FLUORESCENCJA RENTGENOWSKA (XRF) MARTA KASPRZYK PROMOTOR: DR HAB. INŻ. MARCIN ŚRODA KATEDRA TECHNOLOGII SZKŁA I POWŁOK AMORFICZNYCH
|
|
- Paulina Kozłowska
- 8 lat temu
- Przeglądów:
Transkrypt
1 FLUORESCENCJA RENTGENOWSKA (XRF) MARTA KASPRZYK PROMOTOR: DR HAB. INŻ. MARCIN ŚRODA KATEDRA TECHNOLOGII SZKŁA I POWŁOK AMORFICZNYCH
2 SPIS TREŚCI WSTĘP ZJAWISKO FLUORESCENCJI FLUORESCENCJA RENTGENOWSKA (XRF) WIDMO XRF RODZAJE ANALIZY XRF APARATURA ZASTOSOWANIE
3 WSTĘP Fluorescencja rentgenowska to czuła metoda analityczna do określania koncentracji pierwiastków w próbce. Jest obecnie najczęściej stosowaną techniką w badaniach nieniszczących. Znajduje szerokie zastosowanie ze względu na szybkość analizy i brak konieczności przygotowania próbek.
4 ZJAWISKO FLUORESCENCJI Fluorescencja [1]: - jeden z rodzajów luminescencji - wzbudzenie elektronów walencyjnych - przejście na orbitale stanu wzbudzonego - zjawisko emitowania nadmiaru energii w postaci kwantu światła - czas życia ~10 8 s - widmo emisyjne jest przesunięte w kierunku fal dłuższych (w stosunku do widma absorbcji) - promieniowanie emitowane w procesie fluorescencji zanika po wyłączeniu promieniowania wzbudzającego Rys.1 Schematyczne przedstawienie zjawiska fluorescencji na diagramie Jabłońskiego [2]
5 FLUORESCENCJA RENTGENOWSKA Polega na wzbudzaniu charakterystycznego promieniowania rentgenowskiego za pomocą promieniowania pochodzącego z lampy rentgenowskiej lub obecnie synchrotronu. Rentgenowskie promieniowanie fluorescencyjne ma tę samą naturę i długości fal jak charakterystyczne promieniowanie rentgenowskie odpowiedniego pierwiastka [3]. charakterystyczne promieniowanie rentgenowskie powstaje w wyniku jonizacji atomu strumieniem elektronów o odpowiednio dużej energii rentgenowskie promieniowanie fluorescencyjne powstaje w wyniku jonizacji atomu strumieniem fotonów rentgenowskich (też o odpowiedniej energii)
6 FLUORESCENCJA RENTGENOWSKA Na skutek wybicia elektronów z wewnętrznych powłok, następuje zapełnienie powstałych dziur przez elektrony z wyższych powłok. Rys. 2 Schematyczne przedstawienie fluorescencji rentgenowskiej [4]
7 FLUORESCENCJA RENTGENOWSKA Każdy atom ma ściśle określone poziomy energetyczne dostępne do obsadzenia przez elektrony, więc możliwe energie emitowanych kwantów rentgenowskich są charakterystyczne dla tych atomów. Rys. 3 Emisja promieniowania rentgenowskiego [5]
8 FLUORESCENCJA RENTGENOWSKA Wydajność fluorescencji - stosunek liczby wyemitowanych fotonów danej serii widmowej do liczby wszystkich atomów wzbudzonych w tym czasie na danej powłoce (1). ω K = N (x) K (1) N K Gdzie N K (x) jest liczbą wyemitowanych kwantów promieniowania charakterystycznego dla serii K, a N K jest liczbą wszystkich atomów zjonizowanych na powłoce K. Powrót atomu ze stanu wzbudzonego do stanu podstawowego odbywa się wskutek zjawiska fotoelektrycznego (przejście promieniste) lub Augera (przejście bezpromieniste).
9 FLUORESCENCJA RENTGENOWSKA Serię widmową promieniowania oznacza się dużą literą określającą powłokę, na którą przechodzi elektron. Przejście pomiędzy sąsiednimi powłokami α, przejście pomiędzy dalszymi poziomami - β Rys.4 Nomenklatura linii emisyjnych [4]
10 WIDMO XRF Powstałe widmo pozwala na identyfikację pierwiastków znajdujących się w próbce. Energia linii β>α Intensywność linii α> β (większe prawdopodobieństwo przejścia L K niż M K) Rys.5 Typowy wygląd widma fluorescencyjnego [6]
11 WIDMO XRF Na widmo XRF składają się [7]: Linie emisyjne K i L (o charakterystycznym układzie energii i intensywności) Maksima promieniowania lampy rozproszonego elastycznie (Rayleigh a) Maksima promieniowania lampy rozproszonego nieelastycznie (Comptonowskie) Promieniowanie hamowania Piki ucieczki Piki sumy
12 WIDMO XRF Promieniowanie rentgenowskie, powstałe podczas przejść elektronów umożliwia identyfikację pierwiastków, które emitują to promieniowanie. Tab.1 Energia [kev] linii emisyjnych różnych pierwiastków [3] Z Pierwiastek Kα Kβ Lα Lβ 19 K 3,3138 3, Ca 3, ,0127 0,3413 0, Cr 5, , ,5728 0, Fe 6, , ,7050 0, Co 6, , ,7762 0,7914
13 RODZAJE ANALIZY XRF Rodzaje analizy XRF [5]: Z dyspersją energii (energy dyspersive XRF EDXRF) szybsza i tańsza analiza, próg detekcji bor (Z=9), mniejsza rozdzielczość Z dyspersją długości fali (wavelength dispersive XRF WDXRF) duża rozdzielczość (od 0,01% wag.), większa czułość, próg detekcji beryl (Z=9), Z całkowitym odbiciem wewnętrznym (total reflection XRF TRXRF) badanie warstw powierzchniowych, czułość ppb PIXE (particle induced X-ray fluorescence) cyklotron, protony E=2-3MeV, próbka 0,01-100mg czułość 0,01ppm dla lekkich pierwiastkó Rys.6 Porównanie metod EDXRF i WDXRF [4]
14 RODZAJE ANALIZY XRF Analiza z dyspersją energii (EDXRF) - wtórnie emitowane promieniowanie fluorescencyjne ulega detekcji na detektorze z wielokanałowym analizatorem intensywności (amplitudy) emitowanego promieniowania. Ponieważ intensywność pulsu (sygnału) detektora jest proporcjonalna do energii fotonu umożliwia to sortowanie sygnałów w zależności od ich energii. Analiza z dyspersją długości fali (WDXRF) - wtórnie emitowane przez badaną materię promieniowanie fluorescencyjne, najpierw pada na element rozszczepiający - kryształ analizatora o odpowiednich odległościach między płaszczyznami sieciowymi d, które odbijają promieniowanie rentgenowskie pod określonym kątem odbłysku θ, jeśli spełnione jest równanie Bragga, a dopiero potem ulega detekcji. Daje to możliwość analizy intensywności promieniowanie emitowanego przez próbkę w zależności od długości fali.
15 RODZAJE ANALIZY XRF Tab.2 Porównanie rodzajów analizy XRF Cecha/metoda EDXRF WDXRF Zdolność rozdzielcza Zdolność rozdzielcza zależy od 126eV dla 5,9keV MnKα 115eV dla HPGe energii 5eV Kryształu Wydajność 100% 30% Ogniskowanie - Konieczne Szybkość analizy Duża (sekundy, minuty) Mała (minuty, godziny) Bieżąca obsługa Ciekły azot Gaz Ar + metan Cena Niska Wysoka Czynniki zakłócające Piki wylotu, piki sumy, nakładanie się pików, absorpcja w okienku Brak
16 APARATURA Budowa spektrometru [8]: Lampa rentgenowska Filtry Kolimatory Detektory (półprzewodnikowe, NaI) Rys.7 Schematyczna budowa spektrometru typu EDXRF [5]
17 ZASTOSOWANIA Analiza składu szkła, ceramiki glazurowanej, kamieni szlachetnych Archeologia, konserwacja sztuki i zabytków Kryminalistyka (m.in. wykrywanie fałszerstw) Kontrola jakości Ochrona środowiska Rys.8 Zastosowanie techniki XRF w malarstwie [5]
18 ZALETY I WADY możliwość analizy wielu pierwiastków (Na U) również jednocześnie równoczesne oznaczanie składników głównych i śladowych analiza jakościowa, półilościowa i ilościowa dla proszków, próbek stałych i cieczy możliwość prowadzenia analizy składu cienkich warstw relatywnie nieskomplikowane widma położenia maksimów niezależne od stanu chem. i otoczenia analitu nie wymaga przygotowania próbek lub wymaga niewielu zabiegów metoda nieniszcząca (m.in. próbka może być poddana dalszej analizie) aparatura łatwa w obsłudze, niskie koszty analizy brak informacji o lekkich pierwiastkach (Z<11) niewielka głębokość penetracji mm (może być to zaletą) utrudnienia w analizie ilościowej wynikając z tzw. efektu matrycy duży wpływ sposobu przygotowania próbki na ozn. ilościowe (również jakościowe) brak informacji o stopniu utlenienia pierwiastków nie rozróżnia izotopów stosunkowe wysokie granice oznaczalności (>1ppm) aparatura (może być) kosztowna ograniczenia aparaturowe w analizie próbek niehomogenicznych krótki czas trwania analizy
19 BIBLIOGRAFIA [1] Spektroskopia emisyjna; Uniwersytet w Białymstoku [online]; [2] Fluorescencja; Wikipedia.org [online]; [3] Rentgenowska analiza fluorescencyjna - podstawy i zastosowanie; Krajowa konferencja badań radiograficznych 2013 [online]; [4] Metodyka Badań Materiałów wykład VI; Uniwersytet Mikołaja Kopernika [online]; [5] Spektroskopia atomowa: XRF; Uniwersytet Jagielloński [online]; [6] Analiza pierwiastków w różnych typach próby przy zastosowaniu energodyspersyjnego spektrometru rentgenowskiego; Uniwersytet im. Adama Mickiewicza [online]; [7] Spektroskopia fluorescencji rentgenowskiej; Akademia Górniczo-Hutnicza [online]; [8] Analiza fluorescencyjna; Uniwersytet Jana Kochanowskiego [online];
20 DZIĘKUJĘ ZA UWAGĘ
Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA)
Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA) Promieniowaniem X nazywa się promieniowanie elektromagnetyczne o długości fali od około
ANALIZA PIERWIASTKÓW W RÓŻNYCH TYPACH PRÓBY PRZY ZASTOSOWANIU ENERGODYSPERSYJNEGO SPEKTROMETRU RENTGENOWSKIEGO
ANALIZA PIERWIASTKÓW W RÓŻNYCH TYPACH PRÓBY PRZY ZASTOSOWANIU ENERGODYSPERSYJNEGO SPEKTROMETRU RENTGENOWSKIEGO Celem ćwiczenia jest identyfikacja pierwiastków metodą fluorescencji rentgenowskiej w dowolnych
Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X
Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X Oskar Gawlik, Jacek Grela 16 lutego 2009 1 Podstawy teoretyczne 1.1 Liczniki proporcjonalne Wydajność detekcji promieniowania elektromagnetycznego
Spektroskopia Fluorescencyjna promieniowania X
Spektroskopia Fluorescencyjna promieniowania X Technika X-ray Energy Spectroscopy (XES) a) XES dla określenia składu substancji (jakie pierwiastki) b) XES dla ustalenia struktury elektronicznej (informacja
Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne
Promieniowanie rentgenowskie Podstawowe pojęcia krystalograficzne Krystalografia - podstawowe pojęcia Komórka elementarna (zasadnicza): najmniejszy, charakterystyczny fragment sieci przestrzennej (lub
ANALIZA SPECJACYJNA WYKŁAD 7 ANALIZA SPECJACYJNA
WYKŁAD 7 ANALIZA SPECJACYJNA ANALIZA SPECJACYJNA Specjacja - występowanie różnych fizycznych i chemicznych form danego pierwiastka w badanym materiale. Analiza specjacyjna - identyfikacja i ilościowe oznaczenie
IM-20. XRF - Analiza chemiczna poprzez pomiar energii promieniowania X
IM-20 Jakościowa i ilościowa analiza składu materiałów za pomocą XRF XRF - Analiza chemiczna poprzez pomiar energii promieniowania X 1. Cel ćwiczenia Student zapoznaje się z metodą analizy składu pierwiastkowego
Badanie schematu rozpadu jodu 128 J
J8A Badanie schematu rozpadu jodu 128 J Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 J Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią (1,3) a/ efekt fotoelektryczny b/ efekt Comptona
Badanie schematu rozpadu jodu 128 I
J8 Badanie schematu rozpadu jodu 128 I Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 I Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią [1,3] a) efekt fotoelektryczny b) efekt Comptona
RENTGENOWSKA ANALIZA FLUORESCENCYJNA
RENTGENOWSKA ANALIZA FLUORESCENCYJNA Cel ćwiczenia. Celem ćwiczenia jest zidentyfikowanie pierwiastków w próbkach metodą rentgenowskiej analizy fluorescencyjnej przy zastosowaniu zestawu firmy Amptek składającego
Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy)
Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy) Oddziaływanie elektronów ze stałą, krystaliczną próbką wstecznie rozproszone elektrony elektrony pierwotne
XRF - Analiza chemiczna poprzez pomiar energii promieniowania X
PJLab_XRF.doc Promieniowanie jonizujące - ćwiczenia 1 XRF - Analiza chemiczna poprzez pomiar energii promieniowania X 1. Cel ćwiczenia Student zapoznaje się z metodą analizy składu pierwiastkowego substancji
metale ważne w biologii i medycynie
metale ważne w biologii i medycynie 1 2 3 4 5 6 7 8 9 10 11 12 Ia IIa H Li Be Na Mg IIIb IV b V b V Ib V IIb V III Ib IIb K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd Cs Ba La Hf
TEMAT ĆWICZENIA: ANALIZA CIECZY I CIAŁ STAŁYCH Z UŻYCIEM FLUORESCENCJI RENTGENOWSKIEJ Z ROZPRASZANIEM ENERGII
PROBLEMATYKA: Nieniszcząca analiza pierwiastkowa TEMAT ĆWICZENIA: ANALIZA CIECZY I CIAŁ STAŁYCH Z UŻYCIEM FLUORESCENCJI RENTGENOWSKIEJ Z ROZPRASZANIEM ENERGII METODA: Fluorescencja rentgenowska WPROWADZENIE
Pomiar energii wiązania deuteronu. Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu
J1 Pomiar energii wiązania deuteronu Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu Przygotowanie: 1) Model deuteronu. Własności deuteronu jako źródło informacji o siłach jądrowych [4] ) Oddziaływanie
Ćwiczenie LP2. Jacek Grela, Łukasz Marciniak 25 października 2009
Ćwiczenie LP2 Jacek Grela, Łukasz Marciniak 25 października 2009 1 Wstęp teoretyczny 1.1 Energetyczna zdolność rozdzielcza Energetyczna zdolność rozdzielcza to wielkość opisująca dokładność detekcji energii
Monochromatyzacja promieniowania molibdenowej lampy rentgenowskiej
Uniwersytet Śląski Instytut Chemii Zakładu Krystalografii ul. Bankowa 14, pok. 133, 40 006 Katowice tel. (032)359 1503, e-mail: izajen@wp.pl, opracowanie: dr Izabela Jendrzejewska Laboratorium z Krystalografii
J8 - Badanie schematu rozpadu jodu 128 I
J8 - Badanie schematu rozpadu jodu 128 I Celem doświadczenie jest wytworzenie izotopu 128 I poprzez aktywację w źródle neutronów próbki zawierającej 127 I, a następnie badanie schematu rozpadu tego nuklidu
Analiza aktywacyjna składu chemicznego na przykładzie zawartości Mn w stali.
Analiza aktywacyjna składu chemicznego na przykładzie zawartości Mn w stali. Projekt ćwiczenia w Laboratorium Fizyki i Techniki Jądrowej na Wydziale Fizyki Politechniki Warszawskiej. dr Julian Srebrny
Spektroskopia fotoelektronów (PES)
Spektroskopia fotoelektronów (PES) Efekt fotoelektryczny hν ( UV lub X) E =hν kin W Proces fotojonizacji w PES: M + hν M + + e E kin (e) = hν E B Φ sp E B energia wiązania elektronu w atomie/cząsteczce
Szkoła z przyszłością. szkolenie współfinansowane przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Szkoła z przyszłością szkolenie współfinansowane przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Narodowe Centrum Badań Jądrowych, ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE
2. Metody, których podstawą są widma atomowe 32
Spis treści 5 Spis treści Przedmowa do wydania czwartego 11 Przedmowa do wydania trzeciego 13 1. Wiadomości ogólne z metod spektroskopowych 15 1.1. Podstawowe wielkości metod spektroskopowych 15 1.2. Rola
SPEKTROMETR FLUORESCENCJI RENTGENOWSKIEJ EDXRF DO PEŁNEJ ANALIZY PIERWIASTKOWEJ Energy dispersive X-Ray Fluorescence Spectrometer
EDX 3600B SPEKTROMETR FLUORESCENCJI RENTGENOWSKIEJ EDXRF DO PEŁNEJ ANALIZY PIERWIASTKOWEJ Energy dispersive X-Ray Fluorescence Spectrometer Przeznaczony do analizy pierwiastkowej: - w produkcji cementu,
Spektroskopia ramanowska w badaniach powierzchni
Spektroskopia ramanowska w badaniach powierzchni z Efekt Ramana (1922, CV Raman) I, ν próbka y Chandra Shekhara Venketa Raman x I 0, ν 0 Monochromatyczne promieniowanie o częstości ν 0 ulega rozproszeniu
Spektroskopia elektronów Augera AES
Spektroskopia elektronów Augera AES (Auger Electron Spectroscopy) Emisja elektronu Augera (Pierre Auger, 1925) elektron Augera E kin E vac 3 poziom Fermiego e C B 2 Φ Α E C E B E A A 1 Energia kinetyczna
Wojciech Głuszewski ŚLADAMI KRÓLA MIDASA
Wojciech Głuszewski ŚLADAMI KRÓLA MIDASA Znana jest przypowieść o starożytnym władcy królu Midasie, który posiadł zdolność do zamiany wszystkiego w złoto, czego dotknął. Ta szczególna właściwość była nagrodą
J6 - Pomiar absorpcji promieniowania γ
J6 - Pomiar absorpcji promieniowania γ Celem ćwiczenia jest pomiar współczynnika osłabienia promieniowania γ w różnych absorbentach przy użyciu detektora scyntylacyjnego. Materiał, który należy opanować
J7 - Badanie zawartości manganu w stali metodą analizy aktywacyjnej
J7 - Badanie zawartości manganu w stali metodą analizy aktywacyjnej Celem doświadczenie jest wyznaczenie zawartości manganu w stalowym przedmiocie. Przedmiot ten, razem z próbką zawierającą czysty mangan,
NEUTRONOWA ANALIZA AKTYWACYJNA ANALITYKA W KONTROLI JAKOŚCI PODSTAWOWE INFORMACJE O REAKCJACH JĄDROWYCH - NEUTRONOWA ANALIZA AKTYWACYJNA
ANALITYKA W KONTROLI JAKOŚCI WYKŁAD 3 NEUTRONOWA ANALIZA AKTYWACYJNA - PODSTAWOWE INFORMACJE O REAKCJACH JĄDROWYCH - NEUTRONOWA ANALIZA AKTYWACYJNA REAKCJE JĄDROWE Rozpad promieniotwórczy: A B + y + ΔE
Spektrometr XRF THICK 800A
Spektrometr XRF THICK 800A DO POMIARU GRUBOŚCI POWŁOK GALWANIZNYCH THICK 800A spektrometr XRF do szybkich, nieniszczących pomiarów grubości powłok i ich składu. Zaprojektowany do pomiaru grubości warstw
RENTGENOWSKA ANALIZA FLUORESCENCYJNA PODSTAWY I ZASTOSOWANIE
RENTGENOWSKA ANALIZA FLUORESCENCYJNA PODSTAWY I ZASTOSOWANIE Dominik Senczyk Dominik.Senczyk@put.poznan.pl 1. Fizyczne podstawy analizy fluorescencyjnej Podczas padania promieni rentgenowskich na ośrodek
ANALIZA SKŁADU SKAŁ I MINERAŁÓW ZA POMOCĄ XRF
ANALIZA SKŁADU SKAŁ I MINERAŁÓW ZA POMOCĄ XRF opracowała dr inż. Alicja Bakalarz 1. WSTĘP Instrumentalne metody analiz są oparte na wykorzystaniu zjawisk fizycznych lub fizykochemicznych, a do wykonania
RoHS-Vision / X-RoHS + SDD
Spektrometr EDXRF do analiz RoHS i w wersji full analysis RoHS-Vision / X-RoHS + SDD Szybka i prosta analiza substancji niebezpiecznych zgodnie z regulacjami prawnymi dotyczącymi ochrony środowiska RoHS
(1) Oznaczanie składu substancji metodą niskorozdzielczej analizy fluorescencyjnej
(1) Oznaczanie składu substancji metodą niskorozdzielczej analizy fluorescencyjnej Wydział Fizyki, 2009 r. Spis Treści 1. Zjawisko fluorescencji rentgenowskiej (XRF)... 2 2. Detekcja promieniowania fluorescencyjnego...
Techniki Jądrowe w Diagnostyce i Terapii Medycznej
Techniki Jądrowe w Diagnostyce i Terapii Medycznej Wykład 2-5 marca 2019 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Rozpad Przemiana Widmo
12. WYBRANE METODY STOSOWANE W ANALIZACH GEOCHEMICZNYCH. Atomowa spektroskopia absorpcyjna
12. WYBRANE METODY TOOWANE W ANALIZACH EOCHEMICZNYCH Atomowa spektroskopia absorpcyjna (AA - atomic absorption spectroscopy) Atomowa spektroskopia absorpcyjna jest bardzo czułą metodą analityczną umożliwiającą
Ćwiczenie LP1. Jacek Grela, Łukasz Marciniak 22 listopada 2009
Ćwiczenie LP1 Jacek Grela, Łukasz Marciniak 22 listopada 2009 1 Wstęp teoretyczny 1.1 Energetyczna zdolność rozdzielcza Energetyczna zdolność rozdzielcza to wielkość opisująca dokładność detekcji energii
SPRAWDZIAN NR 1. wodoru. Strzałki przedstawiają przejścia pomiędzy poziomami. Każde z tych przejść powoduje emisję fotonu.
SRAWDZIAN NR 1 IMIĘ I NAZWISKO: KLASA: GRUA A 1. Uzupełnij tekst. Wpisz w lukę odpowiedni wyraz. Energia, jaką w wyniku zajścia zjawiska fotoelektrycznego uzyskuje elektron wybity z powierzchni metalu,
(2) Zastosowanie fluorescencji rentgenowskiej wzbudzanej źródłami promieniotwórczymi do pomiarów grubości powłok
(2) Zastosowanie fluorescencji rentgenowskiej wzbudzanej źródłami promieniotwórczymi do Wydział Fizyki, 2009 r. Spis Treści 1. Zjawisko fluorescencji rentgenowskiej (XRF)... 2 2. Detekcja promieniowania
Ćwiczenie nr 2 Zastosowanie fluorescencji rentgenowskiej wzbudzanej źródłami promieniotwórczymi do pomiarów grubości powłok
Ćwiczenie nr 2 Zastosowanie fluorescencji rentgenowskiej wzbudzanej źródłami promieniotwórczymi do pomiarów grubości powłok Wydział Fizyki, 2009 r. I Cel ćwiczenia Celem ćwiczenia jest: Zapoznanie się
Przejścia promieniste
Przejście promieniste proces rekombinacji elektronu i dziury (przejście ze stanu o większej energii do stanu o energii mniejszej), w wyniku którego następuje emisja promieniowania. E Długość wyemitowanej
OBRAZOWANIE ORAZ BADANIE ROZMIARÓW I POŁOŻENIA OBIEKTÓW NAŚWIETLONYCH PROMIENIOWANIEM X
X4 OBRAZOWANIE ORAZ BADANIE ROZMIARÓW I POŁOŻENIA OBIEKTÓW NAŚWIETLONYCH PROMIENIOWANIEM X 1. Cel ćwiczenia Celem ćwiczenia jest jakościowe poznanie podstawowych zjawisk fizycznych wykorzystywanych w obrazowaniu
Badanie próbek środowiskowych
J16 Badanie próbek środowiskowych Celem ćwiczenia jest pomiar promieniowania gamma emitowanego z próbki trynitytu oraz identyfikacja i określenie aktywności izotopów w niej zawartych. Trynityt to szkliwo
Ćwiczenie nr 1 Oznaczanie składu substancji metodą niskorozdzielczej analizy fluorescencyjnej
Ćwiczenie nr 1 Oznaczanie składu substancji metodą niskorozdzielczej analizy fluorescencyjnej Wydział Fizyki, 2009 r. I Cel ćwiczenia Celem ćwiczenia jest: Zapoznanie się ze zjawiskiem fluorescencji rentgenowskiej
Techniki próżniowe (ex situ)
Techniki próżniowe (ex situ) Oddziaływanie promieniowania X z materią rearrangement X-ray photon X-ray emission b) rearrangement a) photoemission photoelectron Auger electron c) Auger/X-ray emission a)
Widmo promieniowania
Widmo promieniowania Spektroskopia Każde ciało wysyła promieniowanie. Promieniowanie to jest składa się z wiązek o różnych długościach fal. Jeśli wiązka światła pada na pryzmat, ulega ono rozszczepieniu,
Temat: Promieniowanie atomu wodoru (teoria)
Temat: Promieniowanie atomu wodoru (teoria) Zgodnie z drugim postulatem Bohra elektron poruszając się po dozwolonej orbicie nie wypromieniowuje energii. Promieniowanie zostaje wyemitowane, gdy elektron
Stałe : h=6, Js h= 4, eVs 1eV= J nie zależy
T_atom-All 1 Nazwisko i imię klasa Stałe : h=6,626 10 34 Js h= 4,14 10 15 evs 1eV=1.60217657 10-19 J Zaznacz zjawiska świadczące o falowej naturze światła a) zjawisko fotoelektryczne b) interferencja c)
Własności optyczne półprzewodników
Własności optyczne półprzewodników Andrzej Wysmołek Wykład przygotowany w oparciu o wykłady prowadzone na Wydziale Fizyki UW przez prof. Mariana Grynberga oraz prof. Romana Stępniewskiego Klasyfikacja
Laboratorium z Krystalografii. 2 godz.
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Zbadanie zależności intensywności linii Kα i Kβ promieniowania charakterystycznego X emitowanego przez anodę
Wzajemne relacje pomiędzy promieniowaniem a materią wynikają ze zjawisk związanych z oddziaływaniem promieniowania z materią. Do podstawowych zjawisk
Wzajemne relacje pomiędzy promieniowaniem a materią wynikają ze zjawisk związanych z oddziaływaniem promieniowania z materią. Do podstawowych zjawisk fizycznych tego rodzaju należą zjawiska odbicia i załamania
Nowoczesne metody analizy pierwiastków
Nowoczesne metody analizy pierwiastków Techniki analityczne Chromatograficzne Spektroskopowe Chromatografia jonowa Emisyjne Absorpcyjne Fluoroscencyjne Spektroskopia mas FAES ICP-AES AAS EDAX ICP-MS Prezentowane
Charakterystyka promieniowania miedziowej lampy rentgenowskiej.
Uniwersytet Śląski - Instytut Chemii Zakładu Krystalografii ul. Bankowa 14, pok. 133, 40-006 Katowice tel. 0323591503, e-mail: izajen@wp.pl, opracowanie: dr Izabela Jendrzejewska Laboratorium z Krystalografii
n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24)
n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A 1 2 / B hν exp( ) 1 kt (24) Powyższe równanie określające gęstość widmową energii promieniowania
SPEKTROMETRIA CIEKŁOSCYNTYLACYJNA
SPEKTROMETRIA CIEKŁOSCYNTYLACYJNA Metoda detekcji promieniowania jądrowego (α, β, γ) Konwersja energii promieniowania jądrowego na promieniowanie w zakresie widzialnym. Zalety metody: Geometria 4π Duża
J17 - Badanie zjawiska Dopplera dla promieniowania gamma
J17 - Badanie zjawiska Dopplera dla promieniowania gamma Celem doświadczenia jest obserwacja i analiza zjawiska Dopplera dla promieniowania γ emitowanego ze stanu wzbudzonego 12 C. Promieniowanie to powstaje
Promieniowanie jonizujące i metody radioizotopowe. dr Marcin Lipowczan
Promieniowanie jonizujące i metody radioizotopowe dr Marcin Lipowczan Budowa atomu 897 Thomson, 0 0 m, kula dodatnio naładowana ładunki ujemne 9 Rutherford, rozpraszanie cząstek alfa na folię metalową,
THICK 800A DO POMIARU GRUBOŚCI POWŁOK. THICK 800A spektrometr XRF do szybkich, nieniszczących pomiarów grubości powłok i ich składu.
THICK 800A DO POMIARU GRUBOŚCI POWŁOK THICK 800A spektrometr XRF do szybkich, nieniszczących pomiarów grubości powłok i ich składu. Zoptymalizowany do pomiaru grubości warstw Detektor Si-PIN o rozdzielczości
Ćwiczenie 3 : Spektrometr promieniowania gamma z licznikiem półprzewodnikowym Ge(Li)
Ćwiczenie 3 : Spektrometr promieniowania gamma z licznikiem półprzewodnikowym Ge(Li) Oskar Gawlik, Jacek Grela 3 listopada 28 1 Wstęp 1.1 Cel ćwiczenia Celem ćwiczenia jest zapoznanie się i nacechowanie
Spektrometry EDXRF do analizy metali szlachetnych X-PMA i w wersji przenośnej EX-PMA
Spektrometry EDXRF do analizy metali szlachetnych X-PMA i w wersji przenośnej EX-PMA Xenemetrix jest Izraelską wiodącą firmą z ponad 40 letnim doświadczeniem w projektowaniu, produkcji i dystrybucji spektrometrów
Rozpraszanie nieelastyczne
Rozpraszanie nieelastyczne Przekazywanie energii elektronów wiązki prowadzi do emisji szeregu sygnałów wykorzystywanych w mikroskopii elektronowej i mikroanalizie rentgenowskiej: 1. Niskoenergetyczne elektrony
ANALITYKA W KONTROLI JAKOŚCI
ANALITYKA W KONTROLI JAKOŚCI ANALIZA ŚLADÓW METODA ICP-OES Optyczna spektroskopia emisyjna ze wzbudzeniem w indukcyjnie sprzężonej plazmie WYKŁAD 4 Rodzaje widm i mechanizm ich powstania PODSTAWY SPEKTROSKOPII
Detekcja promieniowania elektromagnetycznego czastek naładowanych i neutronów
Detekcja promieniowania elektromagnetycznego czastek naładowanych i neutronów Marcin Palacz Środowiskowe Laboratorium Ciężkich Jonów UW Marcin Palacz Warsztaty ŚLCJ, 21 kwietnia 2009 slide 1 / 30 Rodzaje
Pomiary widm fotoluminescencji
Fotoluminescencja (PL photoluminescence) jako technika eksperymentalna, oznacza badanie zależności spektralnej rekombinacji promienistej, pochodzącej od nośników wzbudzonych optycznie. Schemat układu do
I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona
r. akad. 004/005 I.4 Promieniowanie rentgenowskie. Efekt Comptona Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona Jan Królikowski Fizyka IVBC 1 r. akad. 004/005 0.01 nm=0.1 A
Fizykochemiczne metody w kryminalistyce. Wykład 7
Fizykochemiczne metody w kryminalistyce Wykład 7 Stosowane metody badawcze: 1. Klasyczna metoda analityczna jakościowa i ilościowa 2. badania rentgenostrukturalne 3. Badania spektroskopowe 4. Metody chromatograficzne
Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman
Porównanie Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman Spektroskopia FT-Raman Spektroskopia FT-Raman jest dostępna od 1987 roku. Systemy
Spektroskopia elektronów Augera. AES Auger Electron Spectroscopy
Spektroskopia elektronów Augera AES Auger Electron Spectroscopy Podstawy E k Z E 4 E 3 E 2 E 1 E k =(E 2 -E 3 )-E 4 Proces Auger a Jonizacja głęboko leżącego poziomu elektronowego przez elektrony pierwotne
Oddziaływanie promieniowania X z materią. Podstawowe mechanizmy
Oddziaływanie promieniowania X z materią Podstawowe mechanizmy Promieniowanie od oscylującego elektronu Rozpraszanie Thomsona Dyspersja podejście klasyczne Fala padająca Wymuszony, tłumiony oscylator harmoniczny
Spektroskopowe metody identyfikacji związków organicznych
Spektroskopowe metody identyfikacji związków organicznych Wstęp Spektroskopia jest metodą analityczną zajmującą się analizą widm powstających w wyniku oddziaływania promieniowania elektromagnetycznego
gamma - Pochłanianie promieniowania γ przez materiały
PJLab_gamma.doc Promieniowanie jonizujące - ćwiczenia 1 gamma - Pochłanianie promieniowania γ przez materiały 1. Cel ćwiczenia Podczas ćwiczenia mierzy się natężenie promieniowania γ po przejściu przez
Techniki analityczne. Podział technik analitycznych. Metody spektroskopowe. Spektroskopia elektronowa
Podział technik analitycznych Techniki analityczne Techniki elektrochemiczne: pehametria, selektywne elektrody membranowe, polarografia i metody pokrewne (woltamperometria, chronowoltamperometria inwersyjna
Repeta z wykładu nr 8. Detekcja światła. Przypomnienie. Efekt fotoelektryczny
Repeta z wykładu nr 8 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 przegląd detektorów
ANALIZA FLUORESCENCYJNA
ANALIZA FLUORESCENCYJNA czuła metoda analityczna do określania koncentracji pierwiastków szeroko wykorzystywana w różnych dziedzinach nauk podstawowych i w badaniach interdyscyplinarnych ANALIZA FLUORESCENCYJNA
Promieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X
Promieniowanie X Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X Lampa rentgenowska Lampa rentgenowska Promieniowanie rentgenowskie
Oddziaływanie promieniowania jonizującego z materią
Oddziaływanie promieniowania jonizującego z materią Plan Promieniowanie ( particle radiation ) Źródła (szybkich) elektronów Ciężkie cząstki naładowane Promieniowanie elektromagnetyczne (fotony) Neutrony
Repeta z wykładu nr 11. Detekcja światła. Fluorescencja. Eksperyment optyczny. Sebastian Maćkowski
Repeta z wykładu nr 11 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 CCD (urządzenie
Fluorescencyjna detekcja śladów cząstek jądrowych przy użyciu kryształów fluorku litu
Fluorescencyjna detekcja śladów cząstek jądrowych przy użyciu kryształów fluorku litu Paweł Bilski Zakład Fizyki Radiacyjnej i Dozymetrii (NZ63) IFJ PAN Fluorescenscent Nuclear Track Detectors (FNTD) pierwsza
2008/2009. Seweryn Kowalski IVp IF pok.424
2008/2009 seweryn.kowalski@us.edu.pl Seweryn Kowalski IVp IF pok.424 Plan wykładu Wstęp, podstawowe jednostki fizyki jądrowej, Własności jądra atomowego, Metody wyznaczania własności jądra atomowego, Wyznaczanie
Metody spektroskopowe:
Katedra Chemii Analitycznej Metody spektroskopowe: Absorpcyjna Spektrometria Atomowa Fotometria Płomieniowa Gdańsk, 2010 Opracowała: mgr inż. Monika Kosikowska 1 1. Wprowadzenie Spektroskopia to dziedzina
SPEKTROSKOPIA RENTGENOWSKA
Intensywność ĆWICZENIE 105 SPEKTROSKOPIA RENTGENOWSKA Cel ćwiczenia: obserwacja ciągłego i charakterystycznego promieniowania rentgenowskiego, którego źródłem jest wolfram; wyznaczenie energii promieniowania
Charakterystyka promieniowania molibdenowej lampy rentgenowskiej
Uniwersytet Śląski Instytut Chemii Zakładu Krystalografii ul. Bankowa 14, pok. 133, 40 006 Katowice tel. 0323591503, e-mail: izajen@wp.pl, opracowanie: dr hab. Izabela Jendrzejewska Laboratorium z Krystalografii
Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła
W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PROCESOWEJ, MATERIAŁOWEJ I FIZYKI STOSOWANEJ POLITECHNIKA CZĘSTOCHOWSKA ĆWICZENIE NR MR-6
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PROCESOWEJ, MATERIAŁOWEJ I FIZYKI STOSOWANEJ POLITECHNIKA CZĘSTOCHOWSKA LABORATORIUM Z PRZEDMIOTU METODY REZONANSOWE ĆWICZENIE NR MR-6 JAKOŚCIOWA I ILOŚCIOWA ANALIZA
Wykład Budowa atomu 2
Wykład 7.12.2016 Budowa atomu 2 O atomach cd Model Bohra podsumowanie Serie widmowe O czym nie mówi model Bohra Wzbudzenie, emisja, absorpcja O liniach widmowych Kwantowomechaniczny model atomu sformułowanie
Korpuskularna natura światła i materii
Podręcznik zeszyt ćwiczeń dla uczniów Korpuskularna natura światła i materii Politechnika Gdańska, Wydział Fizyki Technicznej i Matematyki Stosowanej ul. Narutowicza 11/12, 80-233 Gdańsk, tel. +48 58 348
GENIUS IF SDD/LE. Spektrometr EDXRF ze wzbudzeniem wtórnym
GENIUS IF SDD/LE Spektrometr EDXRF ze wzbudzeniem wtórnym Zoptymalizowany do pomiaru pierwiastków lekkich od C do Fm Detektor SDD o rozdzielczości 123 ev Analizy jakościowe i ilościowe od sub-ppm do 100%
S-MOBILE / S-MOBILE ULS
S-MOBILE / S-MOBILE ULS Przenośny spektrometr EDXRF Przenośny spektrometr XRF o parametrach stacjonarnego Detektor SDD o rozdzielczości 125 ev Analizy jakościowe i ilościowe od sub-ppm do 100% Szybkie
Oddziaływanie cząstek z materią
Oddziaływanie cząstek z materią Trzy główne typy mechanizmów reprezentowane przez Ciężkie cząstki naładowane (cięższe od elektronów) Elektrony Kwanty gamma Ciężkie cząstki naładowane (miony, p, cząstki
Absorpcja promieni rentgenowskich 2 godz.
Uniwersytet Śląski - Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 133, 40-006 Katowice tel. (032)3591627, e-mail: joanna_palion@poczta.fm opracowanie: mgr Joanna Palion-Gazda Laboratorium
Fizyka 2. Janusz Andrzejewski
Fizyka 2 wykład 14 Janusz Andrzejewski Atom wodoru Wczesne modele atomu -W czasach Newtona atom uważany była za małą twardą kulkę co dość dobrze sprawdzało się w rozważaniach dotyczących kinetycznej teorii
Analiza składu chemicznego powierzchni
Analiza składu chemicznego powierzchni Techniki elektronowe Spektrometria elektronów Auger a (AES) zjawisko Auger a Spektrometria fotoelektronów rentgenowskich (XPS) efekt fotoelektryczny Próbka Soczewka
Mikroskopia konfokalna: techniki obrazowania i komputerowa analiza danych.
Mikroskopia konfokalna: techniki obrazowania i komputerowa analiza danych. Pracownia Mikroskopii Konfokalnej Instytut Biologii Doświadczalnej PAN Jarosław Korczyński, Artur Wolny Spis treści: Co w konfokalu
Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja
Rekapitulacja Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje: czwartek
Optyka. Wykład XII Krzysztof Golec-Biernat. Dyfrakcja. Laser. Uniwersytet Rzeszowski, 17 stycznia 2018
Optyka Wykład XII Krzysztof Golec-Biernat Dyfrakcja. Laser Uniwersytet Rzeszowski, 17 stycznia 2018 Wykład XII Krzysztof Golec-Biernat Optyka 1 / 23 Plan Dyfrakcja na jednej i dwóch szczelinach Dyfrakcja
Temat 1 Badanie fluorescencji rentgenowskiej fragmentu meteorytu pułtuskiego opiekun: dr Chiara Mazzocchi,
Warszawa, 15.11.2013 Propozycje tematów prac licencjackich dla kierunku Energetyka i Chemia Jądrowa Zakład Spektroskopii Jądrowej, Wydział Fizyki UW Rok akademicki 2013/2014 Temat 1 Badanie fluorescencji
WYBRANE TECHNIKI SPEKTROSKOPII LASEROWEJ ROZDZIELCZEJ W CZASIE prof. Halina Abramczyk Laboratory of Laser Molecular Spectroscopy
WYBRANE TECHNIKI SPEKTROSKOPII LASEROWEJ ROZDZIELCZEJ W CZASIE 1 Ze względu na rozdzielczość czasową metody, zależną od długości trwania impulsu, spektroskopię dzielimy na: nanosekundową (10-9 s) pikosekundową
LASERY NA CIELE STAŁYM BERNARD ZIĘTEK
LASERY NA CIELE STAŁYM BERNARD ZIĘTEK TEK Lasery na ciele stałym lasery, których ośrodek czynny jest: -kryształem i ciałem amorficznym (również proszkiem), - dielektrykiem i półprzewodnikiem. 2 Podział
Pracownia Jądrowa. dr Urszula Majewska. Spektrometria scyntylacyjna promieniowania γ.
Ćwiczenie nr 1 Spektrometria scyntylacyjna promieniowania γ. 3. Oddziaływanie promieniowania γ z materią: Z elektronami: zjawisko fotoelektryczne, rozpraszanie Rayleigha, zjawisko Comptona, rozpraszanie