LIGA MATEMATYCZNO FIZYCZNA KLASA III ETAP 3
|
|
- Jarosław Skrzypczak
- 8 lat temu
- Przeglądów:
Transkrypt
1 LIGA MATEMATYCZNO FIZYCZNA KLASA III ETAP 3 1. W wyścigu grupa kolarzy ma do mety jeszcze 120 km i jedzie ze średnią prędkością 40 km/h. Przedstaw odległości tej grupy od celu jako funkcję czasu i ustal dziedzinę funkcji. Narysuj wykres. 2. Proste o równaniach y-x=1 i y-2x=3 przecinają osie układu współrzędnych w punktach A,B,C,D. Oblicz pole czworokąta ABCD. 3. Dana jest funkcja, która każdej liczbie naturalnej n przyporządkowuje resztę z dzielenia tej liczby przez 4. Podaj zbiór wartości tej funkcji. Wykonaj wykres dla n< Suma dwóch liczb naturalnych wynosi 82. Jeżeli jedną z tych liczb podzielimy przez drugą, to otrzymamy iloraz 10 i pewna resztę. Jakie to liczby? 5. Jeżeli liczbę dwucyfrową podzielimy przez sumę jej cyfr, to otrzymamy 6 i resztę 3. Jeżeli natomiast podzielimy tę liczbę przez sumę cyfr powiększoną o 2, to otrzymamy 5 i resztę 5. Jaka to liczba? 6. Dane są dwa okręgi o wspólnym środku. Cięciwa większego okręgu styczna do mniejszego ma długość 10 cm. Oblicz pole pierścienia kołowego wyznaczonego przez te okręgi. 7. Trójkąt prostokątny jest wpisany w okrąg o promieniu 5 cm. Oblicz pole tego trójkąta, jeżeli jedna z przyprostokątnych jest dwa razy dłuższa od drugiej. 8. Krótsza przekątna dzieli równoległobok o kącie ostrym 45 0 na dwa trójkąty prostokątne. Oblicz pole i obwód równoległoboku wiedząc, że dłuższy bok ma długość Oblicz objętość i pole powierzchni graniastosłupa prawidłowego o podstawie czworokąta, jeżeli przekątna ściany bocznej o długości 12 cm tworzy z krawędzią podstawy kąt o mierze Oblicz pole powierzchni całkowitej czworościanu foremnego, gdy długość jego krawędzi wynosi 10 cm. 11.W ostrosłupie prawidłowym czworokątnym krawędzie boczne i krawędzie podstawy są sobie równe. Długość każdej z nich wynosi 8 cm. Oblicz objętość i pole powierzchni całkowitej tego ostrosłupa. 12.Przekrojem osiowym walca o średnicy równej 8 cm jest prostokąt, którego przekątna jest nachylona do średnicy pod kątem Oblicz pole powierzchni całkowitej walca. 13.Przekrój osiowy walca jest prostokątem, którego obwód wynosi 112 cm, a szerokość stanowi 75% jego długości. Oblicz objętość i pole powierzchni całkowitej walca. 14.Promień podstawy stożka ma 5 cm długości, a tworząca stożka jest o 3 cm dłuższa od jego wysokości. Oblicz pole powierzchni całkowitej tego stożka. Wynik podaj z dokładnością do 1 cm 3.
2 15.Do naczynia w kształcie prostopadłościanu o podstawie kwadratowej wlano 150 l 3 wody zapełniając jego objętości. Jaka jest krawędź podstawy naczynia, jeżeli 4 wysokość wynosi 80 cm. 16.Przekątna prostopadłościanu ma długość 12 cm i tworzy z krawędzią boczną kąt Oblicz objętość tego prostopadłościanu wiedząc, że jedna z krawędzi podstawy ma długość Kula o promieniu 10 cm i stożek o promieniu podstawy 20 cm mają równe objętości. Oblicz wysokość stożka. 18.Objętość walca równa się 81π cm 3. Wysokość walca jest 3 razy dłuższa od promienia podstawy. Oblicz pole powierzchni całkowitej walca. 19.Pole powierzchni całkowitej ostrosłupa prawidłowego czworokątnego o krawędzi podstawy 1,6 dm wynosi 8 dm 2. Oblicz objętość tego ostrosłupa. 20.Oblicz objętość ostrosłupa prawidłowego czworokątnego, w którym wysokość ściany bocznej o długości 6 cm jest nachylona do płaszczyzny podstawy pod kątem Trójkąt prostokątny o przeciwprostokątnej 80 cm i kącie ostrym 30 0 obraca się wokół krótszej przyprostokątnej. Oblicz objętość i pole powierzchni tej bryły. 22.Podstawą graniastosłupa prostego jest równoległobok o bokach 12 cm i 15 cm oraz kącie między nimi Krawędź boczna tego graniastosłupa ma długość 30 cm. Oblicz objętość graniastosłupa. 23.W ostrosłupie prawidłowym czworokątnym krawędź podstawy ma długość 18 cm. Kąt nachylenia ściany bocznej do podstawy ma miarę Oblicz pole powierzchni i objętość ostrosłupa. 24.Podstawą graniastosłupa prostego jest romb o długości boku 2 cm i kącie ostrym Wysokość graniastosłupa ma długość 5 3 cm. Oblicz objętość graniastosłupa. 25.Przekrój osiowy stożka jest trójkątem o polu 144 cm 2 i kącie przy podstawie Oblicz objętość stożka. 26.Dwa pociągi jadą po równych torach naprzeciw siebie. Jeden z prędkością 60 km/h, a drugi z prędkością 80 km/h. Pasażer jadący w drugim pociągu zauważył, że pierwszy pociąg mijał go przez 6 sekund. Jaka jest długość pierwszego pociągu? 27.Matematyk Alkuin (VII-IX w. n.e.) jest autorem takiego zdania: Chart ujrzał zająca w odległości 150 stóp i ruszył w pogoń. Skok zająca ma 7 stóp, a skok charta wykonany w tym samym czasie 9 stóp. Po ilu skokach chart dogoni zająca? 28.Odległość miedzy przystanią A i przystanią B statek przepływa z prądem rzeki w ciągu 5 godzin na przepłyniecie drogi powrotnej zużywa 7 godzin. Ile godzin płynie woda z przystani A do przystani B? 29.Szybkonogi Achilles rozpoczął pogoń za żółwiem, gdy ten znajdował się sto metrów od niego. Już po pięciu sekundach dystans między nimi zmniejszył się o połowę. Żółw zdążył przebiec zaledwie 1 m, gdy Achilles go dogonił. Z jaką prędkością biegł Achilles, a z jaką prędkością uciekał żółw? 30.Siostra jest o 3 lata starsza od brata. Brat ma obecnie dwa razy tyle lat, ile siostra miała wtedy, kiedy brat miał tyle, ile siostra ma teraz. Ile lat ma siostra i ile brat?
3 31.Wiek pewnego obywatela w roku 1887 równał się sumie cyfr roku jego urodzenia. Ile miał on lat? 32. Wykaż, że wyrażenie jest liczba całkowitą dla każdego n naturalnego. 33.Napisano trzy razy z rzędu ta samą liczbę dwucyfrową i otrzymano liczbę sześciocyfrową. Udowodnij jej podzielność przez 3,7,13, Jeżeli liczbę dwucyfrową podzielimy przez różnicę jej cyfr dziesiątek i jedności, to otrzymamy 11 i resztę 5. Jeśli zaś tę samą liczbę podzielimy przez sumę jej cyfr, to otrzymamy 8 i resztę 7. Wyznacz tę liczbę. 35. Napisz wzór funkcji liniowej, której wykres przechodzi przez początek układu współrzędnych oraz przez punkt, którego współrzędne są rozwiązaniem powyższego układu. 36.Znajdź wszystkie pary liczb naturalnych, spełniających równanie: x 2 -y 2 = Oblicz pole figury ograniczonej wykresami funkcji: y=x, y=-x, y=x Dla jakich wartości parametru a proste o równaniach y=3x-1, y=7x-5 i y=2x+a przecinają się w jednym punkcie? 39.Do elektrowni nadeszło 500 ton węgla w 18 wagonach. Wagony zawierały po 15,20 i 30 ton. Ile było wagonów każdego rodzaju? 40.Wyznacz trzy takie liczby, z których największa jest większa od średniej o trzecią część najmniejszej, średnia jest większa od najmniejszej o trzecia część największej, a najmniejsza jest większa od liczby 10 o trzecia część średniej. Zadania z fizyki 1. Kulkę o masie 40 gramów wrzucono do naczynia z olejem. Okazało się, że kulka zaczęła opadać na dno ze stałą prędkością. Ile wynosiła siła wyporu działająca na kulkę, jeśli wiadomo, że jej wartość była równa sile oporu stawianej przez olej kulce? Przyjmij g=10 m s Jaka siła wyporu aerostatycznego działa na balonik o objętości 0,5 m 3 wypełniony helem. Gęstość helu wynosi 0,18 kg kg 3, a powietrza 1,3 m m 3. Przyjmij g=10 m s Samochodzik zabawka o masie 100 g rusza działając siłą 0,25 N na deseczkę o masie 300 g, która może poruszać się bez tarcia. Oblicz przyspieszenie samochodzika i przyspieszenie deseczki. 4. Masa pocisku wynosi 20 g. Jaka jest prędkość pocisku opuszczającego lufę karabinu o masie 5 kg, jeśli uzyskuje on prędkość odrzutu 5 m/s?
4 5. Na jaką wysokość doleci pocisk z wiatrówki wystrzelony pionowo w górę z prędkością początkową 300 m/s. Przyspieszenie ziemskie przyjmij 10 m/s 2. Opory powietrza pominąć. 6. Jak długo będzie spadał z wysokości 400 m worek z piaskiem? Proszę pominąć opory ruchu. Przyspieszenie ziemskie przyjmij 10 m/s Jaką odległość pokona urządzenie pchające ze stałą prędkością wózek, z siłą 20N jeśli może ono wykonać pracę 40kJ? Oblicz moc tego urządzenia jeśli cały proces trwał 40 sekund. 8. Wagon o masie 20 t uderza z prędkością 4 m/s w stojący na bocznicy wagon o masie 40 t. Po zderzeniu wagony poruszają się razem. Oblicz ich prędkość. 9. Jakie średnie przyspieszenie uzyska wóz o masie 0,5 tony jeśli ciągnący go z koń na drodze 200 m wykonał pracę 2 kj w czasie 20 sekund? Jaką prędkość będzie miał wóz po 20 sekundach ruchu. 10. Jaką odległość przejedzie wózek o masie 200 kg, jeśli w czasie 20 sekund siła 6000 N wykonała nad nim pracę 12kJ? Oblicz przyspieszenie wózka. 11.Pan Janek wyruszył z Gdańska do Krakowa. Porusza się ze średnią prędkością 50 km/h. Zostawił w domu wszystkie dokumenty pojazdu i prawo jazdy. Jego rodzina zorientowawszy się w sytuacji wysłała za nim po 90 minutach od jego wyjazdu wynajętego kierowcę z dokumentami, który porusza się ze średnią prędkością 60 km/h. W jakiej odległości od Gdańska powinni się spotkać? 12.Samochód spala 8l benzyny na 100 km. Litr benzyny kosztuje 4,15 zł. Ile musi zapłacić każdy z 4 czterech pasażerów za paliwo, jeśli podróżowali tym samochodem z Przemyśla do Gdańska ze średnią prędkością 60 km/h w czasie 12 h? 13.Pociąg rusza z miejsca ruchem jednostajnie przyspieszonym i w ciągu 5s osiąga prędkość 24km/h. Oblicz średnie przyspieszenie tego pociągu i odległość jaką przebył w ciągu tych 5s. 14. Ciało rusza z przyspieszeniem 1m/s 2. Oblicz drogę jaką przebyło to ciało w piątej sekundzie ruchu i drogę przebytą po pięciu sekundach ruchu.
5 15.Z Czerska wyrusza rowerzysta w kierunku Gdańska z prędkością 25 km/h, w tym samym czasie inny rowerzysta wyruszył z Gdańska do Czerska z prędkością 15 km/h. Odległość jaka dzieli Gdańsk od Czerska to 100 km. W jakim czasie i w jakiej odległości od Czerska nastąpi spotkanie rowerzystów, jeśli założymy, iż będą poruszali się ze stałą prędkością. 16. Żelazny drut po ogrzaniu o 200 K wydłużył się o 6 mm. Jak i o ile zmieni się długość drutu, jeśli ochłodzimy go o 20K. 17.Pociąg towarowy o masie 5000 t, jadący z prędkością 72 km/h zahamowano za pomocą hamulców. O ile wzrosła energia wewnętrzna hamulców i kół wagonów, o które tarły te hamulce? 18. Piłka spada z balkonu na wysokości 6 m i odbija się od chodnika na wysokość 4,5 m. Ile procent energii kinetycznej straciła piłka przy odbiciu? 19.Aby wyciągnąć ze studni wiadro o masie 2,5 kg zawierające 8 litrów wody należy obracać korbę kołowrotu ze stałą prędkością, działając siłą o wartości 24 N. Oblicz długość ramienia korby tego kołowrotu jeśli średnica jego wału wynosi 16 cm. 20.Mężczyzna masie 100 kg wywiera na podłoże ciśnienie 20 kpa. Na jakiej powierzchni styka się on z podłożem?
LIGA MATEMATYCZNO-FIZYCZNA DLA KLAS III ETAP III
LIGA MATEMATYCZNO-FIZYCZNA DLA KLAS III ETAP III Zadanie 1 Reszta z dzielenia przez 5 liczby a wynosi 2, a reszta z dzielenia przez 5 liczby b jest 3. Ile wynosi reszta z dzielenia przez 5 iloczynu liczb
LIGA MATEMATYCZNO-FIZYCZNA KLASA III ETAP II
LIGA MATEMATYCZNO-FIZYCZNA KLASA III ETAP II 1. O ile % można obniżyć opłatę za kurs języka angielskiego, aby przy wzroście liczby uczniów o 20% łączna kwota wpłat wzrosła o 8%? Odpowiedź uzasadnij. 2.
punkt C=(3;-10) są wierzchołkami trójkąta. Oblicz jego pole i obwód. Tego trójkąta. 6. Oblicz wartość funkcji określonej wzorem
LIGA MATEMATYCZNO-FIZYCZNA KLASA III ETAP 1. Z punktu P leżącego wewnątrz trójkąta równobocznego, który nie jest punktem przecięcia jego wysokości, prowadzono odcinki prostopadłe do boków trójkąta. Wykaż,
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE IV TECHNIKUM.
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE IV TECHNIKUM. I. Podstawowe pojęcia statystyki. 1. Sposoby prezentowania danych, interpretacja wykresów. 2. Mediana i dominanta. 3. Średnia arytmetyczna
( ) ( 2 ) Zadania na I etap Szkolnej Ligi Matematyczni-Fizycznej klasa II
Zadania na I etap Szkolnej Ligi Matematyczni-Fizycznej klasa II Zad... ( 7 6-8 ) : ( 8 ). (7 0-8 4 + 4 9 8 8 ) : (4 4 ) Zad.. 0,8 ( ) ( ) : Zad.. a) ( ) 6 + 4 9 8 9 6 ( ) : Zad.4. Oblicz + + +... + + 4
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE 3 ZASADNICZEJ SZKOŁY ZAWODOWEJ
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE 3 ZASADNICZEJ SZKOŁY ZAWODOWEJ I. Funkcja kwadratowa i wymierna 1. Funkcja kwadratowa i jej postacie. 2. Wykres funkcji kwadratowej. 3. Równania
II ETAP LIGI MATEMATYCZNO FIZYCZNEJ DLA KLAS III
II ETAP LIGI MATEMATYCZNO FIZYCZNEJ DLA KLAS III Zadanie 1 Jaka jest cyfra tysięcy iloczynu liczb naturalnych od 10 do 0 włącznie? Zadanie Jaką liczbę należy wpisać w równaniu 5( + x)(x + 1)-4(1+x) =80,
Klasa 3.Graniastosłupy.
Klasa 3.Graniastosłupy. 1. Uzupełnij nazwy odcinków oznaczonych literami: a........................................................... b........................................................... c...........................................................
Matematyka podstawowa IX. Stereometria
Zadania wprowadzające: Matematyka podstawowa IX Stereometria 1. Pole powierzchni całkowitej sześcianu jest równe 54. Oblicz objętość sześcianu. 2. Pole powierzchni sześcianu jest równe 96.Oblicz długość
LIGA MATEMATYCZNO-FIZYCZNA DLA KLAS I ETAP IV
LIGA MATEMATYCZNO-FIZYCZNA DLA KLAS I ETAP IV Zad.1 Janek oszczędza, aby kupić komputer, który kosztuje 5400 zł. Zapytany, ile już zgromadził pieniędzy, odpowiedział : Nawet gdybym miał o jedną piątą więcej
Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 13 Zadania stereometria
1 TEST WSTĘPNY 1. (1p) Graniastosłup ma 12 wierzchołków. Liczba krawędzi tego graniastosłupa to: A. 12 B. 18 C. 24 D. 36 2. (1p) Pole powierzchni jednej ściany sześcianu jest równe 9. Objętość tego sześcianu
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI P-1 POZIOM PODSTAWOWY Czas pracy: 170 minut Za rozwiązanie wszystkich zadań można uzyskać łącznie 50 punktów BRUDNOPIS Zadanie 1. (1 pkt) ZADANIA ZAMKNIĘTE
XIV WOJEWÓDZKI KONKURS MATEMATYCZNY
XIV WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO ETAP III - WOJEWÓDZKI Kod ucznia 24 marca 2017 roku godz. 13:00 Suma punktów Czas pracy: 90 minut Liczba punktów do
MARATON MATEMATYCZNY-MARZEC 2015 KLASA I. Zadanie 1. Zadanie 2
MARATON MATEMATYCZNY-MARZEC 2015 KLASA I Obwód poniższej figury wynosi: Zredukuj wyrażenia Zadanie 2 Uprość wyrażenia, a następnie oblicz ich wartości dla: a = -1, b = 2 Wyłącz wspólny czynnik przed nawias.
Sprawdzian całoroczny kl. II Gr. A x
. Oblicz: a) (,5) 8 c) ( ) : ( ). Oblicz: Sprawdzian całoroczny kl. II Gr. A [ ] d) 6 a) ( : ) 5 6 6 8 50. Usuń niewymierność z mianownika: a). Oblicz obwód koła o polu,π dm. 5. Podane wyrażenia przedstaw
Stereometria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie
Stereometria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie http://www.zadania.info/) 1. W ostrosłupie prawidłowym czworokątnym ściana boczna o polu równym 10 jest nachylona do płaszczyzny podstawy
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
Zadanie 51. ( pkt) Rozwiąż równanie 3 x = 1. 1 x Zadanie 5. ( pkt) x+ 3y = 5 Rozwiąż układ równań. x y = 3 Zadanie 53. ( pkt) Rozwiąż nierówność x + 6x 7 0. ZNI OTWRTE KRÓTKIEJ OPOWIEZI Zadanie 54. ( pkt)
LIGA MATEMATYCZNO - FIZYCZNA ZADANIA NA III ETAP DLA KLAS III
LIGA MATEMATYCZNO - FIZYCZNA ZADANIA NA III ETAP DLA KLAS III 1. Wykazać, że jeżeli w trójkącie równoramiennym dwusieczna kąta przy podstawie jest prostopadła do ramion, to ten trójkąt jest równoboczny.
Kurs ZDAJ MATURĘ Z MATEMATYKI - MODUŁ 13 Teoria stereometria
1 GRANIASTOSŁUPY i OSTROSŁUPY wiadomości ogólne Aby tworzyć wzory na OBJĘTOŚĆ i POLE CAŁKOWITE graniastosłupów musimy znać pola figur płaskich a następnie na ich bazie stosować się do zasady: Objętość
Tematy: zadania tematyczne
Tematy: zadania tematyczne 1. Ciągi liczbowe zadania typu udowodnij 1) Udowodnij, Ŝe jeŝeli liczby,, tworzą ciąg arytmetyczny ), to liczby,, takŝe tworzą ciąg arytmetyczny. 2) Ciąg jest ciągiem geometrycznym.
5. Oblicz pole powierzchni bocznej tego graniastosłupa.
11. STEREOMETRIA Zad.11.1. Oblicz pole powierzchni całkowitej sześcianu, wiedząc Ŝe jego objętość wynosi 16 cm. Zad.11.. Oblicz długość przekątnej sześcianu, jeśli jego pole powierzchni całkowitej wynosi
LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom podstawowy
1 MATEMATYKA - poziom podstawowy LUTY 2015 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 16 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.
VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH
VIII. ZIÓR PRZYKŁDOWYCH ZDŃ MTURLNYCH ZDNI ZMKNIĘTE Zadanie. ( pkt) 0 90 Liczba 9 jest równa 0.. 00 C. 0 9 D. 700 7 Zadanie. 8 ( pkt) Liczba 9 jest równa.. 9 C. D. 5 Zadanie. ( pkt) Liczba log jest równa.
KONKURS MATEMATYCZNO FIZYCZNY 11 marca 2010 r. Klasa II
...... kod ucznia... klasa KONKURS MATEMATYCZNO FIZYCZNY marca 200 r. Klasa II... ilość punktów Drogi uczniu! Przed Tobą zestaw 4 zadań. Pierwsze 0 to zadania zamknięte. Rozwiązanie tych zadań polega na
ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź.
ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska Zad.1. (5 pkt) Sprawdź, czy funkcja określona wzorem x( x 1)( x ) x 3x dla x 1 i x dla x 1 f ( x) 1 3 dla
Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018.
Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 017/018 19 grudnia 017 1 1 Klasy pierwsze - poziom podstawowy 1. Dane są zbiory
Międzyszkolne Zawody Matematyczne Klasa I LO i I Technikum - zakres podstawowy Etap wojewódzki 02.04.2005 rok Czas rozwiązywania zadań 150 minut
Klasa I - zakres podstawowy Etap wojewódzki 17.04.004 rok Zad 1 ( 6 pkt) Znajdź wszystkie liczby czterocyfrowe podzielne przez 15, w których cyfrą tysięcy jest jeden, a cyfrą dziesiątek dwa. Odpowiedź
MATERIAŁ ĆWICZENIOWY Z MATEMATYKI
MATERIAŁ ĆWICZENIOWY Z MATEMATYKI STYCZEŃ 0 POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 0 stron.. W zadaniach od. do 0. są podane odpowiedzi: A, B, C, D,
ZADANIE 1 (5 PKT) ZADANIE 2 (5 PKT) Oblicz objętość czworościanu foremnego o krawędzi a.
ZADANIE 1 (5 PKT) Czworościan foremny o krawędzi a rozcięto płaszczyzna prostopadła do jednej z krawędzi, przechodzac a w odległości 0, 25a od jednego końca tej krawędzi. Oblicz objętość otrzymanych brył.
WOJEWÓDZKI KONKURS MATEMATYCZNY
Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 2015/2016 13 STYCZNIA 2016 R. 1. Test konkursowy zawiera 21 zadań. Są to zadania zamknięte i otwarte. Na
KONKURS MATEMATYCZNO FIZYCZNY 3 marca 2009 r. Klasa II
...... imię i nazwisko ucznia... klasa KONKURS MATEMATYCZNO FIZYCZNY marca 2009 r. Klasa II... ilość punktów Drogi uczniu! Przed Tobą zestaw 14 zadań. Pierwsze 10 to zadania zamknięte. Rozwiązanie tych
Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej.
C Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. Zad. 1 Oblicz pole trójkąta o bokach 13 cm, 14 cm, 15cm. Zad. 2 W trójkącie ABC rys. 1 kąty
KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI
KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI PRACA KONTROLNA nr 1 październik 1999 r 1. Stop składa się z 40% srebra próby 0,6, 30% srebra próby 0,7 oraz 1 kg srebra próby 0,8. Jaka jest waga i jaka
Zadanie 1. W trapezie ABCD poprowadzono przekątne, które podzieliły go na cztery trójkąty. Mając dane pole S 1
Zadanie. W trapezie ABCD poprowadzono przekątne, które podzieliły go na cztery trójkąty. Mając dane pole S i S 2 obliczyć pole trapezu ABCD. Zadanie 2. Mamy trapez, w którym suma kątów przy dłuższej podstawie
KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP WOJEWÓDZKI
Kod ucznia - - pieczątka WKK Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP WOJEWÓDZKI Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj uważnie
Dolna stacja. Zadanie 1. (0 1) Jak długo trwa przejazd kolejki od górnej stacji do punktu K? Wybierz właściwą odpowiedź spośród podanych.
Informacje do zadań 1. i 2. Każda z dwóch kolejek górskich przebywa drogę 150 metrów w ciągu minuty. Na schemacie zaznaczono niektóre długości trasy pokonywanej przez kolejki. Górna stacja 750 m 120 m
Quiz Matematyczny r.sz. 2015/16
Quiz Matematyczny rsz 2015/16 część 1 Zad1 Przednie koło pewnego ciągnika obraca się 240 razy na pewnej drodze, a tylne mające obwód o 0,6 m większy obraca się na tej samej drodze 180 razy Jaki jest obwód
Zadanie 2 Średnia arytmetyczna liczb: ; A) 9 B) ; x jest równa 3. Zatem x wynosi: C) 3 D) 8
Zadanie Całkowity dochód pewnej rodziny wynosił 200zł miesięcznie. Diagram kołowy przedstawia procentowy udział poszczególnych wydatków w budżecie rodziny. Korzystając z diagramu wskaż zdanie prawdziwe
Rozwiązaniem nierówności A. B. C. 4 D. 2
(Kod ucznia).... /50 pkt. (Liczba uzyskanych punktów) Matura próbna z matematyki KLASA III poziom podstawowy Czas trwania 170 minut Liczba punktów do uzyskania - 50 Zadanie 1. (0-1) Liczba jest równa A)
LIGA MATEMATYCZNO-FIZYCZNA DLA KLAS VII ETAP III
LIGA MATEMATYCZNO-FIZYCZNA DLA KLAS VII ETAP III Zad.1 Podstawy trójkąta i równoległoboku mają tę samą długość. Wysokość trójkąta jest równa 10 cm. aką długość ma wysokość równoległoboku, jeżeli pola obu
LIGA MATEMATYCZNO-FIZYCZNA KLASA II ETAP II. 55? Odpowiedź uzasadnij. 22 czy. 1. Która z liczb jest większa
LIGA MATEMATYCZNO-FIZYCZNA KLASA II ETAP II 1. Która z liczb jest większa 55 czy. O ile liczba a jest mniejsza od liczby b, jeśli: 1 1 1 1 a : 1, 5 b 6 : 1. 0, 4 4 55? Odpowiedź uzasadnij. 3. Ile razy
Test na koniec nauki w klasie trzeciej gimnazjum
8 Test na koniec nauki w klasie trzeciej gimnazjum imię i nazwisko ucznia...... data klasa Test 2 1 Na przeciwległych ścianach każdej z pięciu sześciennych kostek umieszczono odpowiednio liczby: 1 i 1,
Klasa I. 5. Cenę pewnego towaru dwukrotnie zwiększono o 30% i obecnie kosztuje on 422,50 zł. Jaka była początkowa cena tego towaru?
Klasa I. Na planie wykonanym w skali : 2000 odległość między domem Kasi a domem Basi wynosi7,3 cm. Jaka jest rzeczywista odległość między ich domami? 2. Jaką miarę ma kąt przyległy do kąta o mierze 62?
XV WOJEWÓDZKI KONKURS Z MATEMATYKI
XV WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW PROWADZONYCH W SZKOŁACH INNEGO TYPU WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO W ROKU SZKOLNYM 2017/2018 ETAP
ARKUSZ VIII
www.galileusz.com.pl ARKUSZ VIII W każdym z zadań 1.-24. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0-1 pkt) Iloczyn liczb 2+ 3 i odwrotności liczby 2 3 jest równy A) 2 3 B) 1 C) 2 3 D) 2+
KONKURS MATEMATYCZNO FIZYCZNY 4 grudnia 2008 r. Klasa II
...... imię i nazwisko ucznia... klasa KONKURS MATEMATYCZNO FIZYCZNY 4 grudnia 008 r. Klasa II... ilość punktów Drogi uczniu! Przed Tobą zestaw 4 zadań. Pierwsze 0 to zadania zamknięte. Rozwiązanie tych
LIGA MATEMATYCZNO-FIZYCZNA DLA KLAS I ETAP III
LIGA MATEMATYCZNO-FIZYCZNA DLA KLAS I ETAP III Zad1 Podstawy trójkąta i równoległoboku mają tę samą długość Wysokość trójkąta jest równa 10 cm Jaką długość ma wysokość równoległoboku, jeżeli pola obu figur
Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015
Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015 2 6 + 3 1. Oblicz 3. 3 x 1 3x 2. Rozwiąż nierówność > x. 2 3 3. Funkcja f przyporządkowuje każdej
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas III w roku szkolnym 2015/2016 w Zespole Szkół Ekonomicznych w Zielonej Górze
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas III w roku szkolnym 2015/2016 w Zespole Szkół Ekonomicznych w Zielonej Górze II. Logarytmy obliczać logarytmy korzystając z definicji
Zadania na IV etap Ligi Matematyczni-Fizycznej klasa III
Zadania na IV etap Ligi Matematyczni-Fizycznej klasa III Zadanie 21. Dany jest stoŝek jak na rysunku. Oblicz objętość. Zadanie 22. Przekątna przekroju osiowego walca nachylona jest pod kątem 45 stopni
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRZED MATURĄ MAJ 2017 POZIOM PODSTAWOWY Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15 stron (zadania 1 33). 2. Rozwiązania zadań wpisuj
SPIS TREŚCI. PIERWIASTKI 1. Pierwiastki Działania na pierwiastkach Działania na pierwiastkach (cd.) Zadania testowe...
SPIS TREŚCI POTĘGI 1. Potęga o wykładniku naturalnym................................. 7 2. Iloczyn i iloraz potęg o jednakowych podstawach................ 8 3. Potęgowanie potęgi................................................
ZBIÓR PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI POZIOM PODSTAWOWY ZADANIA ZAMKNIĘTE
ZBIÓR PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI POZIOM PODSTAWOWY ZADANIA ZAMKNIĘTE Zad.1. (1p) Liczba 3 30 9 90 jest równa: A. 3 210 B. 3 300 C. 9 120 D. 27 2700 Zad.2. (1p) Liczba 3 8 3 3 9 2 jest równa: A. 3
PRACA KONTROLNA nr 1
XXXV KORESPONDENCYJNY KURS Z MATEMATYKI PRACA KONTROLNA nr 1 październik 005r. 1. Niech f(x) = x + bx + 5. Wyznaczyć wszystkie wartości parametru b, dla których: a) wykres funkcji f jest symetryczny względem
A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla
Zadanie 1 Liczba jest równa A. B. C. 10 D. Odpowiedź B. Zadanie 2 Liczba jest równa A. 3 B. 2 C. D. Odpowiedź D. Zadanie 3. Liczba jest równa Odpowiedź D. Zadanie 4. Liczba osobników pewnego zagrożonego
ZBIÓR ZADAŃ - ROZUMOWANIE I ARGUMENTACJA
ZIÓR ZŃ - ROZUMOWNIE I RGUMENTJ 0--30 Strona ZIÓR ZO O WYMGNI EGZMINYJNEGO - ROZUMOWNIE I RGUMENTJ. Zapisz sumę trzech kolejnych liczb naturalnych, z których najmniejsza jest liczba n. zy suma ta jest
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
WPISUJE ZDAJĄCY KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY PRZED MATURĄ MAJ 015 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron (zadania 1 34). Ewentualny brak zgłoś przewodniczącemu
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 12 lutego 2015 Czas 90 minut
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 12 lutego 2015 Czas 90 minut Rozwiązania i punktacja Zadanie 1. (1 punkt) Średnia arytmetyczna liczb 0, 3 10 2015 i 2, 2 10 201 jest
EGZAMIN MATURALNY Z MATEMATYKI
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dyskalkulia dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY
Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n =
/9 Narysuj wykres ciągu (a n ) o wyrazie ogólnym: I. CIĄGI LICZBOWE. Pojęcie ciągu liczbowego. a) a n =5n dla n
Czy pamiętasz? Zadanie 1. Rozpoznaj wśród poniższych brył ostrosłupy i graniastosłupy.
1. Bryły Tradycyjna futbolówka jest zszyta z 3232 kawałków. Gdybyśmy ją rozcięli, ujrzelibyśmy siatkę dwudziestościanu ściętego. Kulisty kształt piłka otrzymuje dzięki wypełnieniu sprężonym powietrzem.
PRÓBNY EGZAMIN GIMNAZJALNY
PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 9 KWIETNIA 206 CZAS PRACY: 90 MINUT ZADANIE ( PKT) Dokończ zdanie tak, aby otrzymać zdanie prawdziwe. Różnica między
PRZYKŁADOWE ZADANIA OTWARTE KONKURSOWE
PRZYKŁADOWE ZADANIA OTWARTE KONKURSOWE Zadanie 1 Biuro Turystyczne Raj w przypadku rezygnacji z wycieczki nie zwraca pełnej kwoty. a) Jeśli rezygnacja z wyjazdu następuje miesiąc przed terminem wyjazdu,
Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość:
Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość: A. r 2 + q 2 = p 2 B. p 2 + r 2 = q 2 C. p 2 + q 2 = r 2 D. p + q
ETAP III wojewódzki 16 marca 2019 r.
oraz klas trzecich oddziałów gimnazjalnych prowadzonych w szkołach innego typu Liczba punktów możliwych do uzyskania: 40 ETAP III wojewódzki 16 marca 2019 r. Zasady ogólne: 1. Za każde poprawne rozwiązanie
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 6 MARCA 2010 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) ( 5 Liczba 3 4 2 1 2
Konkurs przedmiotowy z matematyki dla uczniów gimnazjów 13 marca 2015 r. zawody III stopnia (wojewódzkie)
Kod ucznia:... Konkurs przedmiotowy z matematyki dla uczniów gimnazjów 13 marca 2015 r. zawody III stopnia (wojewódzkie) Witamy Cię na trzecim etapie Konkursu przedmiotowego z matematyki. Przed przystąpieniem
Praca kontrolna nr 3, listopad 2018 termin oddania pracy do ,( ) ma cyfrę 6 na dziewiątym miejscu po przecinku?
Praca kontrolna nr 3, listopad 2018 termin oddania pracy do 3.12.2018 Imię i nazwisko... klasa III Zadanie 1. (0 1) Ile z następujących liczb: 2 3, 1 6, 0,( 62 ), 0 626,( ) ma cyfrę 6 na dziewiątym miejscu
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego
Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP WOJEWÓDZKI Rok szkolny 2012/2013 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 12 stron. Ewentualny
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9 Karta pracy: podzielność przez 9 Niektóre są dobre, z drobnymi usterkami. Największy błąd: nie ma sformułowanej
GEOMETRIA PRZESTRZENNA (STEREOMETRIA)
GEOMETRIA PRZESTRZENNA (STEREOMETRIA) WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. Na początek omówimy
KONKURS NA 6 MATEMATYKA
KONKURS NA 6 MATEMATYKA ZAD.1. Znajdź takie trzy liczby, żeby ich największy wspólny dzielnik był równy najmniejszej wspólnej wielokrotności liczb 24, 30 i 36, a najmniejsza wspólna wielokrotność równała
KONKURS PRZEDMIOTOWY MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW ETAP WOJEWÓDZKI
... pieczątka WKK... kod pracy ucznia KONKURS PRZEDMIOTOWY MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW ETAP WOJEWÓDZKI Drogi Uczniu Witaj na II etapie konkursu matematycznego. Przeczytaj uważnie instrukcję i postaraj
pudełka w kształcie walca, którego wysokość wynosi 10 cm, a średnica 24 cm. Czy dobrze została dobrana średnica tych pudełek?
ZADANIA 1 ZADANIE 1 Obwód czworokata wypukłego ABCD jest równy 50 cm. Obwód trójkata ABD jest równy 46 cm, a obwód trójkata BCD jest równy 36 cm. Oblicz długość przekatnej BD. ZADANIE 2 Huta szkła produkuje
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 149196 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Losujemy jeden
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od 1. do 5. są podane 4 odpowiedzi:
TO TRZEBA ROZWIĄZAĆ-(I MNÓSTWO INNYCH )
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA TO TRZEBA ROZWIĄZAĆ-(I MNÓSTWO INNYCH ) PAKIET ZADAŃ (zadania wybrano ze zbiorów autorów i wydawnictw: Kiełbasa, Res Polona,
Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 6
Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 6 Lang: Długość okręgu. pole pierścienia będę chciał znaleźć inne wyrażenie na pole pierścienia. oszacowanie
14P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (od początku do grawitacji)
Włodzimierz Wolczyński 14P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY (od początku do grawitacji) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią
LUBELSKA PRÓBA PRZED MATUR MATEMATYKA - poziom podstawowy
1 MATEMATYKA - poziom podstawowy LUTY 2015 Instrukcja dla zdaj cego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 16 stron. 2. Rozwiązania zadań i odpowiedzi zamie ć w miejscu na to przeznaczonym.
Pole powierzchni całkowitej prostopadłościanu o wymiarach 5 x 3 x 4 jest równe A. 94 B. 60 C. 47 D. 20
STEREOMETRIA - ZADANIA MATURALNE lata 2010-2017 Zadanie 1. (0-1) Maj 2010 [I. Wykorzystanie i tworzenie informacji] Pole powierzchni całkowitej prostopadłościanu o wymiarach 5 x x 4 jest równe A. 94 B.
LUBELSKA PRÓBA PRZED MATURĄ 2018 poziom podstawowy M A T E M A T Y K A 14 MARCA Instrukcja dla zdającego Czas pracy: 170 minut
Kod ucznia Nazwisko i imię M A T E M A T Y K A 14 MARCA 2018 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 16 stron (zadania 1-34). Ewentualny brak zgłoś przewodniczącemu
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 5 MARCA 016 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 3 4 3 + 3 9 jest
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Marzec 015 POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny zawiera
Matematyka. Zadanie 1. Zadanie 2. Oblicz. Zadanie 3. Zadanie 4. Wykaż, że liczba. 2 2 jest podzielna przez 5. Zadanie 5.
Matematyka Zadanie 1. Oblicz liczby Zadanie. Oblicz Zadanie 3. Wykaż, że liczba jest podzielna przez Zadanie 4. Wykaż, że liczba 30 0 jest podzielna przez 5. Zadanie 5. n 1 Uzasadnij, że prawdziwa jest
ARKUSZ II
www.galileusz.com.pl ARKUSZ II W każdym z zadań 1.-24. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0-1 pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D)
ZAGADANIENIA NA EGZAMIN USTNY Z MATEMATYKI
ZAGADANIENIA NA EGZAMIN USTNY Z MATEMATYKI SEMESTR I ZESTAW. Podaj liczbę przeciwną i odwrotną do liczby 2 2. Jak zmieniła się cena wyrobu po podwyżce o 20%, a następnie po obniżeniu otrzymanej ceny o
Skrypt 33. Powtórzenie do matury:
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 33 Powtórzenie do matury:
MATEMATYKA ZBIÓR ZADAŃ MATURALNYCH. Lata Poziom podstawowy. Uzupełnienie Zadania z sesji poprawkowej z sierpnia 2019 r.
MATEMATYKA ZBIÓR ZADAŃ MATURALNYH Lata 010 019 Poziom podstawowy Uzupełnienie 019 Zadania z sesji poprawkowej z sierpnia 019 r. Opracował Ryszard Pagacz Spis treści Zadania maturalne.........................................................
NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 209 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 7 maja 209 r.
Matematyk Roku gminny konkurs matematyczny. FINAŁ 19 maja 2017 KLASA TRZECIA
Twój kod:.. "Matematyka nie taka straszna jak ją malują Matematyk Roku 07 - gminny konkurs matematyczny FINAŁ 9 maja 07 KLASA TRZECIA. Przed Tobą zestaw 0 zadań konkursowych. Zanim rozpoczniesz pracę nad
WOJEWÓDZKI KONKURS MATEMATYCZNY
Pieczątka szkoły Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW W ROKU SZKOLNYM 018/019.10.018 1. Test konkursowy zawiera zadania. Są to zadania zamknięte
Imię i nazwisko.. Szkoła. Imię i nazwisko nauczyciela matematyki..
Projekt dofinansowała Fundacja mbanku KLASA 8 FINAŁ Imię i nazwisko.. Szkoła. Imię i nazwisko nauczyciela matematyki.. W zadaniach od 1 do 10 zaznacz 1 poprawną odpowiedź. Za każdą dobrą odpowiedź otrzymasz
LUBELSKA PRÓBA PRZED MATURĄ klasa 2b
MATEMATYKA materiał ćwiczeniowy CZERWIEC 0 Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 4 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.. W zadaniach od do są podane
XV WOJEWÓDZKI KONKURS Z MATEMATYKI
XV WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW PROWADZONYCH W SZKOŁACH INNEGO TYPU WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO W ROKU SZKOLNYM 2017/2018 ETAP
Próbny egzamin maturalny z matematyki Poziom podstawowy
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Marzec 2019 POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny zawiera
KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale
Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy
EGZAMIN MATURALNY Z MATEMATYKI
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 015 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 5 sierpnia
Egzamin wstępny z Matematyki 1 lipca 2011 r.
Egzamin wstępny z Matematyki 1 lipca 011 r. 1. Mamy 6 elementów. Ile jest możliwych permutacji tych elementów jeśli: a) wszystkie elementy są różne, b) dwa elementy wśród nich są identyczne, a wszystkie