ZADANIA MATURALNE - STEREOMETRIA PP poziom podstawowy PR poziom rozszerzony

Wielkość: px
Rozpocząć pokaz od strony:

Download "ZADANIA MATURALNE - STEREOMETRIA PP poziom podstawowy PR poziom rozszerzony"

Transkrypt

1 ZADANIA MATURALNE - STEREOMETRIA PP poziom podstawowy PR poziom rozszerzony Zad.1. ( PP 5 pkt) Objętość ostrosłupa prawidłowego trójkątnego, o długości krawędzi podstawy 6 cm, jest równa 9 cm. Oblicz miarę kąta nachylenia ściany bocznej tego ostrosłupa do płaszczyzny jego podstawy. Sporządź rysunek ostrosłupa i zaznacz na nim szukany kąt. Zapisz obliczenia. graniastosłup czworokątny Zad.. ( PP 4 pkt) Podstawą prostopadłościanu ABCDA 1B1C1 D1 jest prostokąt o bokach długości: AD = i AB = 6. Wysokość prostopadłościanu ma długość równą 6. Uzasadnij, za pomocą rachunków, że trójkąt BAD1 jest prostokątny. D1 C1 A1 B1 D C A B Zad.. ( PP - 5 pkt) Czy,8 m papieru samoprzylepnego wystarczy na oklejenie pudełka bez przykrywki w kształcie prostopadłościanu o wymiarach dm, 4 dm, 5 dm? Zad.4. ( PP 5 pkt) Dany jest zbiór wszystkich graniastosłupów prawidłowych sześciokątnych, w których suma długości wszystkich krawędzi jest równa 18. Oblicz długość krawędzi podstawy i długość wysokości tego z danych graniastosłupów, który ma największe pole powierzchni bocznej. Zad. 5. ( PP 6 pkt ) Dach wieży ma kształt powierzchni bocznej ostrosłupa prawidłowego czworokątnego, którego krawędź podstawy ma długość 4 m. Ściana boczna tego ostrosłupa jest nachylona do płaszczyzny podstawy pod kątem 6. a) Sporządź pomocniczy rysunek i zaznacz na nim podane w zadaniu wielkości. b) Oblicz, ile sztuk dachówek należy kupić, aby pokryć ten dach, wiedząc, że do pokrycia 1 m potrzebne są 4 dachówki. Przy zakupie należy doliczyć 8% dachówek na zapas. 1

2 Zad.6. ( PP 7 pkt ) W ostrosłupie czworokątnym prawidłowym wysokości przeciwległych ścian bocznych poprowadzone z wierzchołka ostrosłupa mają długości h i tworzą kąt o mierze a. Oblicz objętość tego ostrosłupa. Zad.7. ( PP 6 pkt) Dany jest ostrosłup prawidłowy czworokątny, którego krawędzie mają długość a. a) Sporządź rysunek tego ostrosłupa i zaznacz na nim kąt nachylenia ściany bocznej do płaszczyzny podstawy. Oznacz ten kąt jako α.oblicz kosinus kąta α, a następnie, korzystając z odpowiednich własności funkcji kosinus, uzasadnij, że α 6. b) Wyznacz długość wysokości tego ostrosłupa oraz jego objętość. Zad. 8. ( PP 7 pkt ) Pole powierzchni całkowitej prawidłowego ostrosłupa trójkątnego równa się 144, a pole powierzchni bocznej 96. Oblicz objętość tego ostrosłupa. Zad.9. ( PP 5 pkt) Grupa sześciu przyjaciół kupiła tort w kształcie graniastosłupa prostego, którego jedną z podstaw jest trójkąt równoramienny ABC ( patrz rysunek ). W trakcie dyskusji jak podzielić tort na 6 równych części, Krysia przypomniała sobie własności środkowych dowolnego trójkąta i przecięła tort prostopadle do podstawy wzdłuż linii AK, BM i NC, gdzie punkty K, M, N są środkami odpowiednich boków trójkąta ABC. Czy Krysia miała rację? Odpowiedź uzasadnij. A N M O B K C Zad.1. ( PP -5 pkt) Do pewnego przepisu z książki kucharskiej należy przygotować,5 litra płynu. Mamy do wyboru trzy szklanki w kształcie walca, o wewnętrznych wymiarach: pierwsza o średnicy 6 cm i wysokości 1 cm, druga o średnicy 5,8 cm i wysokości 9,5 oraz trzecia o średnicy 6cm i wysokości 9 cm. Której szklanki objętość jest najbliższa,5 litra? Odpowiedź uzasadnij. Zad.11. ( PP pkt) Poniższy rysunek przedstawia stożek ścięty. Objętość takiej bryły obliczamy wg wzoru: 1 V = π h ( R + R r + r ), gdzie R - długość promienia podstawy dolnej, r - długość promienia podstawy górnej, h - długość wysokości stożka ściętego.

3 r R Rada miasta postanowiła postawić w parku popiersie osoby zasłużonej. Popiersie ma stanąć na betonowym postumencie w kształcie stożka ściętego. Promienie podstaw tego postumentu są odpowiednio równe cm i 5 cm, a jego wysokość jest równa 1,5 m. Jaki będzie koszt materiału zużytego na budowę postumentu, jeżeli wiadomo, że cena 1 m betonu wynosi zł? ( nie uwzględniamy zbrojenia ). Wynik podaj z dokładnością do 1 zł. Zad.1. ( PP- 7 pkt) Piętrowy tort przygotowany na bal maturalny składał się z pięciu warstw, z których każda miała kształt walca. Długości promieni walców, wyrażone w cm były kolejnymi wyrazami ciągu arytmetycznego o różnicy a = -5. Długość promienia podstawy środkowej warstwy tego tortu była równa cm, a jej objętość π cm. Wszystkie warstwy wykonane były z tego samego rodzaju ciasta i miały jednakową wysokość. Oblicz, ile mąki należało przygotować do wypieku całego tortu, jeżeli receptura przewiduje wykorzystanie,4 kg mąki do wypieku warstwy środkowej. Zad.1. ( PP 5 pkt) Dane są dwie bryły: stożek, w którym długość promienia podstawy jest równa 4 dm i wysokość ma długość π 18 dm oraz ostrosłup prawidłowy czworokątny, w którym krawędź podstawy ma długość 4 dm. Wiedząc, że objętości tych brył są równe, wyznacz kąt nachylenia ściany bocznej ostrosłupa do jego podstawy. Zad.14. ( PP 4 pkt) Metalową kulę o promieniu 1 cm oraz stożek, w którym średnica i wysokość mają długości odpowiednio 16 cm i 1 cm, przetopiono. Następnie z otrzymanego metalu wykonano walec o 8 średnicy cm. Oblicz długość wysokości tego walca. Zad. 15. ( PP 6 pkt ) Wysokość walca jest o 6 większa od średnicy jego podstawy, a pole jego powierzchni całkowitej jest równe 78 π. Oblicz objętość walca. Zad.16. ( PP 5 pkt) Sześcienny blok ołowiany ma wewnątrz pustą przestrzeń też w kształcie sześcianu położoną centralnie, służącą do przechowywania ciała promieniotwórczego. Krawędź sześcianu

4 wewnętrznego jest równa 7 cm. Pole powierzchni sześcianu wewnętrznego jest 49 razy mniejsze od pola powierzchni sześcianu zewnętrznego. a) Oblicz grubość ścianek tego bloku. b) Oblicz ciężar bloku, jeżeli ciężar właściwy ołowiu jest równy 1,14 g / cm. Wynik podaj z dokładnością do,1 kg. Zad. 17. ( PP 5 pkt ) Waflowy rożek ma kształt stożka, w którym kąt rozwarcia jest równy, a tworząca ma długość 15 cm. Oblicz, ile cm lodów można włożyć do rożka, przyjmując, że zostanie napełniony w 95%. Zad.18.( PP 5 pkt) Stożek i walec mają równe długości tworzących, równe pola powierzchni bocznych i równe objętości. Oblicz kosinus kąta nachylenia tworzącej stożka do płaszczyzny jego podstawy. Zad.19. ( PR 4 pkt) Wybierz dwie dowolne przekątne sześcianu i oblicz cosinus kąta między nimi. Sporządź odpowiedni rysunek i zaznacz na nim kąt, którego cosinus obliczasz. Zad.. ( PR pkt) Pole powierzchni całkowitej stożka jest trzy razy większe od pola jego podstawy. Oblicz miarę kąta rozwarcia tego stożka. Zad.1. ( PR pkt) Graniastosłup prawidłowy trójkątny jest opisany na kuli o promieniu. Oblicz objętość tego graniastosłupa. Zad.. ( PR 5 pkt ) Sześcian o krawędzi długości a przecięto płaszczyzną przechodzącą przez przekątną π podstawy i nachyloną do płaszczyzny podstawy pod kątem. Sporządź odpowiedni rysunek. Oblicz pole otrzymanego przekroju. Zad.. ( PR 6 pkt ) Podstawą graniastosłupa prostego jest romb o kącie ostrym α = 6. Krawędź boczna graniastosłupa ma długość 8. Krótsza przekątna graniastosłupa tworzy z płaszczyzną podstawy kąt β = 6. Przez krótszą przekątną graniastosłupa poprowadzono płaszczyznę sieczną, która jest równoległa do dłuższej przekątnej podstawy. Oblicz pole otrzymanego przekroju. Sporządź rysunek graniastosłupa i zaznacz na nim ten przekrój. Zad. 4. ( PR 6 pkt ) Dany jest ostrosłup prawidłowy trójkątny, w którym długość krawędzi podstawy jest równa a. Kąt między krawędzią boczną i krawędzią podstawy ma miarę 45. Ostrosłup przecięto płaszczyzną przechodzącą przez krawędź podstawy i środek przeciwległej jej krawędzi bocznej. Sporządź rysunek ostrosłupa i zaznacz otrzymany przekrój. Oblicz pole tego przekroju. 4

5 Zad. 5.( PR 7 pkt ) Punkt S jest wierzchołkiem ostrosłupa prawidłowego czworokątnego ABCDS. Krawędź podstawy tego ostrosłupa ma długość 8, a krawędź boczna tworzy z płaszczyzną podstawy kąt 6. Przez wierzchołek A podstawy, równolegle do przekątnej BD, poprowadzono płaszczyznę sieczną tworzącą z płaszczyzną podstawy ostrosłupa kąt 45. Sporządź rysunek ostrosłupa, zaznacz otrzymany przekrój i oblicz pole tego przekroju. Zad.6. ( PR 7 pkt) Producent zamierza rozlewać sok do pudełek, w kształcie prostopadłościanu, o pojemności 1,8 litra. Dobierz wymiary pudełka, tak aby na jego wyprodukowanie zużyć jak najmniej materiału przyjmując, że stosunek długości sąsiednich krawędzi podstawy pudełka jest równy : ( wykonując obliczenia zaniedbaj ilość materiału potrzebnego na sklejenia, złożenia itp. ). Zad.7. ( PR 6 pkt) Podstawą ostrosłupa jest prostokąt o polu 9 dm. Dwie ściany boczne ostrosłupa są prostopadłe do płaszczyzny podstawy, a dwie pozostałe ściany boczne są nachylone do π π płaszczyzny podstawy pod kątami i. 6 a) Sporządź rysunek ostrosłupa i zaznacz na nim dane kąty. b) Oblicz objętość ostrosłupa..8. ( PR- 5 pkt) Prosta p jest nachylona do płaszczyzny π pod kątem o mierze 45 i przecina tę płaszczyznę w punkcie A. Prosta q jest zawarta w płaszczyźnie π. Punkt A należy do prostej q. Kąt między prostą q i rzutem prostokątnym prostej p na płaszczyznę π ma miarę 45. Wykaż, że kąt ostry między prostymi p i q ma miarę 6. Zad.9. ( PR 7 pkt) W ostrosłupie prawidłowym czworokątnym krawędź podstawy, a długość 4. Ściany boczne tego ostrosłupa są nachylone do płaszczyzny podstawy pod kątem 6. Oblicz długość promienia kuli opisanej na tym ostrosłupie. Zad.. ( PR 8 pkt) W trójkącie ABC dane są: AC = 8, BC =, ACB = 6. Oblicz objętość i pole powierzchni całkowitej bryły powstałej po obrocie trójkąta ABC dookoła boku BC. Zad.1. ( PR 9 pkt) Pole powierzchni całkowitej stożka jest dwa razy większe od pola powierzchni kuli wpisanej w ten stożek. Wyznacz cosinus kąta nachylenia tworzącej stożka do płaszczyzny jego podstawy. Zad.. ( PR- 4 pkt) W stożku tworząca o długości 5 cm jest nachylona do płaszczyzny jego podstawy pod kątem o mierze 4. Oblicz objętość kuli opisanej na tym stożku. Wynik podaj z dokładnością do,1 cm. 5

6 Zad.. ( PR 9 pkt) W stożek, w którym kąt między tworzącą a podstawą ma miarę α wpisano kulę. a) Oblicz stosunek objętości stożka do objętości kuli. b) Wyznacz cos α, jeżeli stosunek objętości stożka do objętości kuli jest równy 9:4. Zad.4. ( PR 6 pkt) Rozpatrujemy wszystkie graniastosłupy prawidłowe sześciokątne, w których suma długości wszystkich krawędzi jest równa 6. Oblicz wymiary graniastosłupa o największej objętości. Zad.5. ( PR 7 pkt ) Wśród wszystkich graniastosłupów prawidłowych trójkątnych o objętości równej m Istnieje taki, którego pole powierzchni całkowitej jest najmniejsze. Wyznacz długości krawędzi tego graniastosłupa. Zad.6. ( PR 6 pkt) Objętość walca jest równa 5 π cm. Przedstaw pole powierzchni całkowitej tego walca jako funkcję długości promienia jego podstawy i określ dziedzinę tej funkcji. Wyznacz długość promienia takiego walca, którego pole powierzchni całkowitej jest najmniejsze. Zad.7. ( PR 1 pkt) Na kuli o promieniu długości R = 4 cm opisujemy stożki o promieniu długości r i wysokości długości H. Spośród wszystkich takich stożków wyznacz ten, który ma najmniejszą objętość. Oblicz tę objętość. Oblicz długość promienia i wysokości znalezionego stożka. Zad.8. ( PR 1 pkt) Przekątna przekroju osiowego walca ma długość równą mieć ten walec? Odpowiedź odpowiednio uzasadnij.. Jaką największą objętość może Zad. 9. ( PR -5 pkt ) W ostrosłupie prawidłowym czworokątnym dane są: H długość wysokości ostrosłupa oraz α 45 < α < 9. miara kąta utworzonego przez krawędź boczną i krawędź podstawy ( ) 4 H a) Wykaż, że objętość V tego ostrosłupa jest równa tg α. 1 b) Oblicz miarę kąta α, dla której objętość V danego ostrosłupa jest równa podaj w zaokrągleniu do całkowitej liczby stopni. H. Wynik 9 Zad. 4. ( PR -5 pkt ) W graniastosłupie prawidłowym sześciokątnym płaszczyzna ABC zawierająca przekątne sąsiednich ścian bocznych, wychodzących z tego samego wierzchołka, jest nachylona do podstawy graniastosłupa pod kątem α = 6. Pole przekroju graniastosłupa tą płaszczyzną równa się 8. Oblicz objętość tego graniastosłupa. Zad. 41. ( PR -5 pkt ) Podstawą ostrosłupa ABCD jest trójkąt równoboczny ABC o boku długości. Wszystkie ściany boczne są równoramiennymi trójkątami prostokątnymi. Punkt P został wybrany wewnątrz ostrosłupa w ten sposób, że wysokości ostrosłupów ABDP, BCDP, ACDP, ABCP opuszczone z wierzchołka P mają tę samą długość H. Sporządź rysunek ostrosłupa i oblicz H. 6

7 Zad. 4. ( PR -5 pkt ) Kapsuła lądownika ma kształt stożka zakończonego w podstawie półkulą o tym samym promieniu co promień podstawy stożka. Wysokość stożka jest o 1 m większa niż promień półkuli. Objętość stożka stanowi objętości całej kapsuły. Oblicz objętość kapsuły lądownika. Zad. 4. ( PR -6 pkt ) Sześcian o krawędzi długości a przecięto płaszczyzną przechodzącą przez przekątną podstawy i nachyloną do płaszczyzny podstawy pod kątem miary α. a) Oblicz tangens największego z kątów α, dla którego przekrój jest trójkątem. Zaznacz ten kąt wraz z odpowiednim przekrojem na rysunku. b) Otrzymany przekrój sześcianu jest trójkątem. Oblicz pole tego trójkąta, wiedząc, że płaszczyzna, w której jest on zawarty podzieliła sześcian na dwie bryły, których stosunek objętości wynosi 1:11. Zad. 44. ( PR -6 pkt ) Krawędź podstawy i wysokość ściany bocznej poprowadzona z wierzchołka ostrosłupa prawidłowego czworokątnego mają długości a. Oblicz cosinus kąta dwuściennego między sąsiednimi ścianami bocznymi. Sporządź rysunek pomocniczy i zaznacz na nim wymieniony kąt dwuścienny. Zad. 45. ( PP -5 pkt ) a 15 Pole powierzchni bocznej ostrosłupa prawidłowego trójkątnego równa się, gdzie a 4 oznacza długość krawędzi podstawy tego ostrosłupa. Zaznacz na poniższym rysunku kąt nachylenia ściany bocznej ostrosłupa do płaszczyzny jego podstawy. Miarę tego kąta oznacz symbolem β. Oblicz cos β i korzystając z tablic funkcji trygonometrycznych odczytaj przybliżoną wartość β z dokładnością do 1. Zad. 46. ( PP -4 pkt ) 7

8 Powierzchnia boczna stożka po rozwinięciu na płaszczyznę jest wycinkiem koła o promieniu i kącie środkowym miary 1 ( zobacz rysunek ). Oblicz objętość tego stożka. 1. Zad. 47. ( PP - 5 pkt ) ' ' ' Dany jest graniastosłup prawidłowy trójkątny o podstawach ABC i A B C oraz krawędziach ' ' ' ' bocznych AA, BB, CC. Kąt między przekątną ściany bocznej AC a krawędzią podstawy AC ma miarę α. Promień okręgu wpisanego w podstawę graniastosłupa ma długość r. Oblicz objętość tego graniastosłupa. Zad. 48. ( PP - 5 pkt ) Dany jest graniastosłup czworokątny prosty ABCDEFGH o podstawach ABCD i EFGH oraz krawędziach bocznych AE, BF, CG, DH. Podstawa ABCD graniastosłupa jest rombem o boku długości 8 cm i kątach ostrych A i C o mierze 6. Przekątna graniastosłupa CE jest nachylona do płaszczyzny podstawy pod kątem o mierze 6. Sporządź rysunek pomocniczy i zaznacz na nim wymienione w zadaniu kąty. Oblicz objętość tego graniastosłupa. Zad. 49. ( PP - 6 pkt ) W graniastosłupie prawidłowym czworokątnym przekątna podstawy ma długość 8 cm i tworzy z przekątną ściany bocznej, z którą ma wspólny wierzchołek kąt, którego cosinus jest równy. Oblicz objętość i pole powierzchni całkowitej tego graniastosłupa. Zad. 5. ( PR- 6 pkt ) Dany jest ostrosłup prawidłowy trójkątny, w którym krawędź podstawy ma długość a i krawędź boczna jest od niej dwa razy dłuższa. Oblicz cosinus kąta między krawędzią boczną i krawędzią podstawy ostrosłupa. Narysuj przekrój ostrosłupa płaszczyzną przechodzącą przez krawędź podstawy i środek przeciwległej krawędzi bocznej i oblicz pole tego przekroju. 8

9 Zad. 51. ( PR- 4 pkt ) Dany jest ostrosłup prawidłowy czworokątny, w którym wszystkie krawędzie mają równą długość. Narysuj rysunek tego ostrosłupa. Zaznacz na tym rysunku kąt utworzony przez dwie sąsiednie ściany boczne tego ostrosłupa i oblicz kosinus tego kąta. Zad. 5. ( PR- 7 pkt ) Podstawa ostrosłupa jest kwadratem. Jedna z krawędzi bocznych jest prostopadła do podstawy ostrosłupa. Najdłuższa krawędź boczna ma długość i jest nachylona do płaszczyzny podstawy pod kątem, którego sinus jest równy oblicz pole powierzchni bocznej tego ostrosłupa.. Narysuj rysunek pomocniczy i 9

ZADANIA MATURALNE STEREOMETRIA POZIOM PODSTAWOWY Opracowała mgr Danuta Brzezińska

ZADANIA MATURALNE STEREOMETRIA POZIOM PODSTAWOWY Opracowała mgr Danuta Brzezińska ZADANIA MATURALNE STEREOMETRIA POZIOM PODSTAWOWY Opracowała mgr Danuta Brzezińska Zad.1. ( 5 pkt) Objętość ostrosłupa prawidłowego trójkątnego, o długości krawędzi podstawy 6 cm, jest równa cm 3. Oblicz

Bardziej szczegółowo

Stereometria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie

Stereometria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie Stereometria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie http://www.zadania.info/) 1. W ostrosłupie prawidłowym czworokątnym ściana boczna o polu równym 10 jest nachylona do płaszczyzny podstawy

Bardziej szczegółowo

mgr A. Piłat, mgr M. Małycha

mgr A. Piłat, mgr M. Małycha K 1. Oblicz długość odcinka KL łączącego środki dwóch krawędzi sześcianu, którego krawędź ma długość 6. L 2. Przekątna d prostopadłościanu o podstwie kwadratowej jest nachylona do płaszczyzny podstawy

Bardziej szczegółowo

STEREOMETRIA. Poziom podstawowy

STEREOMETRIA. Poziom podstawowy STEREOMETRIA Poziom podstawowy Zadanie ( 8 pkt ) W stożku tworząca o długości jest nachylona do powierzchni podstawy pod kątem, którego tangens jest równy Oblicz stosunek pola powierzchni bocznej do pola

Bardziej szczegółowo

Matematyka podstawowa IX. Stereometria

Matematyka podstawowa IX. Stereometria Zadania wprowadzające: Matematyka podstawowa IX Stereometria 1. Pole powierzchni całkowitej sześcianu jest równe 54. Oblicz objętość sześcianu. 2. Pole powierzchni sześcianu jest równe 96.Oblicz długość

Bardziej szczegółowo

Pole powierzchni całkowitej prostopadłościanu o wymiarach 5 x 3 x 4 jest równe A. 94 B. 60 C. 47 D. 20

Pole powierzchni całkowitej prostopadłościanu o wymiarach 5 x 3 x 4 jest równe A. 94 B. 60 C. 47 D. 20 STEREOMETRIA - ZADANIA MATURALNE lata 2010-2017 Zadanie 1. (0-1) Maj 2010 [I. Wykorzystanie i tworzenie informacji] Pole powierzchni całkowitej prostopadłościanu o wymiarach 5 x x 4 jest równe A. 94 B.

Bardziej szczegółowo

Klasa 3.Graniastosłupy.

Klasa 3.Graniastosłupy. Klasa 3.Graniastosłupy. 1. Uzupełnij nazwy odcinków oznaczonych literami: a........................................................... b........................................................... c...........................................................

Bardziej szczegółowo

5. Oblicz pole powierzchni bocznej tego graniastosłupa.

5. Oblicz pole powierzchni bocznej tego graniastosłupa. 11. STEREOMETRIA Zad.11.1. Oblicz pole powierzchni całkowitej sześcianu, wiedząc Ŝe jego objętość wynosi 16 cm. Zad.11.. Oblicz długość przekątnej sześcianu, jeśli jego pole powierzchni całkowitej wynosi

Bardziej szczegółowo

Ostrosłupy ( ) Zad. 4: Jedna z krawędzi ostrosłupa trójkątnego ma długość 2, a pozostałe 4. Znajdź objętość tego ostrosłupa. Odp.: V =

Ostrosłupy ( ) Zad. 4: Jedna z krawędzi ostrosłupa trójkątnego ma długość 2, a pozostałe 4. Znajdź objętość tego ostrosłupa. Odp.: V = Ostrosłupy Zad 1: W ostrosłupie prawidłowym trójkątnym kwadrat długości krawędzi podstawy, kwadrat długości wysokości ostrosłupa i kwadrat długości krawędzi bocznej są kolejnymi wyrazami ciągu arytmetycznego

Bardziej szczegółowo

Skrypt 33. Powtórzenie do matury:

Skrypt 33. Powtórzenie do matury: Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 33 Powtórzenie do matury:

Bardziej szczegółowo

Zadanie 1. Przekątna prostopadłościanu o wymiarach ma długość A. 2 5 B. 2 3 C. 5 2 D Zadanie 2.

Zadanie 1. Przekątna prostopadłościanu o wymiarach ma długość A. 2 5 B. 2 3 C. 5 2 D Zadanie 2. Zadanie 1. Przekątna prostopadłościanu o wymiarach 3 4 5 ma długość A. 2 5 B. 2 3 C. 5 2 D. 2 15 Zadanie 2. Pole powierzchni całkowitej prostopadłościanu jest równe 198. Stosunki długości krawędzi prostopadłościanu

Bardziej szczegółowo

ZADANIE 1 (5 PKT) ZADANIE 2 (5 PKT) Oblicz objętość czworościanu foremnego o krawędzi a.

ZADANIE 1 (5 PKT) ZADANIE 2 (5 PKT) Oblicz objętość czworościanu foremnego o krawędzi a. ZADANIE 1 (5 PKT) Czworościan foremny o krawędzi a rozcięto płaszczyzna prostopadła do jednej z krawędzi, przechodzac a w odległości 0, 25a od jednego końca tej krawędzi. Oblicz objętość otrzymanych brył.

Bardziej szczegółowo

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 13 Zadania stereometria

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 13 Zadania stereometria 1 TEST WSTĘPNY 1. (1p) Graniastosłup ma 12 wierzchołków. Liczba krawędzi tego graniastosłupa to: A. 12 B. 18 C. 24 D. 36 2. (1p) Pole powierzchni jednej ściany sześcianu jest równe 9. Objętość tego sześcianu

Bardziej szczegółowo

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste

Bardziej szczegółowo

Kurs ZDAJ MATURĘ Z MATEMATYKI - MODUŁ 13 Teoria stereometria

Kurs ZDAJ MATURĘ Z MATEMATYKI - MODUŁ 13 Teoria stereometria 1 GRANIASTOSŁUPY i OSTROSŁUPY wiadomości ogólne Aby tworzyć wzory na OBJĘTOŚĆ i POLE CAŁKOWITE graniastosłupów musimy znać pola figur płaskich a następnie na ich bazie stosować się do zasady: Objętość

Bardziej szczegółowo

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź.

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź. ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska Zad.1. (5 pkt) Sprawdź, czy funkcja określona wzorem x( x 1)( x ) x 3x dla x 1 i x dla x 1 f ( x) 1 3 dla

Bardziej szczegółowo

Zadanie 4. Krawędź sześcianu jest o 6 krótsza od jego przekątnej. Oblicz pole powierzchni całkowitej tego sześcianu

Zadanie 4. Krawędź sześcianu jest o 6 krótsza od jego przekątnej. Oblicz pole powierzchni całkowitej tego sześcianu Zadanie 4. Krawędź sześcianu jest o 6 krótsza od jego przekątnej. Oblicz pole powierzchni całkowitej tego sześcianu Zadanie 5. Sześcian o krawędzi 10 przecięto płaszczyzną zawierającą przekątną dolnej

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE IV TECHNIKUM.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE IV TECHNIKUM. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE IV TECHNIKUM. I. Podstawowe pojęcia statystyki. 1. Sposoby prezentowania danych, interpretacja wykresów. 2. Mediana i dominanta. 3. Średnia arytmetyczna

Bardziej szczegółowo

TO TRZEBA ROZWIĄZAĆ-(I MNÓSTWO INNYCH )

TO TRZEBA ROZWIĄZAĆ-(I MNÓSTWO INNYCH ) Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA TO TRZEBA ROZWIĄZAĆ-(I MNÓSTWO INNYCH ) PAKIET ZADAŃ (zadania wybrano ze zbiorów autorów i wydawnictw: Kiełbasa, Res Polona,

Bardziej szczegółowo

Plan wynikowy, klasa 3 ZSZ

Plan wynikowy, klasa 3 ZSZ Plan wynikowy, klasa 3 ZSZ Nazwa działu Temat Liczba godzin 1. Trójkąty prostokątne powtórzenie 1. Trygonometria (10 h) 2. Funkcje trygonometryczne kąta ostrego 3. 4. Trygonometria zastosowania 5. 6. Związki

Bardziej szczegółowo

Czy pamiętasz? Zadanie 1. Rozpoznaj wśród poniższych brył ostrosłupy i graniastosłupy.

Czy pamiętasz? Zadanie 1. Rozpoznaj wśród poniższych brył ostrosłupy i graniastosłupy. 1. Bryły Tradycyjna futbolówka jest zszyta z 3232 kawałków. Gdybyśmy ją rozcięli, ujrzelibyśmy siatkę dwudziestościanu ściętego. Kulisty kształt piłka otrzymuje dzięki wypełnieniu sprężonym powietrzem.

Bardziej szczegółowo

KLASA I LO Poziom podstawowy (styczeń) Treści nauczania wymagania szczegółowe:

KLASA I LO Poziom podstawowy (styczeń) Treści nauczania wymagania szczegółowe: KLASA I LO Poziom podstawowy (styczeń) Treści nauczania wymagania szczegółowe: ZAKRES PODSTAWOWY 7. Planimetria. Uczeń: 1) rozpoznaje trójkąty podobne i wykorzystuje (także w kontekstach praktycznych)

Bardziej szczegółowo

GRANIASTOSŁUPY. Graniastosłupy dzielimy na proste i pochyłe. W graniastosłupach prostych krawędzie są prostopadłe do podstaw, w pochyłych nie są.

GRANIASTOSŁUPY. Graniastosłupy dzielimy na proste i pochyłe. W graniastosłupach prostych krawędzie są prostopadłe do podstaw, w pochyłych nie są. GRANIASTOSŁUPY Euklides (365-300 p.n.e.) słynny grecki matematyk i fizyk. Jego najwybitniejsze dzieło Elementy składało się z trzynastu ksiąg, z czego trzy ostatnie księgi dotyczą geometrii przestrzennej:

Bardziej szczegółowo

Stereometria bryły. Wielościany. Wielościany foremne

Stereometria bryły. Wielościany. Wielościany foremne Stereometria bryły Stereometria - geometria przestrzeni trójwymiarowej. Przedmiotem jej badań są własności brył oraz przekształcenia izometryczne i afiniczne przestrzeni. Przyjęte oznaczenia: - Pole powierzchni

Bardziej szczegółowo

Opracowanie tablic: Adam Konstantynowicz, Anna Konstantynowicz, Kaja Mikoszewska

Opracowanie tablic: Adam Konstantynowicz, Anna Konstantynowicz, Kaja Mikoszewska Opracowanie tablic: Adam Konstantynowicz, Anna Konstantynowicz, Kaja Mikoszewska Redaktor serii: Marek Jannasz Ilustracje: Magdalena Wójcik Projekt okładki: Teresa Chylińska-Kur, KurkaStudio Projekt makiety

Bardziej szczegółowo

XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY

XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY pitagoras.d2.pl XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY Graniastosłup to wielościan posiadający dwie identyczne i równoległe podstawy oraz ściany boczne będące równoległobokami. Jeśli podstawy graniastosłupa

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE 3 ZASADNICZEJ SZKOŁY ZAWODOWEJ

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE 3 ZASADNICZEJ SZKOŁY ZAWODOWEJ ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE 3 ZASADNICZEJ SZKOŁY ZAWODOWEJ I. Funkcja kwadratowa i wymierna 1. Funkcja kwadratowa i jej postacie. 2. Wykres funkcji kwadratowej. 3. Równania

Bardziej szczegółowo

Temat: PRZEKROJE PROSTOPADŁOŚCIANÓW. Cel lekcji: kształcenie wyobraźni przestrzennej

Temat: PRZEKROJE PROSTOPADŁOŚCIANÓW. Cel lekcji: kształcenie wyobraźni przestrzennej Temat: PRZEKROJE PROSTOPADŁOŚCIANÓW Cel lekcji: kształcenie wyobraźni przestrzennej Przypomnienie podstawowych wiadomości potrzebnych do rozwiązywania zadań z przekrojami prostopadłościanów. 1. Prostopadłościan

Bardziej szczegółowo

Sprawdzian całoroczny kl. II Gr. A x

Sprawdzian całoroczny kl. II Gr. A x . Oblicz: a) (,5) 8 c) ( ) : ( ). Oblicz: Sprawdzian całoroczny kl. II Gr. A [ ] d) 6 a) ( : ) 5 6 6 8 50. Usuń niewymierność z mianownika: a). Oblicz obwód koła o polu,π dm. 5. Podane wyrażenia przedstaw

Bardziej szczegółowo

Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015

Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015 Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015 2 6 + 3 1. Oblicz 3. 3 x 1 3x 2. Rozwiąż nierówność > x. 2 3 3. Funkcja f przyporządkowuje każdej

Bardziej szczegółowo

Skrypt 26. Stereometria: Opracowanie Jerzy Mil

Skrypt 26. Stereometria: Opracowanie Jerzy Mil Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 26 Stereometria: 1. Przypomnienie

Bardziej szczegółowo

Zestaw nr 7 bryły. (Przyjmij do obliczeń, że 2 1,41 )

Zestaw nr 7 bryły. (Przyjmij do obliczeń, że 2 1,41 ) Zestaw nr 7 bryły Zad. 1. Ogrodnik zbudował 5 tuneli foliowych o długości 10 m każdy. Przekrój poprzeczny tunelu jest trapezem równoramiennym o podstawach 3 m i 1,6 m oraz wysokości 2,4 m. Ile metrów sześciennych

Bardziej szczegółowo

Zadanie 1. (1p.) W grupie 150 losowo wybranych osób zadano pytanie: Ile godzin w tygodniu poświęcasz na uprawianie sportu? 10%

Zadanie 1. (1p.) W grupie 150 losowo wybranych osób zadano pytanie: Ile godzin w tygodniu poświęcasz na uprawianie sportu? 10% Test Instrukcja dla ucznia Zadania obejmują wiadomości i umiejętności ze statystyki i stereometrii - wielościany. Pisz czytelnie. Przedstaw tok rozumowania prowadzący do ostatecznego rezultatu. Sporządź

Bardziej szczegółowo

KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI

KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI PRACA KONTROLNA nr 1 październik 1999 r 1. Stop składa się z 40% srebra próby 0,6, 30% srebra próby 0,7 oraz 1 kg srebra próby 0,8. Jaka jest waga i jaka

Bardziej szczegółowo

MATURA 2012. Przygotowanie do matury z matematyki

MATURA 2012. Przygotowanie do matury z matematyki MATURA 01 Przygotowanie do matury z matematyki Część IX: Stereometria ROZWIĄZANIA Powtórka jest organizowana przez redaktorów portalu MatmaNa.pl we współpracy z dziennikarzami Gazety Lubuskiej. Witaj,

Bardziej szczegółowo

Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie

Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie http://www.zadania.info/) 1. W trójkącie prostokątnym wysokość poprowadzona na przeciwprostokątną ma długość 10 cm, a promień okręgu

Bardziej szczegółowo

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 11 Zadania planimetria

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 11 Zadania planimetria 1 TEST WSTĘPNY 1. (1p) Wysokość rombu o boku długości 6 i kącie ostrym 60 o jest równa: A. 6 3 B. 6 C. 3 3 D. 3 2. (1p) W trójkącie równoramiennym długość ramienia wynosi 10 a podstawa 16. Wysokość opuszczona

Bardziej szczegółowo

Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej.

Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. C Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. Zad. 1 Oblicz pole trójkąta o bokach 13 cm, 14 cm, 15cm. Zad. 2 W trójkącie ABC rys. 1 kąty

Bardziej szczegółowo

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2017 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 22 sierpnia

Bardziej szczegółowo

A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla

A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla Zadanie 1 Liczba jest równa A. B. C. 10 D. Odpowiedź B. Zadanie 2 Liczba jest równa A. 3 B. 2 C. D. Odpowiedź D. Zadanie 3. Liczba jest równa Odpowiedź D. Zadanie 4. Liczba osobników pewnego zagrożonego

Bardziej szczegółowo

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2). 1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego

Bardziej szczegółowo

ARKUSZ VIII

ARKUSZ VIII www.galileusz.com.pl ARKUSZ VIII W każdym z zadań 1.-24. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0-1 pkt) Iloczyn liczb 2+ 3 i odwrotności liczby 2 3 jest równy A) 2 3 B) 1 C) 2 3 D) 2+

Bardziej szczegółowo

Rozwiązanie. Oznaczmy przekątne rombu, który jest podstawa graniastosłupa: dłuższa

Rozwiązanie. Oznaczmy przekątne rombu, który jest podstawa graniastosłupa: dłuższa Temat: RZEKROJE GRANIASTOSŁUÓW I OSTROSŁUÓW Cel lekcji: kształcenie wyobraźni przestrzennej rzypomnienie podstawowych wiadomości potrzebnych do rozwiązywania zadań z przekrojami. Sposób wyznaczania kąta

Bardziej szczegółowo

Kąty przyległe, wierzchołkowe i zewnętrzne

Kąty przyległe, wierzchołkowe i zewnętrzne Kąty przyległe, wierzchołkowe i zewnętrzne 1. Ile wynosi miara kąta przyległego do kąta o mierze 135 o. 2. Wyznacz miary kątów α, β, γ, δ: 3. Z dwóch kątów przyległych, miara jednego jest dwa razy większa

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 00 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

Stożkiem nazywamy bryłę obrotową, która powstała przez obrót trójkąta prostokątnego wokół jednej z jego przyprostokątnych.

Stożkiem nazywamy bryłę obrotową, która powstała przez obrót trójkąta prostokątnego wokół jednej z jego przyprostokątnych. 1.4. Stożek W tym temacie dowiesz się: jak obliczać pole powierzchni bocznej i pole powierzchni całkowitej stożka, jak obliczać objętość stożka, jak wykorzystywać własności stożków w zadaniach praktycznych.

Bardziej szczegółowo

Agnieszka Kamińska, Dorota Ponczek. Matematyka na czasie Gimnazjum, klasa 3 Rozkład materiału i plan wynikowy

Agnieszka Kamińska, Dorota Ponczek. Matematyka na czasie Gimnazjum, klasa 3 Rozkład materiału i plan wynikowy Agnieszka Kamińska, Dorota Ponczek Matematyka na czasie Gimnazjum, klasa Rozkład materiału i plan wynikowy I. FUNKCJE 1 1. Pojęcie funkcji zbiór i jego elementy pojęcie przyporządkowania pojęcie funkcji

Bardziej szczegółowo

OBLICZANIE PÓL I OBWODÓW FIGUR PŁASKICH

OBLICZANIE PÓL I OBWODÓW FIGUR PŁASKICH OBLICZANIE PÓL I OBWODÓW FIGUR PŁASKICH Zadanie 1 Jeden z boków prostokąta ma 5 cm, a drugi jest 3 razy dłuższy. Oblicz pole prostokąta. Zadanie 2 Oblicz pole kwadratu, którego obwód wynosi 6 dm. Zadanie

Bardziej szczegółowo

PRZEDMIOTOWE ZASADY OCENIANIA I WYMAGANIA EDUKACYJNE Z MATEMATYKI Klasa 3

PRZEDMIOTOWE ZASADY OCENIANIA I WYMAGANIA EDUKACYJNE Z MATEMATYKI Klasa 3 PRZEDMIOTOWE ZASADY OCENIANIA I WYMAGANIA EDUKACYJNE Z MATEMATYKI Klasa 3 I. FUNKCJE grupuje elementy w zbiory ze względu na wspólne cechy wymienia elementy zbioru rozpoznaje funkcje wśród przyporządkowań

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 10 MARCA 2018 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 4 7 8 25 0, 5

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 4 CZERWCA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 4 CZERWCA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 013 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę Instrukcja dla zdającego EGZAMIN MATURALNY Z MATEMATYKI

Bardziej szczegółowo

13. Stereometria mgr A. Piłat, mgr M. Małycha, mgr M. Warda

13. Stereometria mgr A. Piłat, mgr M. Małycha, mgr M. Warda 1. Oblicz długość odcinka KL łączącego środki dwóch krawędzi sześcianu, którego krawędź ma długość 6. K 2. Oblicz sinus kąta między przekątną sześcianu a jego płaszczyzną podstawy. L 3. Przekątna d prostopadłościanu

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM ROZSZERZONY 7 KWIETNIA 2018 CZAS PRACY: 180 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Wskaż liczbę, która

Bardziej szczegółowo

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2019 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 4 czerwca 2019

Bardziej szczegółowo

1.2. Ostrosłupy. W tym temacie dowiesz się: jak obliczać długości odcinków zawartych w ostrosłupach, jakie są charakterystyczne kąty w ostrosłupach.

1.2. Ostrosłupy. W tym temacie dowiesz się: jak obliczać długości odcinków zawartych w ostrosłupach, jakie są charakterystyczne kąty w ostrosłupach. 12 Ostrosłupy W tym temacie dowiesz się: jak obliczać długości odcinków zawartych w ostrosłupach, jakie są charakterystyczne kąty w ostrosłupach Ostrosłup prosty to ostrosłup, który ma wszystkie krawędzie

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 00 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 7 KWIETNIA 01 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) 1 Odwrotnościa liczby

Bardziej szczegółowo

Graniastosłupy mają dwie podstawy, a ich ściany boczne mają kształt prostokątów.

Graniastosłupy mają dwie podstawy, a ich ściany boczne mają kształt prostokątów. GRANIASTOSŁUPY I OSTROSŁUPY Bryły czyli figury przestrzenne dzielimy na: graniastosłupy ostrosłupy bryły obrotowe Graniastosłupy i ostrosłupy nazywamy wielościanami Graniastosłupy mają dwie podstawy, a

Bardziej szczegółowo

Rozwiązaniem nierówności A. B. C. 4 D. 2

Rozwiązaniem nierówności A. B. C. 4 D. 2 (Kod ucznia).... /50 pkt. (Liczba uzyskanych punktów) Matura próbna z matematyki KLASA III poziom podstawowy Czas trwania 170 minut Liczba punktów do uzyskania - 50 Zadanie 1. (0-1) Liczba jest równa A)

Bardziej szczegółowo

Zadanie 01 Zaznacz w układzie współrzędnych zbiory : A = { (x, y) ; x R i y R i x + y 1 } oraz. B m = { (x, y) ; x R i y R i 4x 2 + 4y 2 4x 4m+1 }

Zadanie 01 Zaznacz w układzie współrzędnych zbiory : A = { (x, y) ; x R i y R i x + y 1 } oraz. B m = { (x, y) ; x R i y R i 4x 2 + 4y 2 4x 4m+1 } Zadanie 0 Zaznacz w układzie współrzędnych zbiory : A = { (x, y) ; x R i y R i x + y } oraz B = { (x, y) ; x R i y R i 4x + 4y 4x 5 } Zaznacz osobno zbiór B-A ( ) Niech m N. Oznaczmy zbiory : A m = { (x,

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 142395 WYGENEROWANY AUTOMATYCZNIE W SERWISIE ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Które z podanych

Bardziej szczegółowo

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 209 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 7 maja 209 r.

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 18 KWIETNIA 2015 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Dla każdej liczby

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP WOJEWÓDZKI

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP WOJEWÓDZKI Kod ucznia - - pieczątka WKK Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP WOJEWÓDZKI Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj uważnie

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ KOD ZDAJĄCEGO WPISUJE ZDAJĄCY symbol klasy symbol zdającego PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ MATEMATYKA-POZIOM PODSTAWOWY dysleksja Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

Zagadnienia na powtórzenie

Zagadnienia na powtórzenie Zagadnienia na powtórzenie TERESA ZIEGLER IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Zaznacz takie dokończenie zdania, aby otrzymać zdanie prawdziwe. Sześcian przecięto płaszczyzną zawierającą dwie równoległe

Bardziej szczegółowo

Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 6

Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 6 Dydaktyka matematyki (III etap edukacyjny) IV rok matematyki Semestr letni 2017/2018 Ćwiczenia nr 6 Lang: Długość okręgu. pole pierścienia będę chciał znaleźć inne wyrażenie na pole pierścienia. oszacowanie

Bardziej szczegółowo

Zadania z treścią na ekstrema funkcji

Zadania z treścią na ekstrema funkcji Zadania z treścią na ekstrema funkcji Zad. 1: W trójkąt równoramienny, którego boki zawierają się w prostych: AB o równaniu y =, AC o równaniu x y + 1 = 0 i BC o równaniu x + y 6 = 0, wpisano równoległobok

Bardziej szczegółowo

Równania prostych i krzywych; współrzędne punktu

Równania prostych i krzywych; współrzędne punktu Równania prostych i krzywych; współrzędne punktu Zad 1: Na paraboli o równaniu y = 1 x znajdź punkt P leŝący najbliŝej prostej o równaniu x + y = 0 Napisz równanie stycznej do tej paraboli, poprowadzonej

Bardziej szczegółowo

Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10

Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10 Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10, ACE = 60, ADB = 40 i BEC = 20. Oblicz miarę kąta CAD. B C A D E Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 3

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM ROZSZERZONY 8 KWIETNIA 2017 CZAS PRACY: 180 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Funkcja f określona

Bardziej szczegółowo

Temat lekcji Zakres treści Osiągnięcia uczeń: I. FUNKCJE 14

Temat lekcji Zakres treści Osiągnięcia uczeń: I. FUNKCJE 14 I. FUNKCJE 1 Podstawowe Ponadpodstawowe grupuje dane elementy w zbiory ze względu na wspólne cechy wymienia elementy zbioru rozpoznaje funkcje wśród przyporządkowa opisanych słownie lub za pomocą grafu

Bardziej szczegółowo

Skrypt 19. Bryły. 14. Zastosowanie twierdzenia Pitagorasa do obliczania pól powierzchni ostrosłupów

Skrypt 19. Bryły. 14. Zastosowanie twierdzenia Pitagorasa do obliczania pól powierzchni ostrosłupów Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 19 Bryły 11. Ostrosłupy - rozpoznawanie,

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 22 KWIETNIA 2017 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 2 8 7 3 6 7

Bardziej szczegółowo

Oto przykłady przedmiotów, które są bryłami obrotowymi.

Oto przykłady przedmiotów, które są bryłami obrotowymi. 1.3. Bryły obrotowe. Walec W tym temacie dowiesz się: co to są bryły obrotowe, jak rozpoznawać walce wśród innych brył, jak obliczać pole powierzchni bocznej i pole powierzchni całkowitej walca, jak obliczać

Bardziej szczegółowo

1 Odległość od punktu, odległość od prostej

1 Odległość od punktu, odległość od prostej 24 Figury geometryczne 2 Figury geometryczne 1 Odległość od punktu, odległość od prostej P 1. Odległość punktu K od prostej p jest równa 4 cm. Który z odcinków ma długość równą 4 cm? K p A B C D A. AK

Bardziej szczegółowo

W(x) = Stopień wielomianu jest równy: A. B. C. D. A. B. C. D.

W(x) = Stopień wielomianu jest równy: A. B. C. D. A. B. C. D. Zadanie 9. (1 pkt.) (Czerwiec 014) Dane są wielomiany: x, P(x) = x 3 + x, Q(x) = (1 x)(x + 1) W(x) = 1 W(x) P(x) Q(x). Stopień wielomianu jest równy: 3 6 7 1 Zadanie 10. (1 pkt.) (Czerwiec 014) Pierwsza

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY (TECHNIKUM) 4 MARCA 205 CZAS PRACY: 70 MINUT Zadania zamknięte ZADANIE ( PKT) Liczba 3 25 2 : 5

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dyskalkulia dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY

Bardziej szczegółowo

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI MATERIAŁ ĆWICZENIOWY Z MATEMATYKI STYCZEŃ 0 POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 0 stron.. W zadaniach od. do 0. są podane odpowiedzi: A, B, C, D,

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy III gimnazjum

Wymagania edukacyjne z matematyki dla klasy III gimnazjum Wymagania edukacyjne z matematyki dla klasy III gimnazjum Poziomy wymagań edukacyjnych: K konieczny dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je zatem opanować każdy

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 5 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 5 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 01 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę Instrukcja dla zdającego EGZAMIN MATURALNY Z MATEMATYKI

Bardziej szczegółowo

Próbna matura z WSiP Marzec 2017 Egzamin maturalny z matematyki dla klasy 3 Poziom podstawowy

Próbna matura z WSiP Marzec 2017 Egzamin maturalny z matematyki dla klasy 3 Poziom podstawowy Wypełnia uczeń PESEL Kod ucznia Próbna matura z WSiP Marzec 07 Egzamin maturalny z matematyki dla klasy Poziom podstawowy Informacje dla ucznia. Sprawdź, czy zestaw egzaminacyjny zawiera stron. Ewentualny

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 142033 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Pole trójkata

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ WPISUJE ZDAJĄCY KOD IMIĘ I NAZWISKO * * nieobowiązkowe PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ MATEMATYKA-POZIOM PODSTAWOWY dysleksja Instrukcja dla zdającego. Sprawdź, czy arkusz egzaminacyjny zawiera 22

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dyskalkulia dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY

Bardziej szczegółowo

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 017 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 5 maja 017 r.

Bardziej szczegółowo

POWTÓRZENIE WIADOMOŚCI Z TRYGONOMETRII

POWTÓRZENIE WIADOMOŚCI Z TRYGONOMETRII Zad.1 Rozwiąż trójkąt prostokątny: a) a 4, 0 b) b 8, c 1 POWTÓRZENIE WIADOMOŚCI Z TRYGONOMETRII Zad. Oblicz wartość wyrażenia cos 0 cos 45 cos0 cos 45. Zad.4 Wyznacz długości przyprostokątnych trójkąta

Bardziej szczegółowo

MATEMATYKA - WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY

MATEMATYKA - WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA - WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KLASA III GIMNAZJUM Wymagania konieczne (K) dotyczą zagadnień elementarnych, podstawowych; powinien je opanować każdy uczeń. Wymagania podstawowe

Bardziej szczegółowo

Matura 2014 z WSiP Arkusz egzaminacyjny z matematyki Poziom podstawowy

Matura 2014 z WSiP Arkusz egzaminacyjny z matematyki Poziom podstawowy Wypełnia uczeń Numer PESEL Kod ucznia Matura 0 z WSiP Arkusz egzaminacyjny z matematyki Poziom podstawowy Informacje dla ucznia. Sprawdź, czy zestaw egzaminacyjny zawiera stron. Ewentualny brak stron lub

Bardziej szczegółowo

ZADANIA PRZYGOTOWUJĄCE DO SPRAWDZIANÓW W KLASIE TRZECIEJ.

ZADANIA PRZYGOTOWUJĄCE DO SPRAWDZIANÓW W KLASIE TRZECIEJ. ZADANIA PRZYGOTOWUJĄCE DO SPRAWDZIANÓW W KLASIE TRZECIEJ. I. Kombinatoryka i rachunek prawdopodobieństwa ) Ile liczb pięciocyfrowych można utworzyć, wykorzystując wszystkie cyfry liczby 476? ) Pięciu przyjaciół

Bardziej szczegółowo

GEOMETRIA PRZESTRZENNA (STEREOMETRIA)

GEOMETRIA PRZESTRZENNA (STEREOMETRIA) GEOMETRIA PRZESTRZENNA (STEREOMETRIA) WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. Na początek omówimy

Bardziej szczegółowo

Planimetria VII. Wymagania egzaminacyjne:

Planimetria VII. Wymagania egzaminacyjne: Wymagania egzaminacyjne: a) korzysta ze związków między kątem środkowym, kątem wpisanym i kątem między styczną a cięciwą okręgu, b) wykorzystuje własności figur podobnych w zadaniach, w tym umieszczonych

Bardziej szczegółowo

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Marzec 015 POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

KURS MATURA PODSTAWOWA Część 2

KURS MATURA PODSTAWOWA Część 2 KURS MATURA PODSTAWOWA Część 2 LEKCJA 7 Planimetria ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Kąt na poniższym rysunku ma miarę:

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 17 MARCA 2012 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) Który z zaznaczonych

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY (TECHNIKUM) 7 MARCA 2015 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) ( 5 Liczba

Bardziej szczegółowo

Matematyka podstawowa VII Planimetria Teoria

Matematyka podstawowa VII Planimetria Teoria Matematyka podstawowa VII Planimetria Teoria 1. Rodzaje kątów: a) Kąty wierzchołkowe; tworzą je dwie przecinające się proste, mają takie same miary. b) Kąty przyległe; mają wspólne jedno ramię, ich suma

Bardziej szczegółowo