)A Emisja normalna Intensity (arb. units) Θ=0 o Te 3d Cd 3d Emisja normalna Emisja kątowa Binding Energy (ev) 8.0 Θ=45 o Te 3d Emisja kątowa Intensity (arb. units) 4.0 Cd 3d B.J. Kowalski, B.A. Orlowski, J. Ghijsen, Appl. Surf. Sci. 166, 237 (2000) Binding Energy (ev)
39 Kątoworozdzielczaspektroskopia fotoemisyjna Kryształ Próżnia Przykład: emisja normalna emisja kątowa Str. wurcytu Strefa Brillouina
40 Fotoemisja ze stanów powierzchniowych i objętościowych Analizator energii e - hn θ Detektor elektronów 2 a Próbka Energy (ev) G 1,6 G A H g A 5,6 A 1,3 10 B d E G Γ A k (A -1 )
41 GaN(0001)-(1x1) G-A 2 a Energy (ev) G 1,6 G A H g A 5,6 A 1,3 10 B d E G Γ A k (A -1 ) Eksp.: B.J. Kowalski et al. Surf. Sci. 548 (2004) Teoria: T. Strasser et al. PRB 60 (1999)
42 GaN(0001)-(1x1) G-K-MGaN(0001):Ga b c g H GaN(0001) d m Exp: B.J. Kowalski et al. Surf. Sci. 548, 220 (2004) Theory: T. Strasser et al. Phys. Rev. B (1999) F.H.Wang et al.phys. Rev. B 64, (2001)
43 Metody dyfrakcyjne
44 Dyfrakcja niskoenergetycznych elektronów (LEED) K.Oura et al. Surface Science. An Introduction
45 Dyfrakcja niskoenergetycznych elektronów (LEED) (cd) GaN(0001) (1x1)
46 Dyfrakcja odbiciowa wysokoenergetycznych elektronów (RHEED) Struktura 2D prążki w obrazie Struktura 3D punkty w obrazie K.Oura et al. Surface Science. An Introduction
47 Metody z wykorzystaniem jonów
48 Rutherfordowskiewsteczne rozpraszanie (RBS) n.p. 4 He 2 MeV detektor K.Oura et al. Surface Science. An Introduction
49 Spektroskopia masowa jonów wtórnych (SIMS) n.p. Cs + lub Ar kev
50 Metody optyczne
51 Różnicowa spektroskopia odbiciowa (SDR) I 0 I 0 R Clean I 0 H 2 O 2 I 0 R OX Stany powierzchniowe Powierzchnia utleniona ΔR/R ΔR/R = (R clean -R ox )/R ox ΔR/R 8πd(ε B -1)ε S/((1-ε B) 2 + (ε B) 2 )
52 UHV próbka SDR układ eksperymentalny kontroler przesłon I n.p. H 2 + przesłona próbka referencyjna I 0 płytka dzieląca soczewka lampa komputer R=I/I 0 Optyczny analizator wielokanałowy
53 CdTe(110) SDR x10 4 L O 2 * 0.01 E max =3.9 ev R/R x10 5 L O 2 * 6x10 5 L O 2 * Peak Area (arb. units) E max =3.5 ev E max =2.8 ev x10 5 L O 2 * E max =2.2 ev Photon Energy (ev) x x x10 5 O 2 Exposure (L) B.J. Kowalski, E. Guziewicz, B.A. Orlowski, A. Cricenti, Appl. Surf. Sci. 142, 33 (1999)
54 Przejścia optyczne pomiędzy stanami powierzchniowymi na CdTe(110) U2 U3 U ev 3.9 ev 2.8 ev Energy (ev) S' S2 S3 S X S4 Γ S5 X' B.J. Kowalski, A. Cricenti, B.A. Orlowski, Surf. Sci. 338, 183 (1995)
55 CdTe(110) SDR ze światłem spolaryzowanym Liniowa odpowiedź optyczna kryształów kubicznych (przy padaniu normalnym) jest izotropowa Anizotropowy sygnał pochodzi z powierzchni [110] [001] 0.04 CdTe (110) E [001] 0.03 E [110] R/R x5 (E [001]-E [110]) Photon Energy (ev) B.J. Kowalski, A. Cricenti, B.A. Orlowski, Surf. Sci. 338, 183 (1995)
56 Spektroskopia anizotropii odbicia (RAS) optyczna sonda epitaksji P. Weightman et al., Rep. Prog. Phys. 68 (2005) Komora MBE z układem RAS Reaktor MOCVD z układem RAS Instituteof Semiconductorand Solid State Physics, University of Linz, Austria
57 Podsumowanie Różne własności powierzchni możemy badać przy pomocy: Mikroskopii elektronowej (SEM) Mikroskopii tunelowej (STM, AFM) Spektroskopii elektronowych (fotoemisyjnej, augerowskiej) Dyfrakcji elektronów (LEED, RHEED) Technik jonowych (RBS, SIMS) Powierzchniowoczułych technik optycznych (SDR, RAS) ale nie wyłącznie
58 Przykładowa literatura: K. Oura, V.G. Lifshits, A.A. Saranin, A.V. Zotov, M. Katayama SurfaceScience. An Introduction Springer 2003 D.P. Woodruff, T.A. Delchar Modern Techniques ofsurfacescience Cambridge University Press H. Luth Surfaces and Interfaces ofsolid Materials Springer 1995 A. Oleś Metody doświadczalne fizyki ciała stałego WN-T 1998
Badania powierzchni kryształów i struktur epitaksjalnych. Bogdan J. Kowalski IF PAN
Badania powierzchni kryształów i struktur epitaksjalnych Bogdan J. Kowalski IF PAN Co to jest powierzchnia? God made solids, but surfaces were the work of thedevil Wolfgang Pauli www.weltchronik.de A o
Badania powierzchni kryształów i struktur epitaksjalnych. Bogdan J. Kowalski IF PAN
Badania powierzchni kryształów i struktur epitaksjalnych Bogdan J. Kowalski IF PAN Co to jest powierzchnia? o GaN (0001) A Co to jest powierzchnia? 8 4 0 0 0.4 0.8 mm GaAs (110) Jak opisać powierzchnie:
Spektroskopia elektronów Augera AES
Spektroskopia elektronów Augera AES (Auger Electron Spectroscopy) Emisja elektronu Augera (Pierre Auger, 1925) elektron Augera E kin E vac 3 poziom Fermiego e C B 2 Φ Α E C E B E A A 1 Energia kinetyczna
Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy)
Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy) Oddziaływanie elektronów ze stałą, krystaliczną próbką wstecznie rozproszone elektrony elektrony pierwotne
Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska
Fizyka powierzchni 5 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Lista zagadnień Fizyka powierzchni i międzypowierzchni, struktura powierzchni
Wykład 12 V = 4 km/s E 0 =.08 e V e = = 1 Å
Wykład 12 Fale materii: elektrony, neutrony, lekkie atomy Neutrony generowane w reaktorze są spowalniane w wyniku zderzeń z moderatorem (grafitem) do V = 4 km/s, co odpowiada energii E=0.08 ev a energia
Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska
Fizyka powierzchni 1 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Lista zagadnień Fizyka powierzchni i międzypowierzchni, struktura powierzchni
Jak badać strukturę powierzchni?
Jak badać strukturę powierzchni? Wykład - 12 15 Anim - ten kod oznacza, że na stronie znajdują się animacje niewidoczne w pliku pdf. Aby oglądnąć te animacje skopiuj zbiór z pokazem PowerPoint Z. Postawa,
Prezentacja aparatury zakupionej przez IKiFP. Mikroskopy LEEM i PEEM
Prezentacja aparatury zakupionej przez IKiFP Mikroskopy LEEM i PEEM Cechy ogólne mikroskopów do badania powierzchni; czułość Å - nm szeroka gama kontrastów topograficzny strukturalny chemiczny magnetyczny
Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska
Fizyka powierzchni 8 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Lista zagadnień Fizyka powierzchni i międzypowierzchni, struktura powierzchni
Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska
Fizyka powierzchni 9 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Lista zagadnień Fizyka powierzchni i międzypowierzchni, struktura powierzchni
Analiza składu chemicznego powierzchni
Analiza składu chemicznego powierzchni Techniki elektronowe Spektrometria elektronów Auger a (AES) zjawisko Auger a Spektrometria fotoelektronów rentgenowskich (XPS) efekt fotoelektryczny Próbka Soczewka
Repeta z wykładu nr 3. Detekcja światła. Struktura krystaliczna. Plan na dzisiaj
Repeta z wykładu nr 3 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:
Fizyka Ciała Stałego
Wykład III Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć krystaliczną. Amorficzne, brak uporządkowania,
Spektroskopia elektronów Augera. AES Auger Electron Spectroscopy
Spektroskopia elektronów Augera AES Auger Electron Spectroscopy Podstawy E k Z E 4 E 3 E 2 E 1 E k =(E 2 -E 3 )-E 4 Proces Auger a Jonizacja głęboko leżącego poziomu elektronowego przez elektrony pierwotne
I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona
r. akad. 004/005 I.4 Promieniowanie rentgenowskie. Efekt Comptona Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona Jan Królikowski Fizyka IVBC 1 r. akad. 004/005 0.01 nm=0.1 A
Spektroskopia fotoelektronów (PES)
Spektroskopia fotoelektronów (PES) Efekt fotoelektryczny hν ( UV lub X) E =hν kin W Proces fotojonizacji w PES: M + hν M + + e E kin (e) = hν E B Φ sp E B energia wiązania elektronu w atomie/cząsteczce
FIZYKA POWIERZCHNI I NANOSTRUKTURY. Wykład odbędzie się w II semstrze 2005/2006
FIZYKA POWIERZCHNI I NANOSTRUKTURY dr hab. Zbigniew Postawa Zakład Fizyki Doświadczalnej pok. 016 Tel. 5626 e-mail: zp@castor.if.uj.edu.pl H H C H H C H H Wykład odbędzie się w II semstrze 2005/2006 Bez
S. Baran - Podstawy fizyki materii skondensowanej Dyfrakcja na kryształach. Dyfrakcja na kryształach
S. Baran - Podstawy fizyki materii skondensowanej Dyfrakcja na kryształach Dyfrakcja na kryształach Warunki dyfrakcji źródło: Ch. Kittel Wstęp do fizyki..., rozdz. 2, rys. 6, str. 49 Konstrukcja Ewalda
półprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski
Plan na dzisiaj Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 półprzewodniki
Metody optyczne w badaniach półprzewodników Przykładami różnymi zilustrowane. Piotr Perlin Instytut Wysokich Ciśnień PAN
Metody optyczne w badaniach półprzewodników Przykładami różnymi zilustrowane Piotr Perlin Instytut Wysokich Ciśnień PAN Jak i czym scharakteryzować kryształ półprzewodnika Struktura dyfrakcja rentgenowska
Elektronowa mikroskopia. T. 2, Mikroskopia skaningowa / Wiesław Dziadur, Janusz Mikuła. Kraków, Spis treści
Elektronowa mikroskopia. T. 2, Mikroskopia skaningowa / Wiesław Dziadur, Janusz Mikuła. Kraków, 2016 Spis treści Wykaz ważniejszych skrótów i oznaczeń 11 Przedmowa 17 Wstęp 19 Literatura 26 Rozdział I.
Źródło typu Thonnemena dostarcza jony: H, D, He, N, O, Ar, Xe, oraz J i Hg.
ZFP dysponuje obecnie unowocześnioną aparaturą, której skompletowanie, uruchomienie i utrzymanie w sprawności wymagało wysiłku zarówno merytorycznego jak i organizacyjnego oraz finansowego. Unowocześnienia
SPEKTROSKOPIA FOTOELEKTRONÓW
SPEKTROSKOPIA FOTOELEKTRONÓW Zjawisko fotoelektryczne światło elektrony = prąd Hertz (1887 r.) zauważył, że gdy światło padało na płytkę metalową umieszczoną w próżni następowała emisja elektronów a ponadto
Elementy teorii powierzchni metali
prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład 2 v.16 Sieci płaskie i struktura powierzchni 1 Typy sieci dwuwymiarowych (płaskich) Przecinając monokryształ wzdłuż jednej z płaszczyzn
Podstawy fizyki wykład 2
D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 5, PWN, Warszawa 2003. H. D. Young, R. A. Freedman, Sear s & Zemansky s University Physics with Modern Physics, Addison-Wesley Publishing Company,
KĄTOWO-ROZDZIELCZA SPEKTROSKOPIA FOTOEMISYJNA, CZYLI STRUKTURA PASMOWA OD A, PRZEZ Γ, DO K
KĄTOWO-ROZDZIELCZA SPEKTROSKOPIA FOTOEMISYJNA, CZYLI STRUKTURA PASMOWA OD A, PRZEZ Γ, DO K Bogdan J. Kowalski Instytut Fizyki Polskiej Akademii Nauk, Aleja Lotników 32/46, PL-02 668 Warszawa Streszczenie:
Ciała stałe. Ciała krystaliczne. Ciała amorficzne. Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami.
Ciała stałe Ciała krystaliczne Ciała amorficzne Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami. r T = Kryształy rosną przez regularne powtarzanie się identycznych
Fizyka powierzchni 6-7/7. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska
Fizyka powierzchni 6-7/7 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Lista zagadnień Fizyka powierzchni i międzypowierzchni, struktura powierzchni ciał stałych Termodynamika równowagowa i
h λ= mv h - stała Plancka (4.14x10-15 ev s)
Twórcy podstaw optyki elektronowej: De Broglie LV. 1924 hipoteza: każde ciało poruszające się ma przyporządkowaną falę a jej długość jest ilorazem stałej Plancka i pędu. Elektrony powinny więc mieć naturę
Charakteryzacja właściwości elektronowych i optycznych struktur AlGaN GaN Dagmara Pundyk
Charakteryzacja właściwości elektronowych i optycznych struktur AlGaN GaN Dagmara Pundyk Promotor: dr hab. inż. Bogusława Adamowicz, prof. Pol. Śl. Zadania pracy Pomiary transmisji i odbicia optycznego
Rozpraszanie nieelastyczne
Rozpraszanie nieelastyczne Przekazywanie energii elektronów wiązki prowadzi do emisji szeregu sygnałów wykorzystywanych w mikroskopii elektronowej i mikroanalizie rentgenowskiej: 1. Niskoenergetyczne elektrony
Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska
Fizyka powierzchni 7 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Lista zagadnień Fizyka powierzchni i międzypowierzchni, struktura powierzchni
SPEKTROSKOPIA FOTOELEKTRONÓW
SPEKTROSKOPIA FOTOELEKTRONÓW Jak szybko cząsteczka obraca się? E J=1 (CO) = B 1 (1+1) = 2B = 2 1.9 cm -1 = 3.8 cm -1 = 7.6x10-23 J = ½ I 2 Stąd 1 x 10 12 rad s -1. To daje częstość rotacji ~10-11 s. Ile
Techniki próżniowe (ex situ)
Techniki próżniowe (ex situ) Oddziaływanie promieniowania X z materią rearrangement X-ray photon X-ray emission b) rearrangement a) photoemission photoelectron Auger electron c) Auger/X-ray emission a)
SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force
SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force Microscopy Mikroskopia siły atomowej MFM Magnetic Force Microscopy
Fizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna
Wykład II Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Amorficzne, brak uporządkowania, np. szkła; Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć
Badania wybranych nanostruktur SnO 2 w aspekcie zastosowań sensorowych
Badania wybranych nanostruktur SnO 2 w aspekcie zastosowań sensorowych Monika KWOKA, Jacek SZUBER Instytut Elektroniki Politechnika Śląska Gliwice PLAN PREZENTACJI 1. Podsumowanie dotychczasowych prac:
XPS (ESCA) X-ray Photoelectron Spectroscopy (Electron Spectroscopy for Chemical Analysis)
XPS (ESCA) X-ray Photoelectron Spectroscopy (Electron Spectroscopy for Chemical Analysis) Wykorzystuje miękkie promieniowanie rentgenowskie o E > 100eV, pozwalające na wybicie elektronów z orbitali rdzenia
Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska
Fizyka powierzchni 8 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Lista zagadnień Fizyka powierzchni i międzypowierzchni, struktura powierzchni
Domieszki w półprzewodnikach
Domieszki w półprzewodnikach Niebieska optoelektronika Niebieski laser Nie można obecnie wyświetlić tego obrazu. Domieszkowanie m* O Neutralny donor w przybliżeniu masy efektywnej 2 2 0 2 * 2 * 13.6 *
Aparatura do osadzania warstw metodami:
Aparatura do osadzania warstw metodami: Rozpylania mgnetronowego Magnetron sputtering MS Rozpylania z wykorzystaniem działa jonowego Ion Beam Sputtering - IBS Odparowanie wywołane impulsami światła z lasera
ANALIZA POWIERZCHNI BADANIA POWIERZCHNI
Analiza ciała stałego ANALIZA POWIERZCHNI ANALIZA CAŁEJ OBJTOCI CIAŁO STAŁE ANALIZA POWIERZCHNI METODY NISZCZCE METODY NIENISZCZCE Metody niszczce: - przeprowadzenie do roztworu (rozpuszczanie, roztwarzanie
Powierzchnie cienkie warstwy nanostruktury. Józef Korecki, C1, II p., pok. 207
Powierzchnie cienkie warstwy nanostruktury Józef Korecki, C1, II p., pok. 207 korecki@uci.agh.edu.pl http://korek.uci.agh.edu.pl/priv/jk.htm Obiekty niskowymiarowe Powierzchnia Cienkie warstwy Wielowarstwy
Fizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna
Wykład II Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Amorficzne, brak uporządkowania, np. szkła; Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć
Laboratorium z Krystalografii. 2 godz.
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Zbadanie zależności intensywności linii Ka i Kb promieniowania charakterystycznego X emitowanego przez anodę
ostawa. Fizyka powierzchni i nanostruktury 4
Obrazy dyfrakcyjne elektronów Jak badać strukturę powierzchni? Własności: Dyfrakcja elektronowa cd. Dyfrakcja zachowuje symetrię. Duże odległości w obrazie dyfrakcyjnym oznaczają małe odległości na powierzchni.
Elementy teorii powierzchni metali
Prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład dla studentów fizyki Rok akademicki 2017/18 (30 godz.) Wykład 1 Plan wykładu Struktura periodyczna kryształów, sieć odwrotna Struktura
Topologiczny diagram fazowy półprzewodników IV-VI
Topologiczny diagram fazowy półprzewodników IV-VI Tomasz Story (IF PAN) Półprzewodniki IV-VI jako materiały topologiczne Koncepcje teoretyczne stanów topologicznch w materiałach IV-VI i ich weryfikacja
Fizyka silnie skorelowanych elektronów na przykładzie międzymetalicznych związków ceru
Fizyka silnie skorelowanych elektronów na przykładzie międzymetalicznych związków ceru Rafał Kurleto 4.3.216 ZFCS IF UJ Rafał Kurleto Sympozjum doktoranckie 4.3.216 1 / 15 Współpraca dr hab. P. Starowicz
Badanie strutury powierzchni z atomową zdolnością rozdzielczą. Powierzchnia jak ją zdefiniować?
Badanie strutury powierzchni z atomową zdolnością rozdzielczą Powierzchnia jak ją zdefiniować? Obszar kryształu, dla którego nie da się zastosować trójwymiarowych równań opisujących własności wnętrza.
Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne
Promieniowanie rentgenowskie Podstawowe pojęcia krystalograficzne Krystalografia - podstawowe pojęcia Komórka elementarna (zasadnicza): najmniejszy, charakterystyczny fragment sieci przestrzennej (lub
dr inż. Beata Brożek-Pluska SERS La boratorium La serowej
dr inż. Beata Brożek-Pluska La boratorium La serowej Spektroskopii Molekularnej PŁ Powierzchniowo wzmocniona sp ektroskopia Ramana (Surface Enhanced Raman Spectroscopy) Cząsteczki zaadsorbowane na chropowatych
2. Metody, których podstawą są widma atomowe 32
Spis treści 5 Spis treści Przedmowa do wydania czwartego 11 Przedmowa do wydania trzeciego 13 1. Wiadomości ogólne z metod spektroskopowych 15 1.1. Podstawowe wielkości metod spektroskopowych 15 1.2. Rola
Techniki Jądrowe w Diagnostyce i Terapii Medycznej
Techniki Jądrowe w Diagnostyce i Terapii Medycznej Wykład 2-5 marca 2019 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Rozpad Przemiana Widmo
Fizyka, technologia oraz modelowanie wzrostu kryształów. Metody optyczne w badaniach półprzewodników Przykładami różnymi zilustrowane
Fizyka, technologia oraz modelowanie wzrostu kryształów Metody optyczne w badaniach półprzewodników Przykładami różnymi zilustrowane Piotr Perlin Instytut Wysokich Ciśnień PAN piotr@unipress.waw.pl Wykład:
Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X
Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X Oskar Gawlik, Jacek Grela 16 lutego 2009 1 Podstawy teoretyczne 1.1 Liczniki proporcjonalne Wydajność detekcji promieniowania elektromagnetycznego
Mody sprzężone plazmon-fonon w silnych polach magnetycznych
Mody sprzężone plazmon-fonon w silnych polach magnetycznych Mody sprzężone w półprzewodnikach polarnych + E E pl η = st α = E E pl ξ = p B.B. Varga,, Phys. Rev. 137,, A1896 (1965) A. Mooradian and B. Wright,
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Otrzymywanie promieni rentgenowskich. 2. Budowa lampy rentgenowskiej. 3. Własności
Grafen materiał XXI wieku!?
Grafen materiał XXI wieku!? Badania grafenu w aspekcie jego zastosowań w sensoryce i metrologii Tadeusz Pustelny Plan prezentacji: 1. Wybrane właściwości fizyczne grafenu 2. Grafen materiał 21-go wieku?
Leon Murawski, Katedra Fizyki Ciała Stałego Wydział Fizyki Technicznej i Matematyki Stosowanej
Nanomateriałów Leon Murawski, Katedra Fizyki Ciała Stałego Wydział Fizyki Technicznej i Matematyki Stosowanej POLITECHNIKA GDAŃSKA Centrum Zawansowanych Technologii Pomorze ul. Al. Zwycięstwa 27 80-233
PL B1. INSTYTUT TECHNOLOGII ELEKTRONOWEJ, Warszawa, PL INSTYTUT FIZYKI POLSKIEJ AKADEMII NAUK, Warszawa, PL
PL 221135 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 221135 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 399454 (22) Data zgłoszenia: 06.06.2012 (51) Int.Cl.
PROMIENIOWANIE RENTGENOWSKIE
PROMIENIOWANIE RENTGENOWSKIE 1. Zagadnienia teoretyczne Promieniowanie rentgenowskie, poziomy energetyczne w atomie, stała Planck a i metody wyznaczania jej wartości, struktura krystalograficzna, dyfrakcyjne
METODY BADAŃ BIOMATERIAŁÓW
METODY BADAŃ BIOMATERIAŁÓW 1 Cel badań: ograniczenie ryzyka związanego ze stosowaniem biomateriałów w medycynie Rodzaje badań: 1. Badania biofunkcyjności implantów, 2. Badania degradacji implantów w środowisku
Synteza grafenu za pomocą grafityzacji węglika krzemu w strumieniu atomów krzemu
FOTON 136, Wiosna 2017 15 1. Wstęp Synteza grafenu za pomocą grafityzacji węglika krzemu w strumieniu atomów krzemu Piotr Ciochoń Zakład Promieniowania Synchrotronowego, Instytut Fizyki UJ Grafen jest
Sieć przestrzenna. c r. b r. a r. komórka elementarna. r r
Sieć przestrzenna c r b r r r u a r vb uvw = + + w c v a r komórka elementarna V = r r a ( b c) v Układy krystalograficzne (7) i Sieci Bravais (14) Triclinic (P) a b c, α β γ 90 ο Monoclinic (P) a b c,
Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych
Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Mody sprzęŝone w półprzewodnikach polarnych + E E pl η = st α = E E pl ξ = p B.B. Varga, Phys. Rev. 137,, A1896 (1965) A. Mooradian and B. Wright,
TEORIA PASMOWA CIAŁ STAŁYCH
TEORIA PASMOWA CIAŁ STAŁYCH Skolektywizowane elektrony w metalu Weźmy pod uwagę pewną ilość atomów jakiegoś metalu, np. sodu. Pojedynczy atom sodu zawiera 11 elektronów o konfiguracji 1s 2 2s 2 2p 6 3s
Co to jest kropka kwantowa? Kropki kwantowe - część I otrzymywanie. Co to jest ekscyton? Co to jest ekscyton? e πε. E = n. Sebastian Maćkowski
Co to jest kropka kwantowa? Kropki kwantowe - część I otrzymywanie Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Co to jest ekscyton? Co to jest ekscyton? h 2 2 2 e πε m* 4 0ε s Φ
FLUORESCENCJA RENTGENOWSKA (XRF) MARTA KASPRZYK PROMOTOR: DR HAB. INŻ. MARCIN ŚRODA KATEDRA TECHNOLOGII SZKŁA I POWŁOK AMORFICZNYCH
FLUORESCENCJA RENTGENOWSKA (XRF) MARTA KASPRZYK PROMOTOR: DR HAB. INŻ. MARCIN ŚRODA KATEDRA TECHNOLOGII SZKŁA I POWŁOK AMORFICZNYCH 13.01.2015 SPIS TREŚCI WSTĘP ZJAWISKO FLUORESCENCJI FLUORESCENCJA RENTGENOWSKA
Zaawansowane Metody Badań Strukturalnych. Badania strukturalne materiałów Badania właściwości materiałów
Zaawansowane Metody Badań Strukturalnych Badania strukturalne materiałów Badania właściwości materiałów Zaawansowane Metody Badań Strukturalnych 1. Struktura próbki a metoda badań strukturalnych 2. Podział
Przejścia promieniste
Przejście promieniste proces rekombinacji elektronu i dziury (przejście ze stanu o większej energii do stanu o energii mniejszej), w wyniku którego następuje emisja promieniowania. E Długość wyemitowanej
Dyslokacje w kryształach. ach. Keshra Sangwal Zakład Fizyki Stosowanej, Instytut Fizyki Politechnika Lubelska
Dyslokacje w kryształach ach Keshra Sangwal Zakład Fizyki Stosowanej, Instytut Fizyki Politechnika Lubelska I. Wprowadzenie do defektów II. Dyslokacje: Podstawowe pojęcie III. Własności mechaniczne kryształów
Dyslokacje w kryształach. ach. Keshra Sangwal, Politechnika Lubelska. Literatura
Dyslokacje w kryształach ach Keshra Sangwal, Politechnika Lubelska I. Wprowadzenie do defektów II. Dyslokacje: podstawowe pojęcie III. Własności mechaniczne kryształów IV. Źródła i rozmnażanie się dyslokacji
Marcin Sikora. Temat 1: Obserwacja procesów przemagnesowania w tlenkowych nanostrukturach spintronicznych przy użyciu metod synchrotronowych
Prezentacja tematów na prace doktorskie, 28/5/2015 1 Marcin Sikora KFCS WFiIS & ACMiN Temat 1: Obserwacja procesów przemagnesowania w tlenkowych nanostrukturach spintronicznych przy użyciu metod synchrotronowych
Monochromatyzacja promieniowania molibdenowej lampy rentgenowskiej
Uniwersytet Śląski Instytut Chemii Zakładu Krystalografii ul. Bankowa 14, pok. 133, 40 006 Katowice tel. (032)359 1503, e-mail: izajen@wp.pl, opracowanie: dr Izabela Jendrzejewska Laboratorium z Krystalografii
LABORATORIUM ANALITYCZNEJ MIKROSKOPII ELEKTRONOWEJ (L - 2)
LABORATORIUM ANALITYCZNEJ MIKROSKOPII ELEKTRONOWEJ (L - 2) Posiadane uprawnienia: ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO NR AB 120 wydany przez Polskie Centrum Akredytacji Wydanie nr 5 z 18 lipca 2007
Domieszki w półprzewodnikach
Domieszki w półprzewodnikach Niebieska optoelektronika Niebieski laser Elektryczne pobudzanie struktury laserowej Unipress 106 unipress 8 Moc op ptyczna ( mw ) 6 4 2 0 0.0 0.5 1.0 1.5 2.0 Natężenie prądu
Współczesne metody badań instrumentalnych
Współczesne metody badań instrumentalnych Wykład IX Mikroskopia optyczna i elektronowa Mikroskopia w konserwacji identyfikacja pigmentów, identyfikacja spoiw, badanie składu warstw malarskich, badanie
Podstawy fizyczne absorpcji rentgenowskiej
Podstawy fizyczne absorpcji rentgenowskiej Anna Wolska IF PAN Warszawa 2006 http://www-als.lbl.gov/als/quickguide/vugraph.html Promieniowanie rentgenowskie - promieniowanie elekromagnetyczne w zakresie
NOWOCZESNE TECHNIKI BADAWCZE W INŻYNIERII MATERIAŁOWEJ. Beata Grabowska, pok. 84A, Ip
NOWOCZESNE TECHNIKI BADAWCZE W INŻYNIERII MATERIAŁOWEJ Beata Grabowska, pok. 84A, Ip http://home.agh.edu.pl/~graboska/ Mikroskopia Słowo mikroskop wywodzi się z języka greckiego: μικρός - mikros "mały
BADANIA WARSTW FE NANOSZONYCH Z ELEKTROLITU NA BAZIE ACETONU
BADANIA WARSTW FE NANOSZONYCH Z ELEKTROLITU NA BAZIE ACETONU W. OLSZEWSKI 1, K. SZYMAŃSKI 1, D. SATUŁA 1, M. BIERNACKA 1, E. K. TALIK 2 1 Wydział Fizyki, Uniwersytet w Białymstoku, Lipowa 41, 15-424 Białystok,
Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego
Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie 7 Elektronowy mikroskop skaningowy-analogowy w badaniach morfologii powierzchni ciała stałego. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie
Laboratorium z Krystalografii specjalizacja: Fizykochemia związków nieorganicznych
Uniwersytet Śląski - Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 133, 40-006 Katowice tel. 0323591197, e-mail: izajen@wp.pl opracowanie: dr Izabela Jendrzejewska Laboratorium z Krystalografii
Fluorescencyjna detekcja śladów cząstek jądrowych przy użyciu kryształów fluorku litu
Fluorescencyjna detekcja śladów cząstek jądrowych przy użyciu kryształów fluorku litu Paweł Bilski Zakład Fizyki Radiacyjnej i Dozymetrii (NZ63) IFJ PAN Fluorescenscent Nuclear Track Detectors (FNTD) pierwsza
Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych
Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Klasyczny przykład pośredniego oddziaływania pola magnetycznego na wzbudzenia fononowe Schemat: pole magnetyczne (siła Lorentza) nośniki (oddziaływanie
Metody badań spektroskopowych
Metody badań spektroskopowych Program wykładu Wstęp A. Spektroskopia optyczna 1. Podstawy spektroskopii optycznej 1.1 Promieniowanie elektromagnetyczne 1.2 Kwantowanie energii 1.3 Emisja i absorpcja promieniowania
ĆWICZENIE Nr 4 LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników POLITECHNIKA ŁÓDZKA
POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH ĆWICZENIE Nr 4 Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników I. Cześć doświadczalna. 1. Uruchomić Spekol
Rezonatory ze zwierciadłem Bragga
Rezonatory ze zwierciadłem Bragga Siatki dyfrakcyjne stanowiące zwierciadła laserowe (zwierciadła Bragga) są powszechnie stosowane w laserach VCSEL, ale i w laserach z rezonatorem prostopadłym do płaszczyzny
1. Niskoenergetyczne elektrony wtórne SE (podstawowy sygnał w SEM) 2. Charakterystyczne promieniowanie rentgenowskie (mikroanaliza w SEM i TEM)
Rozpraszanie niesprężyste Przekazywanie energii elektronów wiązki prowadzi do emisji szeregu sygnałów wykorzystywanych w mikroskopii elektronowej i mikroanalizie rentgenowskiej: 1. Niskoenergetyczne elektrony
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Otrzymywanie promieni rentgenowskich. 2. Budowa lampy rentgenowskiej. 3. Własności
Laboratorium z Krystalografii. 2 godz.
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Zbadanie zależności intensywności linii Kα i Kβ promieniowania charakterystycznego X emitowanego przez anodę
Laboratorium Badania Materiałów Inżynierskich i Biomedycznych
Wydział Mechaniczny Technologiczny Politechnika Śląska Laboratorium Badania Materiałów Inżynierskich i Biomedycznych Instytut Materiałów Inżynierskich i Biomedycznych 1 Projekt MERFLENG... W 2012 roku
Pomiar energii wiązania deuteronu. Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu
J1 Pomiar energii wiązania deuteronu Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu Przygotowanie: 1) Model deuteronu. Własności deuteronu jako źródło informacji o siłach jądrowych [4] ) Oddziaływanie
Nanostruktury i nanotechnologie
Nanostruktury i nanotechnologie Heterozłącza Efekty kwantowe Nanotechnologie Z. Postawa, "Fizyka powierzchni i nanostruktury" 1 Termin oddania referatów do 19 I 004 Zaliczenie: 1 I 004 Z. Postawa, "Fizyka
Atom Mn: wielobit kwantowy. Jan Gaj Instytut Fizyki Doświadczalnej
Atom Mn: wielobit kwantowy Jan Gaj Instytut Fizyki Doświadczalnej Tomasz Kazimierczuk Mateusz Goryca Piotr Wojnar (IF PAN) Artur Trajnerowicz Andrzej Golnik Piotr Kossacki Jan Gaj Michał Nawrocki Ostrzeżenia
FORMULARZ WYMAGANYCH WARUNKÓW TECHNICZNYCH
Załącznik Nr 2 WYMAGANIA BEZWZGLĘDNE: FORMULARZ WYMAGANYCH WARUNKÓW TECHNICZNYCH Przedmiotem zamówienia jest dostawa i instalacja fabrycznie nowego skaningowego mikroskopu elektronowego (SEM) ze zintegrowanym
Wstęp. Krystalografia geometryczna
Wstęp Przedmiot badań krystalografii. Wprowadzenie do opisu struktury kryształów. Definicja sieci Bravais go i bazy atomowej, komórki prymitywnej i elementarnej. Podstawowe typy komórek elementarnych.