Procesy Stochastyczne - Zestaw 1

Wielkość: px
Rozpocząć pokaz od strony:

Download "Procesy Stochastyczne - Zestaw 1"

Transkrypt

1 Procesy Stochastyczne - Zestaw 1 Zadanie 1 Niech ξ i η bed a niezależnymi zmiennymi losowymi o rozk ladach N (0, 1). Niech X = ξ +η i Y = ξ η. Znaleźć rozk lad (X, Y ) i rozk lad warunkowy L X ( Y ). Zadanie Niech ξ i η bed a niezależnymi zmiennymi losowymi o rozk ladach N (0, 1). Niech X = ξ + η i Y = ξ η. Znaleźć rozk lad (X, Y ) i rozk lad warunkowy L X ( Y ). Zadanie 3 Rzucamy 10 razy symetryczna moneta. Niech X oznacza liczbe or lów a Y liczbe or lów w pierwszych czterech rzutach. Policzyć E(X Y ). Ile wynosi σ(y )? Zadanie 4 Niech Ω = 1,,..., 10}. Znaleźć σ(1,, 3}, 3, 4, 5}, 4, 6}). Zadanie 5 Niech Ω = [0, 1] [0, 1] i niech P = dxdy bedzie miara Lebesgue a. Niech X(x, y) = x i Y (x, y) = y. Policzyć E (f(x, Y ) G) gdy (i) f(x, y) = x, G = σ(y ). (ii) f(x, y) = x y, G = σ(y ). (iii) f(x, y) = x y, G = σ(x + Y ). Zadanie 6 Niech (Ω, F, P) bedzie przestrzenia probabilistyczna. Dla A, B F policzyć E(χ A χ B ). Zadanie 7 Znaleźć E (X Y ) gdy Ω = [0, 1], P = dx, a X(x) = x i x x 1/, Y (x) = x 1, x (1/, 1]. Zadanie 8 Niech Ω = [0, 1] i niech P = dx. Znaleźć E (X Y ) gdy X(x) = x, gdy x [0, 1/), Y (x) = x gdy x [1/, 1]. Zadanie 9 Niech Ω = [0, 1] i niech P = dx. Znaleźć E (X Y ) gdy X(x) = x, Y (x) = 1 x 1. 1

2 Zadanie 10 Niech Ω = [0, 1] i niech P = dx. Znaleźć E (X G) gdy (i) X(x) = x, G = σ([0, 1/4), [1/4, 1]), (ii) X(x) = x, G = σ([0, 1/], (1/3, 1]). Zadanie 11 Na Ω = [0, 1] rozważmy σ-cia lo zbiorów borelowskich i miar e Lebesgue a. Znaleźć E(X Y ) gdy: (i) X(x) = x + 1, a (ii) X(x) = x 1, a 1 dla x [0, 1/3), Y (x) = dla x [1/3, /3), 0 dla x [/3, 1]. 10 dla x [0, 1/), Y (x) = dla x [1/, /3), 0 dla x [/3, 1]. Zadanie 1 Na Ω = [0, 1] rozważmy σ-cia lo zbiorów borelowskich i miare Lebesgue a. Niech Y (x) = x(1 x). Pokazać, że dla dowolnej ca lkowalnej zmiennej losowej X, X(x) + X(1 x) E(X Y )(x) =, x Ω. Zadanie 13 Z taśmy produkcyjnej wysz lo n-produktów. Produkt jest wadliwy z prawdopodobieństwem p. Kontrola jakości z prawdopodobieństwem p wykrywa wadliwy produkt. Niech X oznacza liczb e wadliwych produktów, a Y liczb e produktów, które zosta ly wykryte jako wadliwe. Policzyć E (X Y ). Zadanie 14 Za lóżmy, że w populacji n osób prawdopodobieństwo zachorowania na dana chorobe wynosi p. Do badania na wystepowania choroby stosuje sie test medyczny, który z prawdopodobieństwem 1 q 1 daje wynik negatywny gdy badana osoba jest zdrowa, a z prawdopodobieństwem q daje wynik negatywny gdy badana osoba jest chora. Zak ladamy, że p, q 1, q (0, 1). Niech X oznacza liczbe osób chorych, a Y osób z pozytywnym wynikiem testu. Policzyć E (X Y ). Zadanie 15 Niech X 1,..., X 5 bed a niezależnymi zmienymi losowymi o rozk ladzie wyk ladniczym z porametrem 1. Niech Y = χ [3,+ ] (X 1 ) oraz T = X X 5. Policzyć E (Y T = 5).

3 Zadanie 16 Sasiadka upiek la placek, którego zjedzenie wiecej niż po lowy powoduje niestrawność. Najpierw jej najstarszy syn wzia l sobie kawa lek a nastepnie m lodszy syn odkroi l sobie troche z tego co zosta lo. Zak ladamy, że wielkość porcji jest losowa i ma rozk lad jednostajny po tym co jest dostepne, policzyć wartość oczekiwana rozmiaru placka, który pozosta l przy za lożeniu, że żaden z synów nie zachorowa l. Co by loby gdyby synowie przyszli równocześnie? W którym przypadku zosta loby wiecej ciasta dla Ojca? Zadanie 17 Niech X i Y bed a zmiennymi losowymi określonymi na tej samej przestrzeni probabilistycznej. Uzasadnić, że dla dowolnego y, E(X Y = y) zależy tylko od rozk ladu l acznego wektora losowego (X, Y ). Czy to samo można powiedzieć o E(X Y )? Zadanie 18 Niech X i Y bed a niezależnymi ca lkowalnymi z kwardatem zmiennymi losowymi. Za lóżmy, że rozk lady X i Y sa symetryczne, to znaczy, że rozk lad X jest ten sam jak rozk lad X i rozk lad Y jest ten sam jak rozk lad Y. Pokazać, że E ((X + Y ) X + Y ) = X + Y. Zadanie 19 Na Ω = [0, 1] [0, 1] rozważmy σ-cia lo zbiorów borelowskich i miare Lebesgue a dxdy. Za lóżmy, że wektor losowy (X, Y ) ma gestość x + y, (x, y) Ω, ρ(x, y) = 0, (x, y) Ω. Policzyć E(X Y ). Zadanie 0 Na Ω = [0, 1] [0, 1] rozważmy σ-cia lo zbiorów borelowskich i miare Lebesgue a dxdy. Za lóżmy, że wektor losowy (X, Y ) ma gestość 3 ρ(x, y) = (x + y ), (x, y) Ω, 0, (x, y) Ω. Policzyć E(X Y ). Zadanie 1 Na Ω = (x, y) R : x + y 1} rozważmy σ-cia lo zbiorów borelowskich i znormalizowana miare Lebesgue a, to jest P(A) = 1 dxdy, A B(Ω). π A Niech X i Y bed a projekcjami na osie uk ladów wspó lrzednych. Policzyć E(X Y ) oraz E(X Y ). 3

4 Zadanie Niech X i Y bed a niezależnymi zmiennymi losowymi ca lkowalnymi o tym samym rozk ladzie. Policzyć E(X X + Y ). Zadanie 3 Niech (X k ) ciag niezależnych zmiennych losowych ca lkowalnych o tym samym rozk ladzie. Pokazać, że E (X 1 X X n ) = 1 n (X X n ). Zadanie 4 Niech X i Y bed a niezależnymi zmiennymi losowymi. Niech f : R R bedzie takie, że E f(x, Y ) <. Pokazać, że E (f(x, Y ) Y = y) = Ef(X, y). Zadanie 5 Niech (X n ) bedzie ciagiem niezależnych zmiennych losowych ca lkowalnych o tym samym rozk ladzie. Niech Policzyć E(X 1 G n ). S n = X X n, G n = σ(s n, S n+1,...). Zadanie 6 Niech X i Y bed a niezależnymi ca lkowalnymi zmiennymi losowymi o tym samym rozk ladzie µ. Policzyć dla dwóch różnych µ. E ( X X + Y ) Zadanie 7 Znaleźć E(X Y ) gdy (X, Y ) ma rozk lad z gestości a: g(x, y) = λ e λx dla 0 x y < i 0 w przeciwnym przypadku, g(x, y) = xe x(y+1) dla x, y 0 i 0 w przeciwnym przypadku. Zadanie 8 Niech X, Y, Z bed a niezależnymi zmiennymi losowymi o rozk ladzie wyk ladniczym z parametrami λ X, λ Y, λ Z. Policzyć P (X < Y < Z). Zadanie 9 Niech (X, Y ) ma rozk lad l aczny o gestości cx(y x)e y dla 0 x y <, g(x, y) = 0 w przeciwnym przypadku. 4

5 Znaleźć parametr c. Pokazać, że dla 0 x y <, f X Y (x y) = 6x(y x)y 3, f Y X (y x) = (y x)e x y. Wywnioskować, że E(X Y ) = 1 Y i E(Y X) = X +. Zadanie 30 Niech θ i ρ oznaczaja d lugość i szerogość geograficzna losowo wybranego punktu sfery jednostkowej. Policzyć E(θ ρ) i E(ρ θ). Zadanie 31 Niech X i Y bed a niezależnymi zmiennymi losowymi o tym samym rozk ladzie N (µ, 1) gdzie µ R jest zadane. Znaleźć rozk lad warunkowy wektora losowego (X, Y ) wzgledem X + Y. Zadanie 3 Niech (Ω, F, P) bedzie przestrzenia probabilistyczna, G niech bedzie pod-σ-cia lem F, a X zmienna losowa na (Ω, F, P). Jeżeli EX <, to możemy zdefiniować warunkowa wariancje Var (X G) = E ( (X E (X G)) G ). Udowodnić, że Var X = E (Var (X G)) + Var (E (X G)). Zadanie 33 Niech (Ω, F, P) bedzie przestrzenia probabilistyczna, niech G bedzie pod-σ-cia lem F, a H niech bedzie pod-σ-cia lem G. Pokazać, że dla dowolnej zmiennej X spe lniajacej E X < zachodzi E X E (X H) E X E (X G). Zadanie 34 Niech (Ω, F, P) bedzie przestrzenia probabilistyczna, a niech G bedzie pod-σ-cia lem F. Udowodnić nastepuj ac a wersje twierdzenia Bayesa: P (A G) dp P (B A) = B, A F, B G. P (A G) dp Ω Zadanie 35 Niech (Ω, F, P) bedzie przestrzenia probabilistyczna, niech G bedzie pod-σ-cia lem F, a X zmenna losowa na (Ω, F, P) ca lkowalna. Niech ρ 0 bedzie zmienna losowoa na (Ω, F, P) taka, że E ρ = 1 i niech Q oznacza prawdopodobieństwo na (Ω, F) dane wzorem Q(A) = ρdp, A F. A 5

6 Oznaczmy przez E (X G) warunkowa wartość oczekiwana X wzgledem G ze wzgledu na prawdopodobieństwo Q. Udowodnić nastepuj ac a wersje twierdzenia Bayesa: E (X G) = E (ρx G) E (ρ G). Zadanie 36 Niech Ω = [0, π], F = B([0, π]), oraz P = αdx. Wyznaczyć α dla którego P jest miara probabilistyczna. Policzyć E (X Y ) gdy X(ω) = sin ω a Y (ω) = cos ω. 6

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Rachunek prawdopodobieństwa MAP1181 Wydział PPT, MS, rok akad. 213/14, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

1 Zmienne losowe wielowymiarowe.

1 Zmienne losowe wielowymiarowe. 1 Zmienne losowe wielowymiarowe. 1.1 Definicja i przykłady. Definicja1.1. Wektorem losowym n-wymiarowym(zmienna losowa n-wymiarowa )nazywamywektorn-wymiarowy,któregoskładowymisązmiennelosowex i dlai=1,,...,n,

Bardziej szczegółowo

Rachunek prawdopodobieństwa - Teoria - Przypomnienie.. A i B są niezależne, gdy P(A B) = P(A)P(B). P(A B i )P(B i )

Rachunek prawdopodobieństwa - Teoria - Przypomnienie.. A i B są niezależne, gdy P(A B) = P(A)P(B). P(A B i )P(B i ) Rachunek prawdopodobieństwa - Teoria - Przypomnienie Podstawy Definicja 1. Schemat klasyczny - wszystkie zdarzenia elementarne są równo prawdopodobne, licząc prawdopodobieństwo liczymy stosunek liczby

Bardziej szczegółowo

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl Statystyka Opisowa z Demografią oraz Biostatystyka Zmienne losowe Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka p.

Bardziej szczegółowo

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Rachunek prawdopodobieństwa MAP3040 WPPT FT, rok akad. 2010/11, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Warunkowa wartość oczekiwana.

Bardziej szczegółowo

Wprowadzenie z dynamicznej optymalizacji

Wprowadzenie z dynamicznej optymalizacji Wprowadzenie z dynamicznej optymalizacji Lukasz Woźny 29 kwietnia 2007 Spis treści 1 Optymalizacja statyczna a optymalizacja dynamiczna 2 1.1 Ekstrema lokalne funkcji wielu zmiennych - statyka...... 2

Bardziej szczegółowo

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 5 Kalkulacja sk ladki netto I

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 5 Kalkulacja sk ladki netto I Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 5 Kalkulacja sk ladki netto I 1 Kodeks cywilny Tytu l XXVII, Umowa ubezpieczenia Dzia l I. Przepisy ogólne Dzia l II. Ubezpieczenia majatkowe

Bardziej szczegółowo

Diagramy Venna. Uwagi:

Diagramy Venna. Uwagi: Wykład 3: Prawdopodobieństwopodstawowe pojęcia i modele Często modelujemy zmienność używając rachunku prawdopodobieństwa. Prawdopodobieństwo opadów deszczu wynosi 80%. (zinterpretuj) Prawdopodobieństwo

Bardziej szczegółowo

celu przyjmijmy: min x 0 = n t Zadanie transportowe nazywamy zbilansowanym gdy podaż = popyt, czyli n

celu przyjmijmy: min x 0 = n t Zadanie transportowe nazywamy zbilansowanym gdy podaż = popyt, czyli n 123456789 wyk lad 9 Zagadnienie transportowe Mamy n punktów wysy lajacych towar i t punktów odbierajacych. Istnieje droga od każdego dostawcy do każdego odbiorcy i znany jest koszt transportu jednostki

Bardziej szczegółowo

Dyskretne modele populacji

Dyskretne modele populacji Dyskretne modele populacji Micha l Machtel Adam Soboczyński 19 stycznia 2007 Typeset by FoilTEX Dyskretne modele populacji [1] Wst ep Dyskretny opis modelu matematycznego jest dobry dla populacji w których

Bardziej szczegółowo

Dyskretne modele populacji

Dyskretne modele populacji Dyskretne modele populacji Micha l Machtel Adam Soboczyński 17 stycznia 2007 Typeset by FoilTEX Dyskretne modele populacji [1] Wst ep Dyskretny opis modelu matematycznego jest dobry dla populacji w których

Bardziej szczegółowo

Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm

Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm 1 Grupa ilorazowa Niech H b edzie dzielnikiem normalnym grupy G. Oznaczmy przez G/H zbiór wszystkich warstw lewostronnych grupy G wzgl edem podgrupy

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

Grupy i cia la, liczby zespolone

Grupy i cia la, liczby zespolone Rozdzia l 1 Grupy i cia la, liczby zespolone Dla ustalenia uwagi, b edziemy używać nast epuj acych oznaczeń: N = { 1, 2, 3,... } - liczby naturalne, Z = { 0, ±1, ±2,... } - liczby ca lkowite, W = { m n

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa I - 1. a) Jacek i Agatka stoją koło siebie; b) Jacek, Placek i Agatka stoją koło siebie.

Zadania z Rachunku Prawdopodobieństwa I - 1. a) Jacek i Agatka stoją koło siebie; b) Jacek, Placek i Agatka stoją koło siebie. Zadania z Rachunku Prawdopodobieństwa I - 1 1. Grupę n dzieci ustawiono w sposón losowy w szereg. Oblicz prawdopodobieństwo tego, że a) Jacek i Agatka stoją koło siebie; b) Jacek, Placek i Agatka stoją

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli

Bardziej szczegółowo

Przegląd ważniejszych rozkładów

Przegląd ważniejszych rozkładów Przegląd ważniejszych rozkładów Rozkład dwupunktowy P (X = x) = { p dla x = a, 1 p dla x = b, to zmienna losowa X ma rozkład dwupunktowy z parametrem p (0 < p < 1). Rozkład ten pojawia się przy opisie

Bardziej szczegółowo

Generatory takie mają niestety okres, po którym sekwencja liczb powtarza się.

Generatory takie mają niestety okres, po którym sekwencja liczb powtarza się. 1 Wstęp Będziemyrozważaćgeneratorytypux n+1 =f(x n,x n 1,...,x n k )(modm). Zakładamy,żeargumentamifunkcjifsąliczbycałkowitezezbioru0,1,...,M 1. Dla ustalenia uwagi mogą to być generatory liniowe typu:

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA A.

RACHUNEK PRAWDOPODOBIEŃSTWA A. RACHUNEK PRAWDOPODOBIEŃSTWA A. Semestr letni 2014. Poniedziałki 12:15-15:00, sala HS. Wykładowca: Ryszard Szekli, pok. 514, konsultacje: poniedziałki 10-12, terminy egzaminów: I termin 18.06.2014, (ŚRODA)

Bardziej szczegółowo

Wst ep do sterowania stochastycznego i teorii filtracji

Wst ep do sterowania stochastycznego i teorii filtracji S. Peszat, J. Zabczyk Wstep do sterowania stochastycznego i teorii filtracji 28 października 2008 Spis treści 1 Wst ep..................................................... 1 1.1 Przyk lady..............................................

Bardziej szczegółowo

Rozkłady dwóch zmiennych losowych

Rozkłady dwóch zmiennych losowych Rozkłady dwóch zmiennych losowych Uogólnienie pojęć na rozkład dwóch zmiennych Dystrybuanta i gęstość prawdopodobieństwa Rozkład brzegowy Prawdopodobieństwo warunkowe Wartości średnie i odchylenia standardowe

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna dla kierunku Zarządzanie na studiach drugiego stopnia Wojciech Kordecki Wyższa Szkoła Handlowa we Wrocławiu Wrocław 2012 Materiał wyłącznie do użytku edukacyjnego. Reprodukcja do

Bardziej szczegółowo

Wykład 2. Wpływ stałej (odejmujemy 20) Liniowa transformacja zmiennych, cd. Liniowa transformacja zmiennych, cd. Liniowa transformacja zmiennych, cd.

Wykład 2. Wpływ stałej (odejmujemy 20) Liniowa transformacja zmiennych, cd. Liniowa transformacja zmiennych, cd. Liniowa transformacja zmiennych, cd. Wykład 2 Wpływ przekształceń Co się stanie ze średnią i odchyleniem standardowym gdy zmienimy jednostki? stopnie Celsiusza stopnie Fahrenheita dolary 1,000 dolarów wartość faktyczna odległość od minimum

Bardziej szczegółowo

4 Kilka klas procesów

4 Kilka klas procesów Marek Beśka, Całka Stochastyczna, wykład 4 48 4 Kilka klas procesów 4.1 Procesy rosnące i przestrzenie V,, loc Jak poprzednio niech (Ω, F, F, P ) będzie zupełną bazą stochastyczną. Definicja 4.1 Proces

Bardziej szczegółowo

Siedem wykładów wprowadzających do statystyki matematycznej

Siedem wykładów wprowadzających do statystyki matematycznej RYSZARD ZIELIŃSKI Siedem wykładów wprowadzających do statystyki matematycznej Zadania zweryfikowała oraz wskazówkami i rozwiązaniami uzupełniła Agata Boratyńska WARSZAWA 2004 Siedem wykładów wprowadzających

Bardziej szczegółowo

O ŚREDNIEJ STATYSTYCZNEJ

O ŚREDNIEJ STATYSTYCZNEJ O ŚREDNIEJ STATYSTYCZNEJ Ryszard Zieliński XII Międzynarodowe Warsztaty dla Młodych Matematyków Rachunek Prawdopodobieństwa i Statystyka Kraków, 20 26 IX 2009 r. WYNIKI OBSERWACJI X 1, X 2,..., X n WYNIKI

Bardziej szczegółowo

Twierdzenie spektralne

Twierdzenie spektralne Twierdzenie spektralne Algebrę ograniczonych funkcji borelowskich na K R będziemy oznaczać przez B (K). Spektralnym rozkładem jedności w przestrzeni Hilberta H nazywamy odwzorowanie, które każdemu zbiorowi

Bardziej szczegółowo

Definicje zależności. Kopuły w matematyce finansowej. Aleksandra Kantowska

Definicje zależności. Kopuły w matematyce finansowej. Aleksandra Kantowska Definicje zależności. Kopuły w matematyce finansowej. Aleksandra Kantowska 18.06.2014 Spis treści Wstęp 2 1 Funkcja kopuła 4 1.1 Podstawowe pojęcia................................... 4 1.2 Pochodne kopuł......................................

Bardziej szczegółowo

Statystyczna analiza danych

Statystyczna analiza danych Statystyczna analiza danych Marek Ptak 21 października 2013 Marek Ptak Statystyka 21 października 2013 1 / 70 Część I Wstęp Marek Ptak Statystyka 21 października 2013 2 / 70 LITERATURA A. Łomnicki, Wprowadzenie

Bardziej szczegółowo

A = {dostęp do konta} = {{właściwe hasło,h 2, h 3 }} = 0, 0003. (10 4 )! 2!(10 4 3)! 3!(104 3)!

A = {dostęp do konta} = {{właściwe hasło,h 2, h 3 }} = 0, 0003. (10 4 )! 2!(10 4 3)! 3!(104 3)! Rachunek prawdopodobieństwa MAP34, WPPT/FT, wykład dr hab. A. Jurlewicz Przykłady - Lista nr : Przestrzeń probabilistyczna. Prawdopodobieństwo klasyczne. Prawdopodobieństwo geometryczne.. Hasło potrzebne

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa - seria 1. 3. Z 24 kart wybieramy 5. Jaka jest szansa, że otrzymamy fulla? Jaka jest szansa, że otrzymamy

Zadania z Rachunku Prawdopodobieństwa - seria 1. 3. Z 24 kart wybieramy 5. Jaka jest szansa, że otrzymamy fulla? Jaka jest szansa, że otrzymamy Zadania z Rachunku Prawdopodobieństwa - seria 1 1. (rozgrzewka) Na przyjęciu urodzinowym jest n dzieci i n prezentów (przy czym każdy prezent jest inny). Na ile sposobów można rozdać prezenty dzieciom

Bardziej szczegółowo

166 Wstȩp do statystyki matematycznej

166 Wstȩp do statystyki matematycznej 166 Wstȩp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwi azać nasz zasadniczy problem zwi azany z identyfikacj a cechy populacji generalnej

Bardziej szczegółowo

Metoda mnożników Lagrange a i jej zastosowania w ekonomii

Metoda mnożników Lagrange a i jej zastosowania w ekonomii Maciej Grzesiak Metoda mnożników Lagrange a i jej zastosowania w ekonomii 1 Metoda mnożników Lagrange a znajdowania ekstremum warunkowego Pochodna kierunkowa i gradient Dla prostoty ograniczymy się do

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 4 Prawdopodobieństwo całkowite i twierdzenie Bayesa. Drzewko stochastyczne. Schemat Bernoulliego. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź

Bardziej szczegółowo

Dokumentacja do programu Pasieka 2004

Dokumentacja do programu Pasieka 2004 Dokumentacja do programu Pasieka 2004 Stanis law Stachura 13 grudnia 2003 Spis treści 1 Instalacja programu 2 2 Organizacja pasieki 2 2.1 Zarzadzanie ulami............................... 2 2.2 Likwidacja/reaktywacja

Bardziej szczegółowo

Zadania z matematyki dla geografów

Zadania z matematyki dla geografów Zadania z matematyki dla geografów 1 Literatura podre czniki i zadania Adam Lomnicki - Wprowadzenie do statystyki dla przyrodników ( latwe w czytaniu) Mieczys law Sobczyk Statystyka (PWN 2004, dużo wie

Bardziej szczegółowo

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami:

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Pr(X 1 = 0) = 6/10, Pr(X 1 = 1) = 1/10, i gęstością: f(x) = 3/10 na przedziale (0, 1). Wobec tego Pr(X 1 + X 2 5/3) wynosi:

Bardziej szczegółowo

Jeden przyk lad... czyli dlaczego warto wybrać MIESI.

Jeden przyk lad... czyli dlaczego warto wybrać MIESI. Jeden przyk lad... czyli dlaczego warto wybrać MIESI. Micha l Ramsza Szko la G lówna Handlowa Micha l Ramsza (Szko la G lówna Handlowa) Jeden przyk lad... czyli dlaczego warto wybrać MIESI. 1 / 13 Dlaczego

Bardziej szczegółowo

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Równania różniczkowe pierwszego rzędu Równaniem różniczkowym zwyczajnym pierwszego rzędu nazywamy równanie postaci (R) y = f(x, y). Najogólniejszą

Bardziej szczegółowo

Zastosowanie Robotów. Ćwiczenie 6. Mariusz Janusz-Bielecki. laboratorium

Zastosowanie Robotów. Ćwiczenie 6. Mariusz Janusz-Bielecki. laboratorium Zastosowanie Robotów laboratorium Ćwiczenie 6 Mariusz Janusz-Bielecki Zak lad Informatyki i Robotyki Wersja 0.002.01, 7 Listopada, 2005 Wst ep Do zadań inżynierów robotyków należa wszelkie dzia lania

Bardziej szczegółowo

Zagadnienie Keplera F 12 F 21

Zagadnienie Keplera F 12 F 21 Zagadnienie Keplera To zagadnienie bedzie potraktowane bardzo skrótowo i planuje podanie w tym miejscu jedynie podstawowych informacji. Zagadnienie Keplera jest dyskutowane w każdym podreczniku mechaniki.

Bardziej szczegółowo

Krzysztof Kolanek ADAPTACYJNYCH METOD SYMULACYJNYCH

Krzysztof Kolanek ADAPTACYJNYCH METOD SYMULACYJNYCH INSTYTUT PODSTAWOWYCH PROBLEMÓW TECHNIKI PAN Krzysztof Kolanek ANALIZA I OPTYMALIZACJA NIEZAWODNOŚCIOWA KONSTRUKCJI ZA POMOCA ADAPTACYJNYCH METOD SYMULACYJNYCH Praca doktorska Promotor - prof. dr hab.

Bardziej szczegółowo

Strategie zabezpieczaj ce

Strategie zabezpieczaj ce 04062008 Plan prezentacji Model binarny Model Black Scholesa Bismut- Elworthy -Li formuła Model binarny i opcja call Niech cena akcji w chwili pocz tkowej wynosi S 0 = 21 Zaªó»my,»e ceny akcji po trzech

Bardziej szczegółowo

Interfejs GSM/GPRS LB-431

Interfejs GSM/GPRS LB-431 LAB-EL Elektronika Laboratoryjna ul. Herbaciana 9, 05-816 Regu ly Witryna: http://www.label.pl/ Poczta: info@label.pl Tel. (22) 753 61 30, Fax (22) 753 61 35 Interfejs GSM/GPRS LB-431 modem LWA Instrukcja

Bardziej szczegółowo

Mikro II: Popyt, Preferencje Ujawnione i Równanie S luckiego

Mikro II: Popyt, Preferencje Ujawnione i Równanie S luckiego Mikro II: Popyt, Preferencje Ujawnione i Równanie S luckiego Krzysztof Makarski 6 Popyt Wstep Przypomnijmy: Podstawy teoria konsumenta. Zastosowanie wszedzie. W szczególności poszukiwanie informacji zawartych

Bardziej szczegółowo

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 6 Kalkulacja sk ladki netto II. Funkcje komutacyjne.

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 6 Kalkulacja sk ladki netto II. Funkcje komutacyjne. Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 6 Kalkulacja sk ladki netto II. Funkcje komutacyjne. 1 Przypomnienie Umowa ubezpieczenia zawiera informacje o: Przedmiocie ubezpieczenia Czasie

Bardziej szczegółowo

Wykład 9: Markov Chain Monte Carlo

Wykład 9: Markov Chain Monte Carlo RAP 412 17.12.2008 Wykład 9: Markov Chain Monte Carlo Wykładowca: Andrzej Ruciński Pisarz: Ewelina Rychlińska i Wojciech Wawrzyniak Wstęp W tej części wykładu zajmiemy się zastosowaniami łańcuchów Markowa

Bardziej szczegółowo

Agata Boratyńska. (II rok ekonomii) UWAGA: Jeśli w zadaniu nie podano innej definicji, to przyja ć: X =

Agata Boratyńska. (II rok ekonomii) UWAGA: Jeśli w zadaniu nie podano innej definicji, to przyja ć: X = 1 Agata Boratyńska ZADANIA NA ĆWICZENIA ZE STATYSTYKI MATEMATYCZNEJ (II rok ekonomii) UWAGA: Jeśli w zadaniu nie podano innej definicji, to przyja ć: X = 1 n Σn i=1x i, S 2 = 1 n 1 Σn i=1(x i X) 2, n oznacza

Bardziej szczegółowo

Wstęp do analitycznych i numerycznych metod wyceny opcji

Wstęp do analitycznych i numerycznych metod wyceny opcji Wstęp do analitycznych i numerycznych metod wyceny opcji Jan Palczewski Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Warszawa, 16 maja 2008 Jan Palczewski Wycena opcji Warszawa, 2008

Bardziej szczegółowo

Metoda Monte Carlo i jej zastosowania

Metoda Monte Carlo i jej zastosowania i jej zastosowania Tomasz Mostowski Zajęcia 31.03.2008 Plan 1 PWL 2 3 Plan PWL 1 PWL 2 3 Przypomnienie PWL Istnieje wiele wariantów praw wielkich liczb. Wspólna ich cecha jest asymptotyczne zachowanie

Bardziej szczegółowo

Schemat rekursji. 1 Schemat rekursji dla funkcji jednej zmiennej

Schemat rekursji. 1 Schemat rekursji dla funkcji jednej zmiennej Schemat rekursji 1 Schemat rekursji dla funkcji jednej zmiennej Dla dowolnej liczby naturalnej a i dowolnej funkcji h: N 2 N istnieje dokładnie jedna funkcja f: N N spełniająca następujące warunki: f(0)

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI poziom rozszerzony

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI poziom rozszerzony Próbny egzamin maturalny z matematyki. Poziom rozszerzony 1 PRÓNY EGZMIN MTURLNY Z MTEMTYKI poziom rozszerzony ZNI ZMKNIĘTE W każdym z zadań 1.. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0

Bardziej szczegółowo

Proces Poissona. Wykład 4. 4.1 Proces zliczajacy

Proces Poissona. Wykład 4. 4.1 Proces zliczajacy Wykład 4 roces oissona 4.1 roces zliczajacy roces stochastyczny {N t ;t } nazywamy zliczaj acym, gdy N t jest równe całkowitej ilości zdarzeń które zdarzyły się do momentu t. rzekładami procesów zliczajacychn

Bardziej szczegółowo

STATYSTYKA wykład 5-6

STATYSTYKA wykład 5-6 TATYTYKA wykład 5-6 Twierdzenia graniczne Rozkłady statystyk z próby Wanda Olech Twierdzenia graniczne Jeżeli rozpatrujemy ciąg zmiennych losowych {X ; X ;...; X n }, to zdarza się, że ich rozkłady przy

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

Całkowanie metodami Monte Carlo

Całkowanie metodami Monte Carlo 1 Całkowanie metodami Monte Carlo,,Od igły Buffona do metod redukcji wariancji Igła Buffona i metoda Monte Carlo typu,,orzeł reszka. Metoda podstawowa całkowania Monte Carlo. Klasyczne metody redukcji

Bardziej szczegółowo

Wykład 1. Przestrzeń Hilberta

Wykład 1. Przestrzeń Hilberta Wykład 1. Przestrzeń Hilberta Sygnały. Funkcje (w języku inżynierów - sygnały) które będziemy rozważali na tym wykładzie będą kilku typów Sygnały ciągłe (analogowe). ) L (R) to funkcje na prostej spełniające

Bardziej szczegółowo

Działanie grupy na zbiorze

Działanie grupy na zbiorze Działanie grupy na zbiorze Definicja 0.1 Niech (G, ) będzie dowolną grupą oraz X niepustym zbiorem, to odwzorowanie : G X X nazywamy działaniem grupy G na zbiorze X jeślinastępujące warunki są spełnione:

Bardziej szczegółowo

13 Zastosowania Lematu Szemerédiego

13 Zastosowania Lematu Szemerédiego 13 Zastosowania Lematu Szemerédiego 13.1 Twierdzenie Erdősa-Stone a (Rozdzia ly 7.1 i 7.5 podre cznika) Jednym z g lównych zagadnień ekstremalnej teorii grafów jest wyznaczenie parametru ex(n, H) = max{

Bardziej szczegółowo

Finansowe szeregi czasowe

Finansowe szeregi czasowe 24 kwietnia 2009 Modelem szeregu czasowego jest proces stochastyczny (X t ) t Z, czyli rodzina zmiennych losowych, indeksowanych liczbami całkowitymi i zdefiniowanych na pewnej przestrzeni probabilistycznej

Bardziej szczegółowo

Interfejs GSM/GPRS LB-431

Interfejs GSM/GPRS LB-431 LAB-EL Elektronika Laboratoryjna ul. Herbaciana 9, 05-816 Regu ly Witryna: http://www.label.pl/ Poczta: info@label.pl Tel. (22) 753 61 30, Fax (22) 753 61 35 Interfejs GSM/GPRS LB-431 modem LWA Instrukcja

Bardziej szczegółowo

Zadania z podstaw matematyki dla 1 roku informatyki 1

Zadania z podstaw matematyki dla 1 roku informatyki 1 29 września 2008, godzina 17: 13 strona 1 Zadania z podstaw matematyki dla 1 roku informatyki 1 Zadania na rozgrzewk e 1. Zaznacz na rysunku zbiory: (a) { x, y : R 2 (x 2 + y 2 > 1) [(x 2 + y 2 2) ( (x

Bardziej szczegółowo

Instytut Matematyczny Uniwersytet Wrocławski. Zakres egzaminu magisterskiego. Wybrane rozdziały anazlizy i topologii 1 i 2

Instytut Matematyczny Uniwersytet Wrocławski. Zakres egzaminu magisterskiego. Wybrane rozdziały anazlizy i topologii 1 i 2 Instytut Matematyczny Uniwersytet Wrocławski Zakres egzaminu magisterskiego Wybrane rozdziały anazlizy i topologii 1 i 2 Pojęcia, fakty: Definicje i pojęcia: metryka, iloczyn skalarny, norma supremum,

Bardziej szczegółowo

Martyngały a rynki finansowe

Martyngały a rynki finansowe Jest to zapis odczytu wygłoszonego na XXXIII Szkole Matematyki Poglądowej Metody klasyczne i współczesne, sierpień 2004. Martyngały a rynki finansowe Jacek JAKUBOWSKI, Warszawa 1. Okazuje się, że teoria

Bardziej szczegółowo

Lista 1. Procesy o przyrostach niezależnych.

Lista 1. Procesy o przyrostach niezależnych. Lista. Procesy o przyrostach niezależnych.. Niech N t bedzie procesem Poissona o intensywnoci λ = 2. Obliczyć a) P (N 2 < 3, b) P (N =, N 3 = 6), c) P (N 2 = N 5 = 2), d) P (N =, N 2 = 3, N 4 < 5), e)

Bardziej szczegółowo

Motywacja. posiada agent inteligentny jest z konieczności niepe lna i niepewna. Nawet w przypadkach kiedy móg lby on zdobyć wiedz e kompletna

Motywacja. posiada agent inteligentny jest z konieczności niepe lna i niepewna. Nawet w przypadkach kiedy móg lby on zdobyć wiedz e kompletna Motywacja Wiedza o świecie jaka posiada agent inteligentny jest z konieczności niepe lna i niepewna. Nawet w przypadkach kiedy móg lby on zdobyć wiedze kompletna i pewna, może to być niepraktyczne. W sztucznej

Bardziej szczegółowo

Analiza Algorytmów. Informatyka, WPPT, Politechnika Wroclawska. 1 Zadania teoretyczne (ćwiczenia) Zadanie 1. Zadanie 2. Zadanie 3

Analiza Algorytmów. Informatyka, WPPT, Politechnika Wroclawska. 1 Zadania teoretyczne (ćwiczenia) Zadanie 1. Zadanie 2. Zadanie 3 Analiza Algorytmów Informatyka, WPPT, Politechnika Wroclawska 1 Zadania teoretyczne (ćwiczenia) Zadanie 1 Niech k będzie dodatnią liczbą całkowitą. Rozważ następującą zmienną losową Pr[X = k] = (6/π 2

Bardziej szczegółowo

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja

Bardziej szczegółowo

Analiza przeżycia. Wprowadzenie

Analiza przeżycia. Wprowadzenie Wprowadzenie Przedmiotem badania analizy przeżycia jest czas jaki upływa od początku obserwacji do wystąpienia określonego zdarzenia, które jednoznacznie kończy obserwację na danej jednostce. Analiza przeżycia

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO

EGZAMIN MATURALNY OD ROKU SZKOLNEGO EGZAMIN MATURALNY OD ROKU SZKOLNEGO 014/015 MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ DLA OSÓB SŁABOSŁYSZĄCYCH (A3) W czasie trwania egzaminu zdający może korzystać z zestawu wzorów matematycznych,

Bardziej szczegółowo

TEORIA FUNKCJONA LÓW. (Density Functional Theory - DFT) Monika Musia l

TEORIA FUNKCJONA LÓW. (Density Functional Theory - DFT) Monika Musia l TEORIA FUNKCJONA LÓW GȨSTOŚCI (Density Functional Theory - DFT) Monika Musia l PRZEDMIOT BADAŃ Uk lad N elektronów + K j ader atomowych Przybliżenie Borna-Oppenheimera Zamiast funkcji falowej Ψ(r 1,σ 1,r

Bardziej szczegółowo

Całkowanie przez podstawianie i dwa zadania

Całkowanie przez podstawianie i dwa zadania Całkowanie przez podstawianie i dwa zadania Antoni Kościelski Funkcje dwóch zmiennch i podstawianie Dla funkcji dwóch zmiennch zachodzi następując wzór na całkowanie przez podstawianie: f(x(a, b), (a,

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC 2013. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC 2013. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 00 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

Liczby zespolone Definicja liczb zespolonych Liczbami zespolonymi nazywamy liczby postaci a + bi, gdzie i oznacza jednostke urojona, przyjmujemy,

Liczby zespolone Definicja liczb zespolonych Liczbami zespolonymi nazywamy liczby postaci a + bi, gdzie i oznacza jednostke urojona, przyjmujemy, Liczby zespolone Definicja liczb zespolonych Liczbami zespolonymi nazywamy liczby postaci a + bi, gdzie i oznacza jednostke urojona, przyjmujemy, że i = 1 zaś a i b sa liczbami rzeczywistymi. Suma liczb

Bardziej szczegółowo

Przestrzenie liniowe w zadaniach

Przestrzenie liniowe w zadaniach Przestrzenie linioe zadaniach Zadanie 1. Cz ektor [3, 4, 4 jest kombinacja linioa ektoró [1, 1, 1, [1, 0, 1, [1, 3, 5 przestrzeni R 3? Roziazanie. Szukam x,, z R takich, że [3, 4, 4 x [1, 1, 1 + [1, 0,

Bardziej szczegółowo

1 Podstawowe struktury algebraiczne i cia lo liczb zespolonych

1 Podstawowe struktury algebraiczne i cia lo liczb zespolonych 1 Podstawowe struktury algebraiczne i cia lo liczb zespolonych Niech X i Y bȩd a zbiorami Iloczynem kartezjańskim tych zbiorów nazywamy zbiór X Y = {(x, y) : x X, y Y } Dwuargumentowym dzia laniem na zbiorze

Bardziej szczegółowo

EGZAMIN DYPLOMOWY, część II, 23.09.2008 Biomatematyka

EGZAMIN DYPLOMOWY, część II, 23.09.2008 Biomatematyka Biomatematyka W 200-elementowej próbie losowej z diploidalnej populacji wystąpiło 89 osobników genotypu AA, 57 osobników genotypu Aa oraz 54 osobników genotypu aa. Na podstawie tych danych (a) dokonaj

Bardziej szczegółowo

2. Równania nieliniowe i ich uk lady

2. Równania nieliniowe i ich uk lady Metoda Newtona stycznych dla równania f(x) 0: x n+ x n f(x n) f (x n ) Chcemy rozwia ι zać uk lad N równań dla N niewiadomych f (x,x,,x N ) 0 f (x,x,,x N ) 0, f N (x,x,,x N ) 0 krócej: Czy jest jakaś analogia?

Bardziej szczegółowo

MIARY RYZYKA A POMIAR EFEKTYWNOŚCI INWESTYCJI

MIARY RYZYKA A POMIAR EFEKTYWNOŚCI INWESTYCJI Grażyna Trzpiot Uniwersytet Ekonomiczny w Katowicach MIARY RYZYKA A POMIAR EFEKTYWNOŚCI INWESTYCJI Wprowadzenie Przedstawiamy zbiór miar ryzyka, określając zbiór aksjomatów, które powinny takie miary spełniać.

Bardziej szczegółowo

GEOMETRIA ANALITYCZNA W PRZESTRZENI

GEOMETRIA ANALITYCZNA W PRZESTRZENI GEOMETRIA ANALITYCZNA W PRZESTRZENI Położenie punktu w przestrzeni określamy za pomocą trzech liczb (x, y, z). Liczby te odpowiadają rzutom na osie układu współrzędnych: każdy rzut wzdłuż płaszczyzny równoległej

Bardziej szczegółowo

MATEMATYKA FINANSOWA

MATEMATYKA FINANSOWA Matematyka Finansowa, 05 06 2006 1 Andrzej Spakowski MATEMATYKA FINANSOWA matematyka finansów i ubezpieczeń. Trajektoria (realizacja) procesu stochastycznego Wspó lczesna, szeroko rozumiana MF opisuje

Bardziej szczegółowo

Mikro II: Wymiana i Asymetria Informacji

Mikro II: Wymiana i Asymetria Informacji Mikro II: Wymiana i Asymetria Informacji Krzysztof Makarski 29 Wymiana Wst ep. Do tej pory zajmowaliśmy sie g lównie analiza pojedynczych rynków. Analiza w równowadze czastkowej - teoria jednego wyizolowanego

Bardziej szczegółowo

Stanisław Jaworski Wojciech Zieliński. Zbiór zadań z rachunku prawdopodobieństwa i statystyki matematycznej

Stanisław Jaworski Wojciech Zieliński. Zbiór zadań z rachunku prawdopodobieństwa i statystyki matematycznej Stanisław Jaworski Wojciech Zieliński Zbiór zadań z rachunku prawdopodobieństwa i statystyki matematycznej Wersja 21/2/2012 Spis treści Przedmowa......................................................................

Bardziej szczegółowo

po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x)

po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Stan czastki określa funkcja falowa Ψ zależna od wspó lrzȩdnych określaj acych po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Wartości funkcji

Bardziej szczegółowo

4. Decyzje dotycza ce przyznawania świadczeń pomocy materialnej. doktorantów

4. Decyzje dotycza ce przyznawania świadczeń pomocy materialnej. doktorantów ZASADY PRZYZNAWANIA ŚWIADCZEŃ POMOCY MATERIALNEJ DLA DOKTORANTÓW W INSTYTUCIE MATEMATYCZNYM POLSKIEJ AKADEMII NAUK OBOWIA ZUJA CE OD ROKU AKADEMICKIEGO 2013/14 1. PODSTAWA PRAWNA Świadczenia pomocy materialnej

Bardziej szczegółowo

Środowisko R wprowadzenie c.d. Wykład R2; 21.05.07 Struktury danych w R c.d.

Środowisko R wprowadzenie c.d. Wykład R2; 21.05.07 Struktury danych w R c.d. Środowisko R wprowadzenie c.d. Wykład R2; 21.05.07 Struktury danych w R c.d. Oprócz zmiennych i wektorów strukturami danych w R są: macierze; ramki (ang. data frames); listy; klasy S3 1 Macierze Macierze

Bardziej szczegółowo

LXIII Olimpiada Matematyczna

LXIII Olimpiada Matematyczna 1 Zadanie 1. LXIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 17 lutego 2012 r. (pierwszy dzień zawodów) Rozwiązać w liczbach rzeczywistych a, b, c, d układ równań a

Bardziej szczegółowo

Zmienna losowa (wygrana w pojedynczej grze): (1, 0.5), ( 1, 0.5)

Zmienna losowa (wygrana w pojedynczej grze): (1, 0.5), ( 1, 0.5) Przykład 0. Gra polega na jednokrotnym rzucie symetryczną monetą, przy czym wygrywamy 1 jeżeli wypadnie orzeł oraz przegrywamy 1 jeżeli wypadnie reszka. Nasz początkowy kapitał wynosi 5. Jakie jest prawdopodobieństwo,

Bardziej szczegółowo

Zarzadzanie i Marketing Egzamin z Matematyki. Studia dzienne. 1999

Zarzadzanie i Marketing Egzamin z Matematyki. Studia dzienne. 1999 Imie Nazwisko Zestaw 121 Zarzadzanie i Marketing Egzamin z Matematyki. Studia dzienne. 1999 Zaznacz wlasciwa odpowiedz przez otoczenie kolkiem litery a, b lub c. Tylko jedna z podanych odpowiedzi jest

Bardziej szczegółowo

Dynamika molekularna - gaz van der Waalsa

Dynamika molekularna - gaz van der Waalsa Hamiltonian uk ladu Dynamika molekularna - gaz van der Waalsa Sk lada siȩ z N atomów u, oddzia luj acych parami miȩdzy sob a oraz ze ściankami sferycznego naczynia. Oddzia lywania opisuje potencja l Lennarda-

Bardziej szczegółowo

Wycena papierów wartościowych - instrumenty pochodne

Wycena papierów wartościowych - instrumenty pochodne Matematyka finansowa - 8 Wycena papierów wartościowych - instrumenty pochodne W ujęciu probabilistycznym cena akcji w momencie t jest zmienną losową P t o pewnym (zwykle nieznanym) rozkładzie prawdopodobieństwa,

Bardziej szczegółowo

0.1 ROZKŁADY WYBRANYCH STATYSTYK

0.1 ROZKŁADY WYBRANYCH STATYSTYK 0.1. ROZKŁADY WYBRANYCH STATYSTYK 1 0.1 ROZKŁADY WYBRANYCH STATYSTYK Zadaia 0.1.1. Niech X 1,..., X będą iezależymi zmieymi losowymi o tym samym rozkładzie. Obliczyć ES 2 oraz D 2 ( 1 i=1 X 2 i ). 0.1.2.

Bardziej szczegółowo

Jednorazowa sk ladka netto w przypadku stochastycznej stopy procentowej. Ubezpieczenie na ca le życie z n-letnim okresem odroczenia.

Jednorazowa sk ladka netto w przypadku stochastycznej stopy procentowej. Ubezpieczenie na ca le życie z n-letnim okresem odroczenia. Jednorazowa sk ladka netto w przypadku stochastycznej stopy procentowej Ubezpieczenie na ca le życie z n-letnim okresem odroczenia Wartość obecna wyp laty Y = Zatem JSN = = Kx +1 0, K x = 0, 1,..., n 1,

Bardziej szczegółowo

Pawe l G ladki. Problem przetargu.

Pawe l G ladki. Problem przetargu. 1 Problem przertargu Pawe l G ladki Problem przetargu. Co to jest przetarg w potocznym znaczeniu wyjaśniać chyba nie trzeba. W ujȩciu eknomicznym, za przetarg uważamy takie sytuacje, jak negocjacje handlowe

Bardziej szczegółowo

FUNKCJE ANALITYCZNE. Zbigniew B locki

FUNKCJE ANALITYCZNE. Zbigniew B locki FUNKCJE ANALITYCZNE WYK LADY DLA SEKCJI TEORETYCZNEJ INSTYTUT MATEMATYKI UJ, 2007 Zbigniew B locki Typeset by AMS-TEX 2 ZBIGNIEW B LOCKI Spis treści 1. Podstawowe w lasności liczb zespolonych 1 2. Różniczkowanie

Bardziej szczegółowo

Niegaussowskie procesy stochastyczne w oceanotechnice

Niegaussowskie procesy stochastyczne w oceanotechnice Niegaussowskie procesy stochastyczne w oceanotechnice Joanna Dys 29 listopada 2009 Streszczenie Referat na podstawie artykułu Michela K. Ochi, Non-Gaussian random processes in ocean engineering, Probabilistic

Bardziej szczegółowo

Generacja liczb pseudolosowych

Generacja liczb pseudolosowych Generacja liczb pseudolosowych Zapis liczb w komputerze Generatory liczb pseudolosowych Liniowe kongruentne Liniowe mutiplikatywne kongruentne Jakość generatorów Test widmowy Generowanie liczb losowych

Bardziej szczegółowo