Zadania na IV etap Ligi Matematyczno-Fizycznej klasa III
|
|
- Seweryna Kowalska
- 9 lat temu
- Przeglądów:
Transkrypt
1 Zadania na IV etap Ligi Matematyczno-Fizycznej klasa III Zad.1 Akwarium ma rozmiary: 50cm,1m, 60cm. Ile litrów wody należy wlać do akwarium, aby wypełnić 5 jego objętości? 6 Zad. Oblicz długość przekątnej prostopadłościanu o krawędziach długości 30cm; 0,1dm;,1dm. Zad.3 Jeśli zwiększymy długość krawędzi bocznej prostopadłościanu o 0%, to otrzymamy sześcian o objętości V=7000cm 3. Oblicz pole powierzchni bocznej i objętość prostopadłościanu. Zad. Objętość graniastosłupa prawidłowego trójkątnego jest równa 30 3 cm 3, a pole powierzchni bocznej 0cm. Oblicz długość krawędzi podstawy i wysokość graniastosłupa. Zad.5 81 Pole podstawy graniastosłupa prawidłowego trójkątnego jest równe 3 cm, a pole powierzchni bocznej 81 cm. Oblicz objętość graniastosłupa. Zad.6 Podstawą ostrosłupa jest prostokąt o bokach długości 6cm i 8cm, a długość jego wysokości stanowi 60% długości przekątnej podstawy. Oblicz objętość ostrosłupa. Zad.7 Oblicz objętość i pole powierzchni graniastosłupa, którego podstawą jest romb o przekątnych długości 6cm i 8cm, którego przekątna ściany bocznej tworzy z krawędzią podstawy kąt o mierze. Zad.8 Kula i stożek mają równe objętości. Promień kuli ma długość 5cm, a promień podstawy stożka ma długość 8cm. Oblicz wysokość stożka. Zad.9 Trójkąt prostokątny o polu 3 i kącie ostrym 30 stopni obraca się dookoła krótszej przyprostokątnej. Oblicz objętość i pole powierzchni całkowitej otrzymanej w ten sposób bryły.
2 Zad. 10 Pole podstawy stożka wynosi 36π cm, a kąt rozwarcia ma miarę Oblicz objętość i pole powierzchni bocznej tego stożka. Zad. 11 Powierzchnia boczna walca po rozwinięciu na płaszczyznę jest prostokątem o wymiarach 10π cm i 0 cm. Krótszy bok prostokąta i wysokość walca mają równe długości. Oblicz objętość i pole powierzchni całkowitej tego walca. Zad.1 Do garnka o średnicy podstawy 18cm nalano wody, a następnie wrzucono brzoskwinię o średnicy 6cm. O ile cm podniósł się poziom wody w garnku? Przyjmujemy, że brzoskwinia jest kulą i zanurzyła się całkowicie oraz że z garnka nie wylała się woda. Zad.13 Obwód podstawy walca jest równy 10πcm. Przekątna przekroju osiowego tego walca tworzy z płaszczyzną podstawy kąt o mierze Oblicz objętość i pole powierzchni całkowitej walca. Zad.1 Wyznacz x z równania x + 1,5 + : 3 = 1, Zad.15 W trójkąt równoboczny wpisano kwadrat o boku długości 6 cm. Oblicz pole trójkąta. Zad.16 W kwadracie o boku długości 6 cm ścięto naroża w ten sposób, że powstał ośmiokąt foremny. Oblicz jego pole i obwód. Zad.17 O ile centymetrów podniesie się poziom wody w akwarium, którego podstawą jest prostokąt o bokach długości 50 cm i 30 cm, jeżeli wlejemy do niego 3 litry wody? Zad.18 Oblicz objętość i pole powierzchni graniastosłupa prawidłowego czworokątnego, w którym krawędź podstawy ma długość cm, a przekątna graniastosłupa tworzy z płaszczyzną podstawy kąt Zad.19. Ramiona trapezu równoramiennego są nachylone do podstaw pod kątem 60 0 i mają długość 10 cm. Jedna z podstaw jest dwa razy dłuższa od drugiej. Oblicz obwód tego trapezu. Zad Zadanie 1. Oblicz: a) ( 0,8) : 9 3 b) c) sprawdź czy zachodzi równanie : 3 : : 5 =
3 Zadanie 1. Dany jest stożek jak na rysunku. Oblicz objętość. Zadanie. Przekątna przekroju osiowego walca nachylona jest pod kątem 5 stopni do podstawy walca. Przekrój osiowy ma pole 100. Oblicz objętość walca. Zadanie 3. Przekrój poprzeczny walca ma kształt kwadratu o przekątnej 10. Oblicz jego pole powierzchni bocznej bryły. Zadanie. Obwód podstawy walca ma 0Π cm, zaś przekątna przekroju osiowego tworzy z podstawą kąt 30º. Oblicz V i pole powierzchni całkowitej walca. Zadanie 5. Ile waży beczka bez przykrywki w kształcie walca o promieniu długości 30 cm i wysokości 90 cm, wykonana z blachy, której 1 m waży 0,8 kg? Zadanie 6. Tworząca stożka o długości 10 cm jest nachylona do płaszczyzny podstawy pod kątem 30º. Oblicz V i pole powierzchni całkowitej stożka. Zadanie 7. Trójkąt prostokątny, którego boki mają długości równe kolejnym liczbom naturalnym, obraca się dokoła przeciwprostokątnej. Oblicz V otrzymanej bryły. Zadanie 8. Pan Karol wpłacił pewną kwotę do banku na lokatę 3- miesięczną o oprocentowaniu 1% ww skali roku. Ile procent uzyskał na odsetkach, jeżeli pieniądze wypłacił dopiero po roku? Zadanie 9. Świeżo wydobyta gąbka Spongilla lacustris ważyła 150 dag, a po odparowaniu 0% zawartej w niej wody jej zawartość w upolowanym okazie spadła do 5%. Ile będzie ważyć Spongilla lacustris po całkowitym osuszeniu?
4 Zadanie 30. Jaka jest odległość środka krawędzi sześcianu jednostkowego od środka krawędzi do niej skośnej? Zadanie 31. Drut o długości m otoczony jest izolacją. Średnica samego drutu wynosi 1 mm, a drutu w izolacji mm. Ile waży izolacja, jeśli wykonano ją z materiału o gęstości 0,5 g/cm 3? Zadanie 3. Przez każde dwa wierzchołki pól szachownicy 8 8 poprowadzono prostą. Ile kierunków wyznaczają te proste? (Innymi słowy: ile z nich można maksymalnie wybrać, tak żeby żadne dwie spośród wybranych nie były równoległe?) Zadanie 33. Liczby noworoczne to liczby powstające z liczb naturalnych trzycyfrowych o wszystkich cyfrach nieparzystych przez dopisanie na końcu "011" lub przez zamianę na "011" ich środkowej cyfry. Ile jest liczb noworocznych? Zadanie 3. Jeśli Tomek nie zatrzymuje się w drodze ze szkoły do domu to powrót zajmuje mu 1 minut. Dzisiaj jednak czas powrotu był o wiele dłuższy. Tomek stracił ¼ tego czasu na oglądanie wystaw, 1/3 na rozmowę z kolegami, a 8 minut patrzył na grających w piłkę. Jak długo wracał Tomek ze szkoły tego dnia? Zadanie 35. Gdy w klasie IIIa wszyscy uczniowie są obecni, to liczba chłopców do liczby dziewcząt jest w stosunku 3 :. Pewnego dnia nieobecni byli dwaj chłopcy i jedna z dziewcząt i wówczas stosunek liczby chłopców i liczby dziewcząt wynosił :3. Ile dziewcząt i ile chłopców jest w tej klasie? Zadanie 36. Ile różnych liczb naturalnych trzeba co najmniej wylosować, żeby mieć pewność, że znajdą się wśród nich dwie, których różnica dzieli się przez 010? Zadanie 37. Oblicz obwód prostokąta, którego przekątna ma długość 5 cm, a stosunek boków jest równy 5 : 1. Zadanie 38. Strona książki formatu 30 cm 0 cm ma dwucentymetrowe marginesy wzdłuż każdej krawędzi. Jaki procent powierzchni strony nie może być zadrukowany? Zadanie 39. Trawa na całym pastwisku rośnie jednakowo gęsto i szybko. 70 krów zjadłoby ją w ciągu dni, a 30 krów w ciągu 60 dni. Pytanie brzmi: Ile krów zjadłoby całą trawę w ciągu 96 dni? Zadanie 0. gości dostało 8 litrową beczkę wina, mieli ją podzielić równo na połowę, do podzielenia mieli tylko beczkę 3 litrową i 5 litrową jak to podzielić? (nie, nie wypili tego od razu wspólnie ;)
5 Zadanka z fizyki 1. Krzesełko karuzeli porusza sie po okręgu ze stałą wartością prędkości równą 13m/s a czas jednego pełnego obrotu karuzeli wynosi 10 s. Ile wynosi w przybliżeniu długość promienia okręgu, po którym porusza sie krzesełko karuzeli?. Mała płyta gramofonowa obraca sie z częstotliwością 5 obrotów/minutę. Promień płyty wynosi 8,5 cm. Ile wynosi wartość prędkości z jaką porusza się igła gramofonu względem płyty na jej brzegu? 3. Ołowiany pocisk poruszając się z prędkością 0 m/s uderza w deskę i zatrzymuje się w niej. Zakładając, że połowa jego energii kinetycznej którą posiadał zamieniona zostaje na wzrost jego energii wewnętrznej, oblicz przyrost jego temperatury. Ciepło właściwe ołowiu: c = 100 J/(kg*K). Przedmiot żelazny o masie kg ogrzano dostarczając mu 100 kj energii. Oblicz, o ile stopni wzrosła jego temperatura. Ciepło właściwe żelaza: c = 500 J/(kg*K) 5. Ile wody o temperaturze 0 o C należy dolać do 10 kg wrzątku, aby temperatura mieszaniny wynosiła 80 o C? 6. Ciepło topnienia lodu wynosi 335 kj/kg. Ile energii należy dostarczyć bryle lodu o masie 0, kg i temperaturze 0 o C, aby ją stopić? 7. Tramwaj ruszając z przystanku ruchem jednostajnie przyspieszonym przebył w ciągu pierwszych s ruchu drogę 8 m. Oblicz przyspieszenie jego ruchu. 8. Jaką drogę przebędzie w trzeciej sekundzie od ruszenia z miejsca ciało, którego przyspieszenie wynosi m/s? 9. Na gwoździu wbitym w ścianę w punkcie X zawieszono na nitce o długości l kulkę. Długość nitki dobrano tak, że kulka wykonuje jedno pełne drgnienie (nie ocierając w trakcie ruchu o ścianę) w czasie s. W jakim czasie wykona ona pełne drgnienie, jeśli w ścianę w punkcie Y (dokładnie poniżej punktu X ) w odległości 3/ l od X, wbito drugi gwóźdź, o który zahacza nitka podczas wahania? Na jaką maksymalną wysokość wzniesie się kulka wahadła, jeżeli punkt najniższego położenia mija z prędkością 1, m/s? 10. Kropla deszczu spada z wysokości 1 km. Zakładając, że połowa jej energii potencjalnej zamienia się na wzrost jej energii wewnętrznej oblicz, o ile wzrasta temperatura tej kropli wody? Ciepło właściwe wody: c = 00 J /(kg*k) 11. Pewną masę miedzi ogrzano o 500 o C dostarczając jej 790 kj ciepła. Oblicz masę tej miedzi. Ciepło właściwe miedzi: c = 380 J/(kg*K) 1. Ile wrzącej wody trzeba dolać do 0 kg wody o temperaturze 0 o C, aby temperatura mieszaniny wynosiła 55 st. C? Ciepło właściwe wody: c = 00 J / (kg*k) 13. W odkrytym garnku stojącym na gazowym palniku znajduje się wrząca woda. Po pewnym czasie wyparowało 0,5 kg tej wody. Oblicz, ile energii pochłonął proces jej odparowania? Ciepło parowania wody: c p = 60 kj/kg 1. Przez kaloryfer przepływa w ciągu doby 300 kg wody, zmieniając swoją temperaturę z 80 C na 60 C. 1 kg wody ochładzając się o 1 C oddaje, kj ciepła. Ile ciepła oddaje woda w tym kaloryferze w ciągu doby? Zapisz obliczenia. 15. Teleskop Hubble a znajduje się na orbicie okołoziemskiej na wysokości około 600 km nad Ziemią. Oblicz wartość prędkości, z jaką porusza się on wokół Ziemi, jeżeli czas jednego okrążenia Ziemi wynosi około 100 minut. Zapisz obliczenia. (Przyjmij Rz = 600 km, = /7 ) 16. Oblicz czas swobodnego spadku metalowej kulki z wysokości 0 m. Przyjmij wartość przyspieszenia ziemskiego g = 10 m/s i pomiń opór powietrza. Zapisz obliczenia. 17. Na łódkę poruszającą się ruchem jednostajnym po jeziorze działają cztery siły: siła ciężaru łódki ( Q ), siła wyporu ( Fw ), siła ciągu silnika ( Fc ), siła oporu ruchu ( Fop) Narysuj schemat i narysuj wektory wymienionych sił i podpisz je zgodnie z oznaczeniami podanymi w nawiasach. 18. Pompa elektryczna o mocy kw pompuje wodę ze studni na wysokość 30 m. Ile litrów wody może dostarczyć ta pompa w ciągu 1 minuty? 19. Drewniany klocek o wymiarach 10 cm x 10 cm x 0 cm zanurzono w wodzie na głębokość 0,5 m. Jaką przy tym wykonano pracę? Gęstość drewna wynosi 0,7 g/cm 3, gęstość wody 1 g/cm Miedziana kulka o masie 0,1 kg spada z wysokości 10 m i po odbiciu od podłogi wznosi się na wysokość m. Zakładając, że połowa utraconej energii mechanicznej została zamieniona na wzrost energii wewnętrznej kulki, oblicz o ile wzrosła jej temperatura. Ciepło właściwe miedzi: c = 00 J/(kg*K).
LIGA MATEMATYCZNO - FIZYCZNA ZADANIA NA III ETAP DLA KLAS III
LIGA MATEMATYCZNO - FIZYCZNA ZADANIA NA III ETAP DLA KLAS III 1. Rozwiąż równania a) 2 x+3 =4 x+1 b) 4 x+7 =8 2x-5 c) 2 2x-4 =4 3-3x d) 4 3x-1 =32 5-2x 2. Rozwiąż równania a) 2 x-3 10 x-3 3x+7 =5 3x+7
Zad. 1 Przyprostokątne trójkąta prostokątnego mają długości (4+ 2) cm i (4 2) cm. Oblicz długość promienia koła opisanego na tym trójkącie.
LIGA MATEMATYCZNO - FIZYCZNA ZADANIA NA I ETAP DLA KLAS III Zad. 1 Przyprostokątne trójkąta prostokątnego mają długości (4+ 2) cm i (4 2) cm. Oblicz długość promienia koła opisanego na tym trójkącie. Zad.
Klasa 3.Graniastosłupy.
Klasa 3.Graniastosłupy. 1. Uzupełnij nazwy odcinków oznaczonych literami: a........................................................... b........................................................... c...........................................................
Matematyka podstawowa IX. Stereometria
Zadania wprowadzające: Matematyka podstawowa IX Stereometria 1. Pole powierzchni całkowitej sześcianu jest równe 54. Oblicz objętość sześcianu. 2. Pole powierzchni sześcianu jest równe 96.Oblicz długość
ZADANIE 1 (5 PKT) ZADANIE 2 (5 PKT) Oblicz objętość czworościanu foremnego o krawędzi a.
ZADANIE 1 (5 PKT) Czworościan foremny o krawędzi a rozcięto płaszczyzna prostopadła do jednej z krawędzi, przechodzac a w odległości 0, 25a od jednego końca tej krawędzi. Oblicz objętość otrzymanych brył.
Stereometria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie
Stereometria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie http://www.zadania.info/) 1. W ostrosłupie prawidłowym czworokątnym ściana boczna o polu równym 10 jest nachylona do płaszczyzny podstawy
5. Oblicz pole powierzchni bocznej tego graniastosłupa.
11. STEREOMETRIA Zad.11.1. Oblicz pole powierzchni całkowitej sześcianu, wiedząc Ŝe jego objętość wynosi 16 cm. Zad.11.. Oblicz długość przekątnej sześcianu, jeśli jego pole powierzchni całkowitej wynosi
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste
Zadania na IV etap Ligi Matematyczni-Fizycznej klasa III
Zadania na IV etap Ligi Matematyczni-Fizycznej klasa III Zadanie 21. Dany jest stoŝek jak na rysunku. Oblicz objętość. Zadanie 22. Przekątna przekroju osiowego walca nachylona jest pod kątem 45 stopni
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE IV TECHNIKUM.
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE IV TECHNIKUM. I. Podstawowe pojęcia statystyki. 1. Sposoby prezentowania danych, interpretacja wykresów. 2. Mediana i dominanta. 3. Średnia arytmetyczna
Kurs ZDAJ MATURĘ Z MATEMATYKI - MODUŁ 13 Teoria stereometria
1 GRANIASTOSŁUPY i OSTROSŁUPY wiadomości ogólne Aby tworzyć wzory na OBJĘTOŚĆ i POLE CAŁKOWITE graniastosłupów musimy znać pola figur płaskich a następnie na ich bazie stosować się do zasady: Objętość
Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 13 Zadania stereometria
1 TEST WSTĘPNY 1. (1p) Graniastosłup ma 12 wierzchołków. Liczba krawędzi tego graniastosłupa to: A. 12 B. 18 C. 24 D. 36 2. (1p) Pole powierzchni jednej ściany sześcianu jest równe 9. Objętość tego sześcianu
OBLICZANIE PÓL I OBWODÓW FIGUR PŁASKICH
OBLICZANIE PÓL I OBWODÓW FIGUR PŁASKICH Zadanie 1 Jeden z boków prostokąta ma 5 cm, a drugi jest 3 razy dłuższy. Oblicz pole prostokąta. Zadanie 2 Oblicz pole kwadratu, którego obwód wynosi 6 dm. Zadanie
Czy pamiętasz? Zadanie 1. Rozpoznaj wśród poniższych brył ostrosłupy i graniastosłupy.
1. Bryły Tradycyjna futbolówka jest zszyta z 3232 kawałków. Gdybyśmy ją rozcięli, ujrzelibyśmy siatkę dwudziestościanu ściętego. Kulisty kształt piłka otrzymuje dzięki wypełnieniu sprężonym powietrzem.
Zestaw nr 7 bryły. (Przyjmij do obliczeń, że 2 1,41 )
Zestaw nr 7 bryły Zad. 1. Ogrodnik zbudował 5 tuneli foliowych o długości 10 m każdy. Przekrój poprzeczny tunelu jest trapezem równoramiennym o podstawach 3 m i 1,6 m oraz wysokości 2,4 m. Ile metrów sześciennych
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas III w roku szkolnym 2015/2016 w Zespole Szkół Ekonomicznych w Zielonej Górze
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas III w roku szkolnym 2015/2016 w Zespole Szkół Ekonomicznych w Zielonej Górze II. Logarytmy obliczać logarytmy korzystając z definicji
STEREOMETRIA. Poziom podstawowy
STEREOMETRIA Poziom podstawowy Zadanie ( 8 pkt ) W stożku tworząca o długości jest nachylona do powierzchni podstawy pod kątem, którego tangens jest równy Oblicz stosunek pola powierzchni bocznej do pola
III Powiatowy konkurs gimnazjalny z fizyki finał
1 Zduńska Wola, 2012.03.28 III Powiatowy konkurs gimnazjalny z fizyki finał Kod ucznia XXX Pesel ucznia Instrukcja dla uczestnika konkursu 1. Etap finałowy składa się dwóch części: zadań testowych i otwartych
ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź.
ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska Zad.1. (5 pkt) Sprawdź, czy funkcja określona wzorem x( x 1)( x ) x 3x dla x 1 i x dla x 1 f ( x) 1 3 dla
ZADANIA MATURALNE - STEREOMETRIA PP poziom podstawowy PR poziom rozszerzony
ZADANIA MATURALNE - STEREOMETRIA PP poziom podstawowy PR poziom rozszerzony Zad.1. ( PP 5 pkt) Objętość ostrosłupa prawidłowego trójkątnego, o długości krawędzi podstawy 6 cm, jest równa 9 cm. Oblicz miarę
XIV WOJEWÓDZKI KONKURS MATEMATYCZNY
XIV WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO ETAP III - WOJEWÓDZKI Kod ucznia 24 marca 2017 roku godz. 13:00 Suma punktów Czas pracy: 90 minut Liczba punktów do
ZAGADANIENIA NA EGZAMIN USTNY Z MATEMATYKI
ZAGADANIENIA NA EGZAMIN USTNY Z MATEMATYKI SEMESTR I ZESTAW. Podaj liczbę przeciwną i odwrotną do liczby 2 2. Jak zmieniła się cena wyrobu po podwyżce o 20%, a następnie po obniżeniu otrzymanej ceny o
Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3)
Pytania zamknięte / TEST : Wybierz 1 odp prawidłową. 1. Punkt: A) jest aksjomatem in. pewnikiem; B) nie jest aksjomatem, bo można go zdefiniować. 2. Prosta: A) to zbiór punktów; B) to zbiór punktów współliniowych.
Ostrosłupy ( ) Zad. 4: Jedna z krawędzi ostrosłupa trójkątnego ma długość 2, a pozostałe 4. Znajdź objętość tego ostrosłupa. Odp.: V =
Ostrosłupy Zad 1: W ostrosłupie prawidłowym trójkątnym kwadrat długości krawędzi podstawy, kwadrat długości wysokości ostrosłupa i kwadrat długości krawędzi bocznej są kolejnymi wyrazami ciągu arytmetycznego
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE 3 ZASADNICZEJ SZKOŁY ZAWODOWEJ
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE 3 ZASADNICZEJ SZKOŁY ZAWODOWEJ I. Funkcja kwadratowa i wymierna 1. Funkcja kwadratowa i jej postacie. 2. Wykres funkcji kwadratowej. 3. Równania
WOJEWÓDZKI KONKURS MATEMATYCZNY
Pieczątka szkoły Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW W ROKU SZKOLNYM 018/019.10.018 1. Test konkursowy zawiera zadania. Są to zadania zamknięte
KONKURS MATEMATYCZNO FIZYCZNY 11 marca 2010 r. Klasa II
...... kod ucznia... klasa KONKURS MATEMATYCZNO FIZYCZNY marca 200 r. Klasa II... ilość punktów Drogi uczniu! Przed Tobą zestaw 4 zadań. Pierwsze 0 to zadania zamknięte. Rozwiązanie tych zadań polega na
ZADANIA MATURALNE STEREOMETRIA POZIOM PODSTAWOWY Opracowała mgr Danuta Brzezińska
ZADANIA MATURALNE STEREOMETRIA POZIOM PODSTAWOWY Opracowała mgr Danuta Brzezińska Zad.1. ( 5 pkt) Objętość ostrosłupa prawidłowego trójkątnego, o długości krawędzi podstawy 6 cm, jest równa cm 3. Oblicz
Stożkiem nazywamy bryłę obrotową, która powstała przez obrót trójkąta prostokątnego wokół jednej z jego przyprostokątnych.
1.4. Stożek W tym temacie dowiesz się: jak obliczać pole powierzchni bocznej i pole powierzchni całkowitej stożka, jak obliczać objętość stożka, jak wykorzystywać własności stożków w zadaniach praktycznych.
Sprawdzian całoroczny kl. II Gr. A x
. Oblicz: a) (,5) 8 c) ( ) : ( ). Oblicz: Sprawdzian całoroczny kl. II Gr. A [ ] d) 6 a) ( : ) 5 6 6 8 50. Usuń niewymierność z mianownika: a). Oblicz obwód koła o polu,π dm. 5. Podane wyrażenia przedstaw
LIGA MATEMATYCZNO FIZYCZNA KLASA III ETAP 3
LIGA MATEMATYCZNO FIZYCZNA KLASA III ETAP 3 1. W wyścigu grupa kolarzy ma do mety jeszcze 120 km i jedzie ze średnią prędkością 40 km/h. Przedstaw odległości tej grupy od celu jako funkcję czasu i ustal
Pole powierzchni całkowitej prostopadłościanu o wymiarach 5 x 3 x 4 jest równe A. 94 B. 60 C. 47 D. 20
STEREOMETRIA - ZADANIA MATURALNE lata 2010-2017 Zadanie 1. (0-1) Maj 2010 [I. Wykorzystanie i tworzenie informacji] Pole powierzchni całkowitej prostopadłościanu o wymiarach 5 x x 4 jest równe A. 94 B.
Opracowanie tablic: Adam Konstantynowicz, Anna Konstantynowicz, Kaja Mikoszewska
Opracowanie tablic: Adam Konstantynowicz, Anna Konstantynowicz, Kaja Mikoszewska Redaktor serii: Marek Jannasz Ilustracje: Magdalena Wójcik Projekt okładki: Teresa Chylińska-Kur, KurkaStudio Projekt makiety
Skrypt 33. Powtórzenie do matury:
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 33 Powtórzenie do matury:
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI P-1 POZIOM PODSTAWOWY Czas pracy: 170 minut Za rozwiązanie wszystkich zadań można uzyskać łącznie 50 punktów BRUDNOPIS Zadanie 1. (1 pkt) ZADANIA ZAMKNIĘTE
Kąty przyległe, wierzchołkowe i zewnętrzne
Kąty przyległe, wierzchołkowe i zewnętrzne 1. Ile wynosi miara kąta przyległego do kąta o mierze 135 o. 2. Wyznacz miary kątów α, β, γ, δ: 3. Z dwóch kątów przyległych, miara jednego jest dwa razy większa
Quiz Matematyczny r.sz. 2015/16
Quiz Matematyczny rsz 2015/16 część 1 Zad1 Przednie koło pewnego ciągnika obraca się 240 razy na pewnej drodze, a tylne mające obwód o 0,6 m większy obraca się na tej samej drodze 180 razy Jaki jest obwód
Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej.
C Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. Zad. 1 Oblicz pole trójkąta o bokach 13 cm, 14 cm, 15cm. Zad. 2 W trójkącie ABC rys. 1 kąty
Matematyka. Zadanie 1. Zadanie 2. Oblicz. Zadanie 3. Zadanie 4. Wykaż, że liczba. 2 2 jest podzielna przez 5. Zadanie 5.
Matematyka Zadanie 1. Oblicz liczby Zadanie. Oblicz Zadanie 3. Wykaż, że liczba jest podzielna przez Zadanie 4. Wykaż, że liczba 30 0 jest podzielna przez 5. Zadanie 5. n 1 Uzasadnij, że prawdziwa jest
1 Odległość od punktu, odległość od prostej
24 Figury geometryczne 2 Figury geometryczne 1 Odległość od punktu, odległość od prostej P 1. Odległość punktu K od prostej p jest równa 4 cm. Który z odcinków ma długość równą 4 cm? K p A B C D A. AK
Plan wynikowy, klasa 3 ZSZ
Plan wynikowy, klasa 3 ZSZ Nazwa działu Temat Liczba godzin 1. Trójkąty prostokątne powtórzenie 1. Trygonometria (10 h) 2. Funkcje trygonometryczne kąta ostrego 3. 4. Trygonometria zastosowania 5. 6. Związki
ZADANIA Z FIZYKI NA II ETAP
ZADANIA Z FIZYKI NA II ETAP 1. 2 pkt. Do cylindra nalano wody do poziomu kreski oznaczającej 10 cm 3 na skali. Po umieszczeniu w menzurce 10 jednakowych sześcianów ołowianych, woda podniosła się do poziomu
mgr A. Piłat, mgr M. Małycha
K 1. Oblicz długość odcinka KL łączącego środki dwóch krawędzi sześcianu, którego krawędź ma długość 6. L 2. Przekątna d prostopadłościanu o podstwie kwadratowej jest nachylona do płaszczyzny podstawy
KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP WOJEWÓDZKI
Kod ucznia - - pieczątka WKK Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP WOJEWÓDZKI Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj uważnie
GRANIASTOSŁUPY. Graniastosłupy dzielimy na proste i pochyłe. W graniastosłupach prostych krawędzie są prostopadłe do podstaw, w pochyłych nie są.
GRANIASTOSŁUPY Euklides (365-300 p.n.e.) słynny grecki matematyk i fizyk. Jego najwybitniejsze dzieło Elementy składało się z trzynastu ksiąg, z czego trzy ostatnie księgi dotyczą geometrii przestrzennej:
ZADANIA DLA CHĘTNYCH NA 6 (SERIA I) KLASA II
ZADANIA DLA CHĘTNYCH NA 6 (SERIA I) KLASA II Oblicz wartość prędkości średniej samochodu, który z miejscowości A do B połowę drogi jechał z prędkością v 1 a drugą połowę z prędkością v 2. Pociąg o długości
A. 4, 5, 6 B. 3, 4, 5 C. 6, 8, 12 D. 5, 12, 14
OSTROSŁUPY i GRANIASTOSŁUPY - test grupa A 1 Ile wynosi objętość ostrosłupa prawidłowego trójkątnego o = 27 cm 2 i wysokości 10 cm A 270 cm 3 B 27 cm 3 C 90 cm 3 D 81 cm 3 2 Ile wynosi powierzchnia całkowita
Tematy: zadania tematyczne
Tematy: zadania tematyczne 1. Ciągi liczbowe zadania typu udowodnij 1) Udowodnij, Ŝe jeŝeli liczby,, tworzą ciąg arytmetyczny ), to liczby,, takŝe tworzą ciąg arytmetyczny. 2) Ciąg jest ciągiem geometrycznym.
Maraton Matematyczny Klasa I październik
Zad.1 Oblicz pamiętając o kolejności działań. Maraton Matematyczny Klasa I październik 4,4 2,25 2 1 a) (5,3-6 ) 2 4 (-28 ) = b) 4 7 2 ( ) 3 2 3 = Zad.2 Oblicz wartość wyrażeń: a) ( 3,6-2,5) : 0,55 3* 0,5=
Agnieszka Kamińska, Dorota Ponczek. Matematyka na czasie Gimnazjum, klasa 3 Rozkład materiału i plan wynikowy
Agnieszka Kamińska, Dorota Ponczek Matematyka na czasie Gimnazjum, klasa Rozkład materiału i plan wynikowy I. FUNKCJE 1 1. Pojęcie funkcji zbiór i jego elementy pojęcie przyporządkowania pojęcie funkcji
Klasa I. 5. Cenę pewnego towaru dwukrotnie zwiększono o 30% i obecnie kosztuje on 422,50 zł. Jaka była początkowa cena tego towaru?
Klasa I. Na planie wykonanym w skali : 2000 odległość między domem Kasi a domem Basi wynosi7,3 cm. Jaka jest rzeczywista odległość między ich domami? 2. Jaką miarę ma kąt przyległy do kąta o mierze 62?
Zadanie 2 Średnia arytmetyczna liczb: ; A) 9 B) ; x jest równa 3. Zatem x wynosi: C) 3 D) 8
Zadanie Całkowity dochód pewnej rodziny wynosił 200zł miesięcznie. Diagram kołowy przedstawia procentowy udział poszczególnych wydatków w budżecie rodziny. Korzystając z diagramu wskaż zdanie prawdziwe
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
WPISUJE ZDAJĄCY KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY PRZED MATURĄ MAJ 015 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron (zadania 1 34). Ewentualny brak zgłoś przewodniczącemu
Zadanie 1. Przekątna prostopadłościanu o wymiarach ma długość A. 2 5 B. 2 3 C. 5 2 D Zadanie 2.
Zadanie 1. Przekątna prostopadłościanu o wymiarach 3 4 5 ma długość A. 2 5 B. 2 3 C. 5 2 D. 2 15 Zadanie 2. Pole powierzchni całkowitej prostopadłościanu jest równe 198. Stosunki długości krawędzi prostopadłościanu
GEOMETRIA PRZESTRZENNA (STEREOMETRIA)
GEOMETRIA PRZESTRZENNA (STEREOMETRIA) WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. Na początek omówimy
ARKUSZ II
www.galileusz.com.pl ARKUSZ II W każdym z zadań 1.-24. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0-1 pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D)
7. PLANIMETRIA.GEOMETRIA ANALITYCZNA
7. PLANIMETRIA.GEOMETRIA ANALITYCZNA ZADANIA ZAMKNIĘTE 1. Okrąg o równaniu : A) nie przecina osi, B) nie przecina osi, C) przechodzi przez początek układu współrzędnych, D) przechodzi przez punkt. 2. Stosunek
Dolna stacja. Zadanie 1. (0 1) Jak długo trwa przejazd kolejki od górnej stacji do punktu K? Wybierz właściwą odpowiedź spośród podanych.
Informacje do zadań 1. i 2. Każda z dwóch kolejek górskich przebywa drogę 150 metrów w ciągu minuty. Na schemacie zaznaczono niektóre długości trasy pokonywanej przez kolejki. Górna stacja 750 m 120 m
XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY
pitagoras.d2.pl XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY Graniastosłup to wielościan posiadający dwie identyczne i równoległe podstawy oraz ściany boczne będące równoległobokami. Jeśli podstawy graniastosłupa
POZIOM PODSTAWOWY - GR 1 Czas pracy 170 minut
POZIOM PODSTAWOWY - GR 1 Czas pracy 170 minut Klasa Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.. W zadaniach
ARKUSZ VIII
www.galileusz.com.pl ARKUSZ VIII W każdym z zadań 1.-24. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0-1 pkt) Iloczyn liczb 2+ 3 i odwrotności liczby 2 3 jest równy A) 2 3 B) 1 C) 2 3 D) 2+
SPRAWDZIAN NR 1. Suma długości krawędzi prostopadłościanu o wymiarach 4 cm x 6 cm x 10 cm jest równa. A. 20 cm B. 40 cm C. 60 cm D.
SPRAWDZIAN NR 1 ARTUR ANTAS IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Zaznacz poprawną odpowiedź. Który wielokąt jest podstawą ostrosłupa o 6 wierzchołkach? A. Trójkąt. B. Czworokąt. C. Pięciokąt. D. Sześciokąt.
LIGA MATEMATYCZNO-FIZYCZNA DLA KLAS VII ETAP III
LIGA MATEMATYCZNO-FIZYCZNA DLA KLAS VII ETAP III Zad.1 Podstawy trójkąta i równoległoboku mają tę samą długość. Wysokość trójkąta jest równa 10 cm. aką długość ma wysokość równoległoboku, jeżeli pola obu
Matematyk Roku gminny konkurs matematyczny ETAP DRUGI 24 MARCA 2017 KLASA TRZECIA
Imię i nazwisko:.. Klasa:.. "Matematyka nie taka straszna jak ją malują Matematyk Roku 2017 - gminny konkurs matematyczny ETAP DRUGI 24 MARCA 2017 KLASA TRZECIA 1. Przed Tobą zestaw 20 zadań konkursowych.
2. Oblicz jakie przyspieszenie zyskała kula o masie 0,15 tony pod wpływem popchnięcia jej przez strongmana siłą 600N.
Wersja A KONKURS FIZYCZNY DLA UCZNIÓW KLAS 3 GIMNAZJUM Masz przed sobą zestaw 20 zadań. Na ich rozwiązanie masz 45 minut. Czytaj uważnie treści zadań. Tylko jedna odpowiedź jest prawidłowa. Za każde prawidłowo
pudełka w kształcie walca, którego wysokość wynosi 10 cm, a średnica 24 cm. Czy dobrze została dobrana średnica tych pudełek?
ZADANIA 1 ZADANIE 1 Obwód czworokata wypukłego ABCD jest równy 50 cm. Obwód trójkata ABD jest równy 46 cm, a obwód trójkata BCD jest równy 36 cm. Oblicz długość przekatnej BD. ZADANIE 2 Huta szkła produkuje
MATURA PRÓBNA - odpowiedzi
MATURA PRÓBNA - odpowiedzi Zadanie 1. (1pkt) Zbiorem wartości funkcji = + 6 7 jest przedział: A., B., C., D., Zadanie. (1pkt) Objętość kuli wpisanej w sześcian o krawędzi długości 6 jest równa: A. B. 4
Skrypt 18. Bryły. 2. Inne graniastosłupy proste rozpoznawanie, opis, rysowanie siatek, brył
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 18 Bryły 1. Prostopadłościan i sześcian rozpoznawanie,
Międzyszkolne Zawody Matematyczne Klasa I LO i I Technikum - zakres podstawowy Etap wojewódzki 02.04.2005 rok Czas rozwiązywania zadań 150 minut
Klasa I - zakres podstawowy Etap wojewódzki 17.04.004 rok Zad 1 ( 6 pkt) Znajdź wszystkie liczby czterocyfrowe podzielne przez 15, w których cyfrą tysięcy jest jeden, a cyfrą dziesiątek dwa. Odpowiedź
WOJEWÓDZKI KONKURS MATEMATYCZNY
Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 016/017 0.0.017 1. Test konkursowy zawiera zadania. Są to zadania zamknięte i otwarte. Na ich rozwiązanie
POWTÓRKA PRZED KONKURSEM CZĘŚĆ C ZADANIA ZAMKNIĘTE
POWTÓRKA PRZED KONKURSEM CZĘŚĆ C DO ZDOBYCIA PUNKTÓW 55 Jest to powtórka przed etapem szkolnym z materiałem obejmującym dynamikę oraz drgania i fale. ZADANIA ZAMKNIĘTE łącznie pkt. zamknięte (na 10) otwarte
Temat lekcji Zakres treści Osiągnięcia uczeń: I. FUNKCJE 14
I. FUNKCJE 1 Podstawowe Ponadpodstawowe grupuje dane elementy w zbiory ze względu na wspólne cechy wymienia elementy zbioru rozpoznaje funkcje wśród przyporządkowa opisanych słownie lub za pomocą grafu
Stereometria bryły. Wielościany. Wielościany foremne
Stereometria bryły Stereometria - geometria przestrzeni trójwymiarowej. Przedmiotem jej badań są własności brył oraz przekształcenia izometryczne i afiniczne przestrzeni. Przyjęte oznaczenia: - Pole powierzchni
Pola powierzchni i objętości
Pola powierzchni i objętości Zadanie 1.... Trapez ABCD o wierzchołkach A = 3, 2, B = 1, 2, C = 1, 6 i D = 3, 8 obrócono wokół dłuższej podstawy. (c) Opisz powstałą bryłę i podaj jej wymiary Oblicz objętość
1.2. Ostrosłupy. W tym temacie dowiesz się: jak obliczać długości odcinków zawartych w ostrosłupach, jakie są charakterystyczne kąty w ostrosłupach.
12 Ostrosłupy W tym temacie dowiesz się: jak obliczać długości odcinków zawartych w ostrosłupach, jakie są charakterystyczne kąty w ostrosłupach Ostrosłup prosty to ostrosłup, który ma wszystkie krawędzie
KONKURS NA 6 MATEMATYKA
KONKURS NA 6 MATEMATYKA ZAD.1. Znajdź takie trzy liczby, żeby ich największy wspólny dzielnik był równy najmniejszej wspólnej wielokrotności liczb 24, 30 i 36, a najmniejsza wspólna wielokrotność równała
I. Funkcja kwadratowa
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy w roku szkolnym 2018/2019 w CKZiU nr 3 Ekonomik w Zielonej Górze KLASA III fl POZIOM PODSTAWOWY I. Funkcja kwadratowa narysować wykres funkcji
Zadania z treścią na ekstrema funkcji
Zadania z treścią na ekstrema funkcji Zad. 1: W trójkąt równoramienny, którego boki zawierają się w prostych: AB o równaniu y =, AC o równaniu x y + 1 = 0 i BC o równaniu x + y 6 = 0, wpisano równoległobok
Zagadnienia na powtórzenie
Zagadnienia na powtórzenie TERESA ZIEGLER IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Zaznacz takie dokończenie zdania, aby otrzymać zdanie prawdziwe. Sześcian przecięto płaszczyzną zawierającą dwie równoległe
Kołowrót -11pkt. 1. Zadanie 22. Wahadło balistyczne (10 pkt)
Kołowrót -11pkt. Kołowrót w kształcie walca, którego masa wynosi 10 kg, zamocowany jest nad studnią (rys.). Na kołowrocie nawinięta jest nieważka i nierozciągliwa linka, której górny koniec przymocowany
Zadanie 4. Krawędź sześcianu jest o 6 krótsza od jego przekątnej. Oblicz pole powierzchni całkowitej tego sześcianu
Zadanie 4. Krawędź sześcianu jest o 6 krótsza od jego przekątnej. Oblicz pole powierzchni całkowitej tego sześcianu Zadanie 5. Sześcian o krawędzi 10 przecięto płaszczyzną zawierającą przekątną dolnej
Oto przykłady przedmiotów, które są bryłami obrotowymi.
1.3. Bryły obrotowe. Walec W tym temacie dowiesz się: co to są bryły obrotowe, jak rozpoznawać walce wśród innych brył, jak obliczać pole powierzchni bocznej i pole powierzchni całkowitej walca, jak obliczać
KONKURS MATEMATYCZNO FIZYCZNY 4 grudnia 2008 r. Klasa II
...... imię i nazwisko ucznia... klasa KONKURS MATEMATYCZNO FIZYCZNY 4 grudnia 008 r. Klasa II... ilość punktów Drogi uczniu! Przed Tobą zestaw 4 zadań. Pierwsze 0 to zadania zamknięte. Rozwiązanie tych
KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM
KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM POTĘGI I PIERWIASTKI - pojęcie potęgi o wykładniku naturalnym; - wzór na mnożenie i dzielenie potęg o tych samych podstawach; - wzór na potęgowanie
Próbny Egzamin Gimnazjalny z Matematyki Zestaw przygotowany przez serwis 24 marca 2012 Czas pracy: 90 minut
Strona 1 /Gimnazjum/Egzamin gimnazjalny Próbny Egzamin Gimnazjalny z Matematyki Zestaw przygotowany przez serwis www.zadania.info 24 marca 2012 Czas pracy: 90 minut Zadanie 1 (1 pkt.) Która równość jest
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego ETAP WOJEWÓDZKI rok szkolny 2018/2019
Kod ucznia Data urodzenia ucznia dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego ETAP WOJEWÓDZKI rok szkolny 018/019 Instrukcja dla ucznia 1. Sprawdź,
ARKUSZ X
www.galileusz.com.pl ARKUSZ X W każdym z zadań 1.-24. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0-1 pkt) Liczba 3 2 jest równa A) 5 2 B) 6 2 C) 6 2 D) 2 Zadanie 2. (0-1 pkt) Kurtka zimowa
Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY
Rozwiązania zadań Arkusz maturalny z matematyki nr POZIOM PODSTAWOWY Zadanie (pkt) Sposób I Skoro liczba jest środkiem przedziału, więc odległość punktu x od zapisujemy przy pomocy wartości bezwzględnej.
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY MARZEC 017 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 19 stron
Klucz odpowiedzi i kryteria punktowania zadań
prowadzonych w szkołach innego typu województwa świętokrzyskiego w roku szkolnym 207/208 XVI WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW PROWADZONYCH
Skrypt 20. Bryły: 24. Obliczanie pól powierzchni walców w sytuacjach praktycznych. 26. Zastosowanie tw. Pitagorasa do obliczania objętości walców
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 20 Bryły: 21. Przykłady brył obrotowych 22.
55? Odpowiedź uzasadnij.
LIGA MATEMATYCZNO-FIZYCZNA KLASA II ETAP II Zad. 1 Która z liczb jest większa 55 czy Zad. Rozwiąż układ równań metodą podstawiania ( x y)( x + y) ( x + 1) 3 ( y + ) 3x + y 3x + 1 5 Zad. 3 Rozwiąż układ
Graniastosłupy mają dwie podstawy, a ich ściany boczne mają kształt prostokątów.
GRANIASTOSŁUPY I OSTROSŁUPY Bryły czyli figury przestrzenne dzielimy na: graniastosłupy ostrosłupy bryły obrotowe Graniastosłupy i ostrosłupy nazywamy wielościanami Graniastosłupy mają dwie podstawy, a
PRZEDMIOTOWE ZASADY OCENIANIA I WYMAGANIA EDUKACYJNE Z MATEMATYKI Klasa 3
PRZEDMIOTOWE ZASADY OCENIANIA I WYMAGANIA EDUKACYJNE Z MATEMATYKI Klasa 3 I. FUNKCJE grupuje elementy w zbiory ze względu na wspólne cechy wymienia elementy zbioru rozpoznaje funkcje wśród przyporządkowań
Imię i nazwisko. Zadanie 1 Oto wyniki kartkówki przeprowadzonej w trzech klasach drugich gimnazjum.
Imię i nazwisko. Zadanie 1 Oto wyniki kartkówki przeprowadzonej w trzech klasach drugich gimnazjum. Oceń prawdziwość każdego zdania. Zaznacz P, jeśli zdanie jest prawdziwe, lub F, jeśli jest fałszywe.
Rozwiązaniem nierówności A. B. C. 4 D. 2
(Kod ucznia).... /50 pkt. (Liczba uzyskanych punktów) Matura próbna z matematyki KLASA III poziom podstawowy Czas trwania 170 minut Liczba punktów do uzyskania - 50 Zadanie 1. (0-1) Liczba jest równa A)
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. rok szkolny 2016/2017. Etap III etap wojewódzki- klucz odpowiedzi
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów rok szkolny 2016/2017 Etap III etap wojewódzki- klucz odpowiedzi W kluczu przedstawiono przykładowe rozwiązania oraz prawidłowe odpowiedzi. Za każdą
PRÓBNY EGZAMIN GIMNAZJALNY
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 22 MARCA 2014 CZAS PRACY: 90 MINUT 1 ZADANIE 1 (1 PKT) W pewnym sklepie za 18 bułek należy zapłacić 12,6 zł. Ile
A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla
Zadanie 1 Liczba jest równa A. B. C. 10 D. Odpowiedź B. Zadanie 2 Liczba jest równa A. 3 B. 2 C. D. Odpowiedź D. Zadanie 3. Liczba jest równa Odpowiedź D. Zadanie 4. Liczba osobników pewnego zagrożonego
ETAP I - szkolny. 24 listopada 2017 r. godz
XVI WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW PROWADZONYCH W SZKOŁACH INNEGO TYPU WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO W ROKU SZKOLNYM 2017/2018 ETAP