Programowanie i struktury danych 1 / 44

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Programowanie i struktury danych 1 / 44"

Transkrypt

1 Programowanie i struktury danych 1 / 44

2 Lista dwukierunkowa Lista dwukierunkowa to liniowa struktura danych skªadaj ca si z ci gu elementów, z których ka»dy pami ta swojego nast pnika i poprzednika. Operacje na li±cie dwukierunkowej pozwalaj na wstawianie elementów z przodu, z tyªu i w ±rodku listy elementów. Najcz ±ciej elementy listy tworzymy u»ywaj c struktury struct elem { //dane przechowywane na li±cie elem* next; elem* prev; }; 2 / 44

3 Lista dwukierunkowa - ilustracja List dwukierunkow mo»na uto»samia z grup osób trzymaj cych si za r ce. Ka»da osoba trzyma swojego lewego i prawego s siada. W takiej strukturze mo»liwe jest dodawanie nowej osoby w dowolnym miejscu. Mo»liwe jest tak»e usuwanie osób z takiej listy. Nale»y wtedy pami ta,»eby po dodaniu/usuni ciu osoby skorygowa uchwyty dªoni. 3 / 44

4 Lista dwukierunkowa W li±cie wyró»niamy dwa w zªy head - gªowa - poczatek struct elem* head;... head->prev=null; tail - ogon - koniec struct elem* tail;... tail->next=null; 4 / 44

5 Stos Stos to liniowa struktura danych, do której dost p mo»liwy jest z jednego tylko ko«ca. Stos nazywany jest struktur LIFO - ostatni wchodzi, pierwszy wychodzi last in/rst out. 5 / 44

6 Operacje na stosie Wyró»niamy wierzchoªek stosu, czyli element, który umieszczony jest na szczycie - topstos Nowe elementy kªadzione s zawsze na szczyt stosu - push(element) W razie potrzeby pobieramy elementy ze szczytu stosu pop() 6 / 44

7 push(15) 7 / 44

8 push(15) 15 8 / 44

9 push(15) push(1) 15 9 / 44

10 push(15) push(1) / 44

11 push(15) push(1) push(0) / 44

12 push(15) push(1) push(0) / 44

13 push(15) push(1) push(0) push(37) / 44

14 push(15) push(1) push(0) push(37) / 44

15 push(15) push(1) push(0) push(37) push(84) / 44

16 push(15) push(1) push(0) push(37) push(84) / 44

17 push(15) push(1) push(0) push(37) push(84) pop() / 44

18 push(15) push(1) push(0) push(37) push(84) pop() zdj to / 44

19 push(15) push(1) push(0) push(37) push(84) pop() pop() / 44

20 push(15) push(1) push(0) push(37) push(84) pop() pop() zdj to / 44

21 push(15) push(1) push(0) push(37) push(84) pop() pop() push(54) / 44

22 push(15) push(1) push(0) push(37) push(84) pop() pop() push(54) / 44

23 Stos Klasyczne implementacje stosu tablicowa listowa 23 / 44

24 Przykªad u»ycia stosu - sprawdzenie poprawno±ci u»ycia nawiasów 1: dopóki nie jet koniec wyra»enie, wczytaj znak ch 2: { 3: switch (ch) 4: { 5: case '{' : 6: case '[' : 7: case '(' : stos.push(ch) break 8: case '}' : 9: case ']' : 10: case ')' : 11: je»eli (! stos.isempty()) 12: { chx=stos.pop() 13: je»eli ((ch='}' ) i (chx!='{')) lub 14: ((ch=']' ) i (chx!='[')) lub 15: ((ch=')' ) i (chx!='(')) 16: bª d 17: }else 18: bª d 19: break 20: } 21: je»eli (! stos.isempty()) 22: return bª d nawiasu zamykaj cego 24 / 44

25 Kolejka Kolejka to liniowa struktura danych. Nowe elementy sa dodawane na ko«cu, natomiast przetwarzane s elementy z pocz tku kolejki. Kolejka jest struktur typu FIFO - pierwszy wchodzi, pierwszy wychodzi. rst in, rst out. 25 / 44

26 Operacje na kolejce rstel() - zwraca pierwszy element kolejki nie usuwaj c go enqueue(el) - wstawanie elementu el na koniec kolejki dequeue() - pobranie pierwszego elementu 26 / 44

27 enqueue(15) 27 / 44

28 enqueue(15) / 44

29 enqueue(15) enqueue(1) / 44

30 enqueue(15) enqueue(1) / 44

31 enqueue(15) enqueue(1) enqueue(0) / 44

32 enqueue(15) enqueue(1) enqueue(0) / 44

33 enqueue(15) enqueue(1) enqueue(0) enqueue(37) / 44

34 enqueue(15) enqueue(1) enqueue(0) enqueue(37) / 44

35 enqueue(15) enqueue(1) enqueue(0) enqueue(37) enqueue(84) / 44

36 enqueue(15) enqueue(1) enqueue(0) enqueue(37) enqueue(84) / 44

37 enqueue(15) enqueue(1) enqueue(0) enqueue(37) enqueue(84) dequeue() / 44

38 enqueue(15) enqueue(1) enqueue(0) enqueue(37) enqueue(84) dequeue() / 44

39 enqueue(15) enqueue(1) enqueue(0) enqueue(37) enqueue(84) dequeue() dequeue() / 44

40 enqueue(15) enqueue(1) enqueue(0) enqueue(37) enqueue(84) dequeue() dequeue() / 44

41 enqueue(15) enqueue(1) enqueue(0) enqueue(37) enqueue(84) dequeue() dequeue() enqueue(54) / 44

42 enqueue(15) enqueue(1) enqueue(0) enqueue(37) enqueue(84) dequeue() dequeue() enqueue(54) / 44

43 Zadania 1 Dla listy dwukierunkowej, przechowuj cej elementy okre±lonego typu (np. liczby caªkowite, zmiennoprzecinkowe itp.) wykonaj nast puj ce operacje: utwórz list n losowych elementów wybranego typu (gdzie n oraz zakres danych s parametrami), wy±wietl zawarto± listy od ko«ca, dodaj na pocz tek listy 2 dodatkowe elementy (ich warto±ci mo»na wprowadzi z klawiatury), wy±wietl ile elementów zawiera lista. 2 Dla stosu przechowuj cego elementy okre±lonego typu (np. liczby caªkowite, zmiennoprzecinkowe itp.) wykonaj nast puj ce operacje: umie± n losowych elementów na stosie (gdzie n oraz zakres danych s parametrami), wy±wietl element znajduj cy si na szczycie stosu, usu«element ze szczytu stosu (nale»y sprawdzi, czy na stosie znajduj si elementy), umie± element na szczycie stosu, ponownie wy±wietl element znajduj cy si na szczycie stosu, wy±wietl ilo± elementów znajduj cych si na stosie. 3 Dla kolejki przechowuj cej elementy okre±lonego typu (np. liczby caªkowite, zmiennoprzecinkowe itp.) wykonaj nast puj ce operacje: umie± n losowych elementów w kolejce (gdzie n oraz zakres danych s parametrami), wy±wietl element znajduj cy si na pocz tku kolejki, usu«pierwszy element z kolejki (nale»y sprawdzi, czy w kolejce znajduj si elementy), wy±wietl ilo± elementów znajduj cych si w kolejce oraz oblicz ich sum. 43 / 44

44 Dzi kuj za uwag!!! 44 / 44

Kurs II, zajęcia 1. Tomasz Kulczyński, Błażej Osiński, Wojciech Śmietanka. Stos, kolejka i lista. Stos. Kolejka. Lista dwukierunkowa

Kurs II, zajęcia 1. Tomasz Kulczyński, Błażej Osiński, Wojciech Śmietanka. Stos, kolejka i lista. Stos. Kolejka. Lista dwukierunkowa , kolejka i symulacja, kolejka i Kurs II, zajęcia 1 Tomasz Kulczyński, Błażej Osiński, Wojciech Śmietanka , kolejka,, kolejka i symulacja, kolejka, to liniowe struktury danych pozwalaja na trzymanie zmieniajacych

Bardziej szczegółowo

Dynamiczne struktury danych

Dynamiczne struktury danych Dynamiczne struktury danych 391 Dynamiczne struktury danych Przez dynamiczne struktury danych rozumiemy proste i złożone struktury danych, którym pamięć jest przydzielana i zwalniana na żądanie w trakcie

Bardziej szczegółowo

Struktury danych: stos, kolejka, lista, drzewo

Struktury danych: stos, kolejka, lista, drzewo Struktury danych: stos, kolejka, lista, drzewo Wykład: dane w strukturze, funkcje i rodzaje struktur, LIFO, last in first out, kolejka FIFO, first in first out, push, pop, size, empty, głowa, ogon, implementacja

Bardziej szczegółowo

Listy, kolejki, stosy

Listy, kolejki, stosy Listy, kolejki, stosy abc Lista O Struktura danych składa się z węzłów, gdzie mamy informacje (dane) i wskaźniki do następnych węzłów. Zajmuje tyle miejsca w pamięci ile mamy węzłów O Gdzie można wykorzystać:

Bardziej szczegółowo

Algorytmy i. Wykład 3: Stosy, kolejki i listy. Dr inż. Paweł Kasprowski. FIFO First In First Out (kolejka) LIFO Last In First Out (stos)

Algorytmy i. Wykład 3: Stosy, kolejki i listy. Dr inż. Paweł Kasprowski. FIFO First In First Out (kolejka) LIFO Last In First Out (stos) Algorytmy i struktury danych Wykład 3: Stosy, kolejki i listy Dr inż. Paweł Kasprowski pawel@kasprowski.pl Kolejki FIFO First In First Out (kolejka) LIFO Last In First Out (stos) Stos (stack) Dostęp jedynie

Bardziej szczegółowo

Dynamiczny przydział pamięci w języku C. Dynamiczne struktury danych. dr inż. Jarosław Forenc. Metoda 1 (wektor N M-elementowy)

Dynamiczny przydział pamięci w języku C. Dynamiczne struktury danych. dr inż. Jarosław Forenc. Metoda 1 (wektor N M-elementowy) Rok akademicki 2012/2013, Wykład nr 2 2/25 Plan wykładu nr 2 Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia niestacjonarne I stopnia Rok akademicki 2012/2013

Bardziej szczegółowo

Struktury danych (I): kolejka, stos itp.

Struktury danych (I): kolejka, stos itp. Letnie Warsztaty Matematyczno-Informatyczne Algorytmy i struktury danych Struktury danych (I): kolejka, stos itp. Struktury danych (I): kolejka, stos itp. Struktura danych stanowi sposób uporządkowania

Bardziej szczegółowo

Zestaw 1 ZESTAWY A. a 1 a 2 + a 3 ± a n, gdzie skªadnik a n jest odejmowany, gdy n jest liczb parzyst oraz dodawany w przeciwnym.

Zestaw 1 ZESTAWY A. a 1 a 2 + a 3 ± a n, gdzie skªadnik a n jest odejmowany, gdy n jest liczb parzyst oraz dodawany w przeciwnym. ZESTAWY A Zestaw 1 Organizacja plików: Wszystkie pliki oddawane do sprawdzenia nale»y zapisa we wspólnym folderze o nazwie b d cej numerem indeksu, umieszczonym na pulpicie. Oddajemy tylko ¹ródªa programów

Bardziej szczegółowo

Temat: Liniowe uporzdkowane struktury danych: stos, kolejka. Specyfikacja, przykładowe implementacje i zastosowania. Struktura słownika.

Temat: Liniowe uporzdkowane struktury danych: stos, kolejka. Specyfikacja, przykładowe implementacje i zastosowania. Struktura słownika. Temat: Liniowe uporzdkowane struktury danych: stos, kolejka. Specyfikacja, przykładowe implementacje i zastosowania. Struktura słownika. 1. Pojcie struktury danych Nieformalnie Struktura danych (ang. data

Bardziej szczegółowo

Rekurencyjne struktury danych

Rekurencyjne struktury danych Andrzej Jastrz bski Akademia ETI Dynamiczny przydziaª pami ci Pami, która jest przydzielana na pocz tku dziaªania procesu to: pami programu czyli instrukcje programu pami statyczna zwi zana ze zmiennymi

Bardziej szczegółowo

Struktura danych. Sposób uporządkowania informacji w komputerze. Na strukturach danych operują algorytmy. Przykładowe struktury danych:

Struktura danych. Sposób uporządkowania informacji w komputerze. Na strukturach danych operują algorytmy. Przykładowe struktury danych: Struktura danych Sposób uporządkowania informacji w komputerze. Na strukturach danych operują algorytmy. Przykładowe struktury danych: rekord tablica lista stos kolejka drzewo i jego odmiany (np. drzewo

Bardziej szczegółowo

Wykład 5 Wybrane zagadnienia programowania w C++ (c.d.)

Wykład 5 Wybrane zagadnienia programowania w C++ (c.d.) Wykład 5 Wybrane zagadnienia programowania w C++ (c.d.) Kontenery - - wektor vector - - lista list - - kolejka queue - - stos stack Kontener asocjacyjny map 2016-01-08 Bazy danych-1 W5 1 Kontenery W programowaniu

Bardziej szczegółowo

Programowanie obiektowe

Programowanie obiektowe Laboratorium z przedmiotu Programowanie obiektowe - zestaw 04 Cel zajęć. Celem zajęć jest zapoznanie się ze sposobem działania popularnych. Wprowadzenie teoretyczne. Rozważana w ramach niniejszych zajęć

Bardziej szczegółowo

Podstawy informatyki 2

Podstawy informatyki 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia stacjonarne Rok akademicki 2006/2007 Wykład nr 2 (07.03.2007) Wykład nr 2 2/46 Plan wykładu nr 2 Argumenty funkcji main

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Liniowe struktury danych. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 4 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Podstawowe struktury danych dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 6 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych.

Bardziej szczegółowo

Struktura danych. Sposób uporządkowania informacji w komputerze. Na strukturach danych operują algorytmy. Przykładowe struktury danych:

Struktura danych. Sposób uporządkowania informacji w komputerze. Na strukturach danych operują algorytmy. Przykładowe struktury danych: Struktura danych Sposób uporządkowania informacji w komputerze. Na strukturach danych operują algorytmy. Przykładowe struktury danych: rekord tablica lista stos kolejka drzewo i jego odmiany (np. drzewo

Bardziej szczegółowo

E S - uniwersum struktury stosu

E S - uniwersum struktury stosu Temat: Struktura stosu i kolejki Struktura danych to system relacyjny r I r i i I U,, gdzie U to uniwersum systemu, a i i - zbiór relacji (operacji na strukturze danych). Uniwersum systemu to zbiór typów

Bardziej szczegółowo

Kiedy potrzebne. Struktura (rekord) Struktura w języku C# Tablice struktur. struktura, kolekcja

Kiedy potrzebne. Struktura (rekord) Struktura w języku C# Tablice struktur. struktura, kolekcja 1 struktura, kolekcja Kiedy potrzebne Duża liczba danych takiego samego typu tablice a jak nieznana liczba elementów? dane zawierające wartości różnego typu (osoba: pesel, nazwisko, rok urodzenia, pracuje/niepracuje,

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wstęp do programowania Stosy, kolejki, drzewa Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. VII Jesień 2013 1 / 25 Listy Lista jest uporządkowanym zbiorem elementów. W Pythonie

Bardziej szczegółowo

Podstawy informatyki 2. Podstawy informatyki 2. Wykład nr 2 ( ) Plan wykładu nr 2. Politechnika Białostocka. - Wydział Elektryczny

Podstawy informatyki 2. Podstawy informatyki 2. Wykład nr 2 ( ) Plan wykładu nr 2. Politechnika Białostocka. - Wydział Elektryczny Wykład nr 2 2/6 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia stacjonarne Rok akademicki 2006/2007 Plan wykładu nr 2 Argumenty funkcji main Dynamiczne struktury danych

Bardziej szczegółowo

Metodydowodzenia twierdzeń

Metodydowodzenia twierdzeń 1 Metodydowodzenia twierdzeń Przez zdanie rozumiemy dowolne stwierdzenie, które jest albo prawdziwe, albo faªszywe (nie mo»e by ono jednocze±nie prawdziwe i faªszywe). Tradycyjnie b dziemy u»ywali maªych

Bardziej szczegółowo

Lekcja 8 - ANIMACJA. 1 Polecenia. 2 Typy animacji. 3 Pierwsza animacja - Mrugaj ca twarz

Lekcja 8 - ANIMACJA. 1 Polecenia. 2 Typy animacji. 3 Pierwsza animacja - Mrugaj ca twarz Lekcja 8 - ANIMACJA 1 Polecenia Za pomoc Baltiego mo»emy tworzy animacj, tzn. sprawia by obraz na ekranie wygl daª jakby si poruszaª. Do animowania przedmiotów i tworzenia animacji posªu» nam polecenia

Bardziej szczegółowo

dr inż. Paweł Myszkowski Wykład nr 11 ( )

dr inż. Paweł Myszkowski Wykład nr 11 ( ) dr inż. Paweł Myszkowski Politechnika Białostocka Wydział Elektryczny Elektronika i Telekomunikacja, semestr II, studia stacjonarne I stopnia Rok akademicki 2015/2016 Wykład nr 11 (11.05.2016) Plan prezentacji:

Bardziej szczegółowo

1. Wprowadzenie do C/C++

1. Wprowadzenie do C/C++ Podstawy Programowania :: Roman Grundkiewicz :: 014 Zaj cia 1 1 rodowisko Dev-C++ 1. Wprowadzenie do C/C++ Uruchomienie ±rodowiska: Start Programs Developments Dev-C++. Nowy projekt: File New Project lub

Bardziej szczegółowo

1 Metody iteracyjne rozwi zywania równania f(x)=0

1 Metody iteracyjne rozwi zywania równania f(x)=0 1 Metody iteracyjne rozwi zywania równania f()=0 1.1 Metoda bisekcji Zaªó»my,»e funkcja f jest ci gªa w [a 0, b 0 ]. Pierwiastek jest w przedziale [a 0, b 0 ] gdy f(a 0 )f(b 0 ) < 0. (1) Ustalmy f(a 0

Bardziej szczegółowo

Marcin Matusiak i Łukasz Stasiak

Marcin Matusiak i Łukasz Stasiak Marcin Matusiak i Łukasz Stasiak Lista jest sekwencyjną strukturą danych, która składa się z ciągu elementów tego samego typu. Dostęp do elementów listy jest sekwencyjny tzn. z danego elementu listy możemy

Bardziej szczegółowo

Struktury dynamiczne

Struktury dynamiczne Struktury dynamiczne lista jednokierunkowa lista dwukierunkowa lista cykliczna stos kolejka drzewo Ich wielkość i stopień złożoności zmieniają się w czasie. Struktury dynamiczne oparte są o struktury (struct).

Bardziej szczegółowo

Materiał uzupełniający do ćwiczen z przedmiotu: Programowanie w C ++ - ćwiczenia na wskaźnikach

Materiał uzupełniający do ćwiczen z przedmiotu: Programowanie w C ++ - ćwiczenia na wskaźnikach Materiał uzupełniający do ćwiczen z przedmiotu: Programowanie w C ++ - ćwiczenia na wskaźnikach 27 kwietnia 2012 Wiedząc, że deklarowanie typu rekordowego w języku C/ C++ wygląda następująco: struct element

Bardziej szczegółowo

Algorytmy i Struktury Danych. Co dziś? Drzewo decyzyjne. Wykład IV Sortowania cd. Elementarne struktury danych

Algorytmy i Struktury Danych. Co dziś? Drzewo decyzyjne. Wykład IV Sortowania cd. Elementarne struktury danych Algorytmy i Struktury Danych Wykład IV Sortowania cd. Elementarne struktury danych 1 Co dziś? Dolna granica sortowań Mediany i statystyki pozycyjne Warstwa implementacji Warstwa abstrakcji #tablice #listy

Bardziej szczegółowo

Temat: Dynamiczne liniowe struktury danych - stos, kolejka, lista. 1. Wady i zalety struktury tablicy

Temat: Dynamiczne liniowe struktury danych - stos, kolejka, lista. 1. Wady i zalety struktury tablicy Temat: Dynamiczne liniowe struktury danych - stos, kolejka, lista. 1. Wady i zalety struktury tablicy Wady ograniczony rozmiar maksymalny konieczno okrelenia stałego rozmiaru tablicy statyczna alokacja

Bardziej szczegółowo

Wykład 4. Klasa List Kolejki Stosy Słowniki

Wykład 4. Klasa List Kolejki Stosy Słowniki Wykład 4 Klasa List Kolejki Stosy Słowniki Klasa List Poważną niedogodnością tablic jako kolekcji danych jest fakt, że muszą one mieć stały rozmiar. Programista musi wiedzieć z góry ile miejsca powinien

Bardziej szczegółowo

INFORMATYKA. Podstawy programowania w języku C. (Wykład) Copyright (C) 2005 by Sergiusz Sienkowski IME Zielona Góra

INFORMATYKA. Podstawy programowania w języku C. (Wykład) Copyright (C) 2005 by Sergiusz Sienkowski IME Zielona Góra INFORMATYKA Podstawy programowania w języku C (Wykład) Copyright (C) 2005 by Sergiusz Sienkowski IME Zielona Góra INFORMATYKA Temat: Struktury dynamiczne Wykład 7 Struktury dynamiczne lista jednokierunkowa,

Bardziej szczegółowo

Elementy Modelowania Matematycznego Wykªad 9 Systemy kolejkowe

Elementy Modelowania Matematycznego Wykªad 9 Systemy kolejkowe Elementy Modelowania Matematycznego Wykªad 9 Systemy kolejkowe Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis tre±ci 1 2 3 Spis tre±ci 1 2 3 Spis tre±ci 1 2 3 Teoria masowej obsªugi,

Bardziej szczegółowo

Struktury Danych i Złożoność Obliczeniowa

Struktury Danych i Złożoność Obliczeniowa Struktury Danych i Złożoność Obliczeniowa Zajęcia 1 Podstawowe struktury danych Tablica Najprostsza metoda przechowywania serii danych, zalety: prostota, wady: musimy wiedzieć, ile elementów chcemy przechowywać

Bardziej szczegółowo

Podstawowe struktury danych

Podstawowe struktury danych Podstawowe struktury danych 1) Listy Lista to skończony ciąg elementów: q=[x 1, x 2,..., x n ]. Skrajne elementy x 1 i x n nazywamy końcami listy, a wielkość q = n długością (rozmiarem) listy. Szczególnym

Bardziej szczegółowo

Wstęp do programowania. Stosy i kolejki. Piotr Chrząstowski-Wachtel

Wstęp do programowania. Stosy i kolejki. Piotr Chrząstowski-Wachtel Wstęp do programowania Stosy i kolejki Piotr Chrząstowski-Wachtel Stosy Stosy elementów ze zbioru A, to struktury danych, które umożliwiają wykonanie następujących operacji i funkcji {var x:typa; s:stack

Bardziej szczegółowo

WSTĘP DO INFORMATYKI. Struktury liniowe

WSTĘP DO INFORMATYKI. Struktury liniowe Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej WSTĘP DO INFORMATYKI Adrian Horzyk Struktury liniowe www.agh.edu.pl STRUKTURY LINIOWE SEKWENCJE Struktury

Bardziej szczegółowo

Struktury. Przykład W8_1

Struktury. Przykład W8_1 Struktury Struktury pozwalają na grupowanie zmiennych różnych typów pod wspólną nazwą. To istotnie ułatwia organizacje danych, które okazują się w jednym miejscu kodu programu. To jest bardzo ważne dla

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Liniowe struktury danych - Lista Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 5 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych.

Bardziej szczegółowo

.! $ Stos jest list z trzema operacjami: dodawanie elementów na wierzch stosu, zdejmowanie elementu z wierzchu stosu, sprawdzanie czy stos jest pusty.

.! $ Stos jest list z trzema operacjami: dodawanie elementów na wierzch stosu, zdejmowanie elementu z wierzchu stosu, sprawdzanie czy stos jest pusty. !"! " #$%& '()#$$ &%$! #$ %$ &%$& &$&! %&'" )$$! *$$&%$! +,- +-.! $ Celem wiczenia jest zapoznanie studenta ze strukturami: lista, stos, drzewo oraz ich implementacja w jzyku ANSI C. Zrozumienie działania

Bardziej szczegółowo

2 Liczby rzeczywiste - cz. 2

2 Liczby rzeczywiste - cz. 2 2 Liczby rzeczywiste - cz. 2 W tej lekcji omówimy pozostaªe tematy zwi zane z liczbami rzeczywistymi. 2. Przedziaªy liczbowe Wyró»niamy nast puj ce rodzaje przedziaªów liczbowych: (a) przedziaªy ograniczone:

Bardziej szczegółowo

1. Wprowadzenie do C/C++

1. Wprowadzenie do C/C++ Podstawy Programowania - Roman Grundkiewicz - 013Z Zaj cia 1 1 rodowisko Dev-C++ 1. Wprowadzenie do C/C++ Uruchomienie ±rodowiska: Start Programs Developments Dev-C++. Nowy projekt: File New Project lub

Bardziej szczegółowo

Matematyka wykªad 1. Macierze (1) Andrzej Torój. 17 wrze±nia 2011. Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej

Matematyka wykªad 1. Macierze (1) Andrzej Torój. 17 wrze±nia 2011. Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej Matematyka wykªad 1 Macierze (1) Andrzej Torój Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej 17 wrze±nia 2011 Plan wykªadu 1 2 3 4 5 Plan prezentacji 1 2 3 4 5 Kontakt moja strona internetowa:

Bardziej szczegółowo

Obliczenia na stosie. Wykład 9. Obliczenia na stosie. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303

Obliczenia na stosie. Wykład 9. Obliczenia na stosie. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303 Wykład 9 J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303 stos i operacje na stosie odwrotna notacja polska języki oparte na ONP przykłady programów J. Cichoń, P. Kobylański Wstęp

Bardziej szczegółowo

Wykład 6_1 Abstrakcyjne typy danych stos Realizacja tablicowa i za pomocą rekurencyjnych typów danych

Wykład 6_1 Abstrakcyjne typy danych stos Realizacja tablicowa i za pomocą rekurencyjnych typów danych Wykład 6_ Abstrakcyjne typy danych stos Realizacja tablicowa i za pomocą rekurencyjnych typów danych Abstrakcyjny typ danych Klient korzystający z abstrakcyjnego typu danych: o ma do dyspozycji jedynie

Bardziej szczegółowo

Ekonometria. wiczenia 13 Metoda ±cie»ki krytycznej. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej

Ekonometria. wiczenia 13 Metoda ±cie»ki krytycznej. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej wiczenia 13 Metoda ±cie»ki krytycznej Instytut Ekonometrii Zakªad Ekonometrii Stosowanej Plan wicze«1 Przykªad: ubieranie choinki 2 3 Programowanie liniowe w analizie czasowej i czasowo-kosztowej projektu

Bardziej szczegółowo

Rzut oka na zagadnienia zwi zane z projektowaniem list rozkazów

Rzut oka na zagadnienia zwi zane z projektowaniem list rozkazów Rzut oka na zagadnienia zwi zane z projektowaniem list rozkazów 1 Wst p Przypomnijmy,»e komputer skªada si z procesora, pami ci, systemu wej±cia-wyj±cia oraz po- ª cze«mi dzy nimi. W procesorze mo»emy

Bardziej szczegółowo

Lekcja 5 Programowanie - Nowicjusz

Lekcja 5 Programowanie - Nowicjusz Lekcja 5 Programowanie - Nowicjusz Akademia im. Jana Dªugosza w Cz stochowie Programowanie i program wedªug Baltiego Programowanie Programowanie jest najwy»szym trybem Baltiego. Z pomoc Baltiego mo»esz

Bardziej szczegółowo

W ramach zadania należy wykorzystać funkcje wirtualne. W programach testujących należy wykorzystać klasy stworzone w ramach pierwszego zadania.

W ramach zadania należy wykorzystać funkcje wirtualne. W programach testujących należy wykorzystać klasy stworzone w ramach pierwszego zadania. Zadanie 1. Utworzyć klasę wzorcową KOLEJKA typu FIFO (First In, First Out; pierwszy na wejściu, pierwszy na wyjściu), która będzie przechowywała obiekty różnych typów (klasa z zadania 1, nowa klasa oraz

Bardziej szczegółowo

Algorytmy i struktury danych (7, 8)

Algorytmy i struktury danych (7, 8) Algorytmy i struktury danych (7, 8) Struktury liniowe o podło u zmiennym (w tym: sieci odsyłaczowe) Struktury pier cieniowe Wstęp Bardzo wa na grupa struktur liniowych. S to struktury nie posiadaj ce adresacji

Bardziej szczegółowo

1. Kalkulator czterech działań. 2. Konwersja ciągu znaków do tablicy.

1. Kalkulator czterech działań. 2. Konwersja ciągu znaków do tablicy. 1. Kalkulator czterech działań. Kalkulator czterech działań: +, -, *, \ (bez nawiasów). Wejście: łańcuch znakowy, np. 1+2*3\4-5\2=, -2+4e-1= Liczby mogą być w formacie, np. +1.45, -2, 1e-10. 2. Konwersja

Bardziej szczegółowo

c Marcin Sydow Przepªywy Grafy i Zastosowania Podsumowanie 12: Przepªywy w sieciach

c Marcin Sydow Przepªywy Grafy i Zastosowania Podsumowanie 12: Przepªywy w sieciach 12: w sieciach Spis zagadnie«sieci przepªywowe przepªywy w sieciach ±cie»ka powi kszaj ca tw. Forda-Fulkersona Znajdowanie maksymalnego przepªywu Zastosowania przepªywów Sieci przepªywowe Sie przepªywowa

Bardziej szczegółowo

Teoretyczne podstawy informatyki

Teoretyczne podstawy informatyki Teoretyczne podstawy informatyki Wykład 5b: Model danych oparty na listach http://kiwi.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Słowem wstępu Listy należą do najbardziej

Bardziej szczegółowo

Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach

Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach Teoria obowi zuje z wykªadu, dlatego te» zostan tutaj przedstawione tylko podstawowe denicje, twierdzenia i wzory. Denicja 1. Równanie

Bardziej szczegółowo

Lista 5 Typy dynamiczne kolejka

Lista 5 Typy dynamiczne kolejka Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Metody i języki programowania 1 Wprowadzenie Lista 5 Typy dynamiczne kolejka Kolejka jest jedną z podstawowych struktur umożliwiających

Bardziej szczegółowo

Imi i nazwisko... Egzamin - Programowanie Obiektowe II rok informatyki, studia pierwszego stopnia, niestacjonarne Termin zerowy

Imi i nazwisko... Egzamin - Programowanie Obiektowe II rok informatyki, studia pierwszego stopnia, niestacjonarne Termin zerowy Imi i nazwisko....................................................... Egzamin - Programowanie Obiektowe II rok informatyki, studia pierwszego stopnia, niestacjonarne Termin zerowy 21.01.2017 Instrukcja:

Bardziej szczegółowo

Listy Inne przykªady Rozwi zywanie problemów. Listy w Mathematice. Marcin Karcz. Wydziaª Matematyki, Fizyki i Informatyki.

Listy Inne przykªady Rozwi zywanie problemów. Listy w Mathematice. Marcin Karcz. Wydziaª Matematyki, Fizyki i Informatyki. Wydziaª Matematyki, Fizyki i Informatyki 10 marca 2008 Spis tre±ci Listy 1 Listy 2 3 Co to jest lista? Listy List w Mathematice jest wyra»enie oddzielone przecinkami i zamkni te w { klamrach }. Elementy

Bardziej szczegółowo

Metody dowodzenia twierdze«

Metody dowodzenia twierdze« Metody dowodzenia twierdze«1 Metoda indukcji matematycznej Je±li T (n) jest form zdaniow okre±lon w zbiorze liczb naturalnych, to prawdziwe jest zdanie (T (0) n N (T (n) T (n + 1))) n N T (n). 2 W przypadku

Bardziej szczegółowo

Zbiory ograniczone i kresy zbiorów

Zbiory ograniczone i kresy zbiorów Zbiory ograniczone i kresy zbiorów Def.. Liczb m nazywamy ograniczeniem dolnym a liczb M ograniczeniem górnym zbioru X R gdy (i) x m; (ii) x M. Mówimy,»e zbiór X jest ograniczony z doªu (odp. z góry) gdy

Bardziej szczegółowo

CAŠKOWANIE METODAMI MONTE CARLO Janusz Adamowski

CAŠKOWANIE METODAMI MONTE CARLO Janusz Adamowski III. CAŠKOWAIE METODAMI MOTE CARLO Janusz Adamowski 1 1 azwa metody Podstawowym zastosowaniem w zyce metody Monte Carlo (MC) jest opis zªo-»onych ukªadów zycznych o du»ej liczbie stopni swobody. Opis zªo»onych

Bardziej szczegółowo

Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X.

Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X. Relacje 1 Relacj n-argumentow nazywamy podzbiór ϱ X 1 X 2... X n. Je±li ϱ X Y jest relacj dwuargumentow (binarn ), to zamiast (x, y) ϱ piszemy xϱy. Relacj binarn okre±lon w zbiorze X nazywamy podzbiór

Bardziej szczegółowo

Wykład 6. Dynamiczne struktury danych

Wykład 6. Dynamiczne struktury danych Wykład 6 Dynamiczne struktury danych 1 Plan wykładu Ø Wprowadzenie Ø Popularne dynamiczne struktury danych (ADT) Ø stosy, kolejki, listy opis abstrakcyjny Ø Listy liniowe Ø Implementacja tablicowa stosu

Bardziej szczegółowo

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1 J zyki formalne i operacje na j zykach J zyki formalne s abstrakcyjnie zbiorami sªów nad alfabetem sko«czonym Σ. J zyk formalny L to opis pewnego problemu decyzyjnego: sªowa to kody instancji (wej±cia)

Bardziej szczegółowo

Lekcja 6 Programowanie - Zaawansowane

Lekcja 6 Programowanie - Zaawansowane Lekcja 6 Programowanie - Zaawansowane Akademia im. Jana Dªugosza w Cz stochowie Wst p Wiemy ju»: co to jest program i programowanie, jak wygl da programowanie, jak tworzy programy za pomoc Baltiego. Na

Bardziej szczegółowo

Optymalizacja R dlaczego warto przesi ± si na Linuxa?

Optymalizacja R dlaczego warto przesi ± si na Linuxa? Optymalizacja R dlaczego warto przesi ± si na Linuxa? 19 listopada 2014 Wi cej informacji, wraz z dodatkowymi materiaªami mo»na znale¹ w repozytorium na GitHubie pod adresem https://github.com/zzawadz/

Bardziej szczegółowo

Hotel Hilberta. Zdumiewaj cy ±wiat niesko«czono±ci. Marcin Kysiak. Festiwal Nauki, 20.09.2011. Instytut Matematyki Uniwersytetu Warszawskiego

Hotel Hilberta. Zdumiewaj cy ±wiat niesko«czono±ci. Marcin Kysiak. Festiwal Nauki, 20.09.2011. Instytut Matematyki Uniwersytetu Warszawskiego Zdumiewaj cy ±wiat niesko«czono±ci Instytut Matematyki Uniwersytetu Warszawskiego Festiwal Nauki, 20.09.2011 Nasze do±wiadczenia hotelowe Fakt oczywisty Hotel nie przyjmie nowych go±ci, je»eli wszystkie

Bardziej szczegółowo

INFORMATYKA DANE.

INFORMATYKA DANE. INFORMATYKA DANE http://www.infoceram.agh.edu.pl DANE Dane to zbiory liczb, znaków, sygnałów, wykresów, tekstów, itp., które mogą być przetwarzane. Pojęcie danych jest relatywne i istnieje tylko razem

Bardziej szczegółowo

Etap 2 - Budowa interfejsu. typedef struct ELEMENT* stos; struct ELEMENT { dane Dane; stos Nastepny; }; struct kolejka { stos Poczatek, Koniec; };

Etap 2 - Budowa interfejsu. typedef struct ELEMENT* stos; struct ELEMENT { dane Dane; stos Nastepny; }; struct kolejka { stos Poczatek, Koniec; }; Wykład 6_2 Abstrakcyjne typy danych kolejki. Implementacja za pomocą tablicy i rekurencyjnej struktury danych czyli listy wiązanej Etap 1 - Opis ADT Nazwa typu: Kolejka elementów Własności typu: Potrafi

Bardziej szczegółowo

hala sportowa MOS ul. Złotnicza 12 godzina 10.30

hala sportowa MOS ul. Złotnicza 12 godzina 10.30 hala sportowa MOS ul. Złotnicza 12 godzina 10.30 Ustawienie w rzędzie za linią startu. Na sygnał pierwszy zawodnik pokonuje trasę slalomem, skacząc na gumowej piłce ( na trasie 3 pachołki). Przy tyczce

Bardziej szczegółowo

Lekcja 12 - POMOCNICY

Lekcja 12 - POMOCNICY Lekcja 12 - POMOCNICY 1 Pomocnicy Pomocnicy, jak sama nazwa wskazuje, pomagaj Baltiemu w programach wykonuj c cz ± czynno±ci. S oni szczególnie pomocni, gdy chcemy ci g polece«wykona kilka razy w programie.

Bardziej szczegółowo

Macierze. 1 Podstawowe denicje. 2 Rodzaje macierzy. Denicja

Macierze. 1 Podstawowe denicje. 2 Rodzaje macierzy. Denicja Macierze 1 Podstawowe denicje Macierz wymiaru m n, gdzie m, n N nazywamy tablic liczb rzeczywistych (lub zespolonych) postaci a 11 a 1j a 1n A = A m n = [a ij ] m n = a i1 a ij a in a m1 a mj a mn W macierzy

Bardziej szczegółowo

1 Klasy. 1.1 Denicja klasy. 1.2 Skªadniki klasy.

1 Klasy. 1.1 Denicja klasy. 1.2 Skªadniki klasy. 1 Klasy. Klasa to inaczej mówi c typ który podobnie jak struktura skªada si z ró»nych typów danych. Tworz c klas programista tworzy nowy typ danych, który mo»e by modelem rzeczywistego obiektu. 1.1 Denicja

Bardziej szczegółowo

1 Bª dy i arytmetyka zmiennopozycyjna

1 Bª dy i arytmetyka zmiennopozycyjna 1 Bª dy i arytmetyka zmiennopozycyjna Liczby w pami ci komputera przedstawiamy w ukªadzie dwójkowym w postaci zmiennopozycyjnej Oznacza to,»e s one postaci ±m c, 01 m < 1, c min c c max, (1) gdzie m nazywamy

Bardziej szczegółowo

Task Parallel Library

Task Parallel Library Task Parallel Library Daan Leijen, Wolfram Schulte, and Sebastian Burckhardt prezentacja Michał Albrycht Agenda O potrzebie zrównoleglania Przykłady użycia TPL Tasks and Replicable Tasks Rozdzielanie zadań

Bardziej szczegółowo

Wykłady opracowane zostały w oparciu o materiały prof. dr hab. Jerzego Weresa. Poznań 2009/2010 Algorytmy i struktury danych Krzysztof Nowakowski 2

Wykłady opracowane zostały w oparciu o materiały prof. dr hab. Jerzego Weresa. Poznań 2009/2010 Algorytmy i struktury danych Krzysztof Nowakowski 2 Wykłady opracowane zostały w oparciu o materiały prof. dr hab. Jerzego Weresa Poznań 2009/2010 Algorytmy i struktury danych Krzysztof Nowakowski 2 Struktura danych (ang. data structure) sposób uporządkowania

Bardziej szczegółowo

Zastosowania matematyki

Zastosowania matematyki Zastosowania matematyki Monika Bartkiewicz 1 / 126 ...czy«cie dobrze i po»yczajcie niczego si nie spodziewaj c(šk. 6,34-35) Zagadnienie pobierania procentu jest tak stare jak gospodarka pieni»na. Procent

Bardziej szczegółowo

Granular Computing 9999 pages 15 METODY SZTUCZNEJ INTELIGENCJI - PROJEKTY

Granular Computing 9999 pages 15 METODY SZTUCZNEJ INTELIGENCJI - PROJEKTY Granular Computing 9999 pages 15 METODY SZTUCZNEJ INTELIGENCJI - PROJEKTY PB 2 PB 1 Projekt z wyznaczania reduktów zbioru Liczba osób realizuj cych projekt: 1-2 osoby 1. Wczytanie danych w formatach arf,

Bardziej szczegółowo

Temat: Struktury danych do reprezentacji grafów. Wybrane algorytmy grafowe.

Temat: Struktury danych do reprezentacji grafów. Wybrane algorytmy grafowe. Temat: Struktury danych do reprezentacji grafów. Wybrane algorytmy grafowe. Oznaczenia G = V, E - graf bez wag, gdzie V - zbiór wierzchołków, E- zbiór krawdzi V = n - liczba wierzchołków grafu G E = m

Bardziej szczegółowo

Edyta Juszczyk. Akademia im. Jana Dªugosza w Cz stochowie. Lekcja 1Wst p

Edyta Juszczyk. Akademia im. Jana Dªugosza w Cz stochowie. Lekcja 1Wst p Lekcja 1 Wst p Akademia im. Jana Dªugosza w Cz stochowie Baltie Baltie Baltie jest narz dziem, które sªu»y do nauki programowania dla dzieci od najmªodszych lat. Zostaª stworzony przez Bohumira Soukupa

Bardziej szczegółowo

Podstawy programowania 2. Przygotował: mgr inż. Tomasz Michno

Podstawy programowania 2. Przygotował: mgr inż. Tomasz Michno Instrukcja laboratoryjna 2 Podstawy programowania 2 Temat: Zmienne dynamiczne tablica wskaźników i stos dynamiczny Przygotował: mgr inż. Tomasz Michno 1 Wstęp teoretyczny 1.1 Tablice wskaźników Tablice

Bardziej szczegółowo

1 Strumienie. 2 Pliki. 2.1 Zapis do pliku tekstowego. Programowanie w j zyku C - Adam Krechowicz, Daniel Kaczmarski

1 Strumienie. 2 Pliki. 2.1 Zapis do pliku tekstowego. Programowanie w j zyku C - Adam Krechowicz, Daniel Kaczmarski Programowanie w j zyku C - Adam Krechowicz, Daniel Kaczmarski 1 Strumienie W j zyku C++ pliki obsªugiwane s za pomoc strumieni. Strumie«pozwala na sekwencyjny dost p do pliku. Elementy, które jako pierwsze

Bardziej szczegółowo

wiczenie 1 Podstawy j zyka Java. Instrukcje warunkowe

wiczenie 1 Podstawy j zyka Java. Instrukcje warunkowe wiczenie 1 Podstawy j zyka Java. Instrukcje warunkowe 1 Wprowadzenie 1.1 rodowisko programistyczne NetBeans https://netbeans.org/ 1.2 Dokumentacja j zyka Java https://docs.oracle.com/javase/8/docs/api/

Bardziej szczegółowo

KLASYCZNE ZDANIA KATEGORYCZNE. ogólne - orzekaj co± o wszystkich desygnatach podmiotu szczegóªowe - orzekaj co± o niektórych desygnatach podmiotu

KLASYCZNE ZDANIA KATEGORYCZNE. ogólne - orzekaj co± o wszystkich desygnatach podmiotu szczegóªowe - orzekaj co± o niektórych desygnatach podmiotu ➏ Filozoa z elementami logiki Na podstawie wykªadów dra Mariusza Urba«skiego Sylogistyka Przypomnij sobie: stosunki mi dzy zakresami nazw KLASYCZNE ZDANIA KATEGORYCZNE Trzy znaczenia sªowa jest trzy rodzaje

Bardziej szczegółowo

Temat: Problem najkrótszych cieek w grafach waonych, cz. I: Algorytmy typu label - setting.

Temat: Problem najkrótszych cieek w grafach waonych, cz. I: Algorytmy typu label - setting. Temat: Problem najkrótszych cieek w grafach waonych, cz. I: Algorytmy typu label - setting.. Oznaczenia i załoenia Oznaczenia G = - graf skierowany z funkcj wagi s wierzchołek ródłowy t wierzchołek

Bardziej szczegółowo

Jednowarstwowe Sieci Neuronowe jako. klasykatory do wielu klas. (c) Marcin Sydow

Jednowarstwowe Sieci Neuronowe jako. klasykatory do wielu klas. (c) Marcin Sydow Plan dyskretny perceptron i jego ograniczenia inne funkcje aktywacji wielo-klasykacja przy pomocy jedno-warstwowe sieci neuronowej ograniczenia jedno-warstwowej sieci neuronowej miary ewaluacyjne dla klasykacji

Bardziej szczegółowo

Terminarz rozgrywek Ekstraklasy w sezonie 2016/2017

Terminarz rozgrywek Ekstraklasy w sezonie 2016/2017 1. kolejka 16 lipca 2. kolejka 23 lipca 3. kolejka 30 lipca 4. kolejka 6 sierpnia 5. kolejka 13 sierpnia 6. kolejka 20 sierpnia 7. kolejka 27 sierpnia 8. kolejka 10 września 9. kolejka 17 września 10.

Bardziej szczegółowo

. Podstawy Programowania 2. Kolejki i ich zastosowania. Arkadiusz Chrobot. 21 marca 2016

. Podstawy Programowania 2. Kolejki i ich zastosowania. Arkadiusz Chrobot. 21 marca 2016 .. Podstawy Programowania 2 Kolejki i ich zastosowania Arkadiusz Chrobot Zakład Informatyki 21 marca 2016 1 / 60 Plan.1 Kolejki i ich klasyfikacja.2 Kolejka fifo Implementacja za pomocą tablicy.3 Testowanie

Bardziej szczegółowo

WFiIS Imi i nazwisko: Rok: Zespóª: Nr wiczenia: Fizyka Dominik Przyborowski IV 5 22 J drowa Katarzyna Wolska

WFiIS Imi i nazwisko: Rok: Zespóª: Nr wiczenia: Fizyka Dominik Przyborowski IV 5 22 J drowa Katarzyna Wolska WFiIS Imi i nazwisko: Rok: Zespóª: Nr wiczenia: Fizyka Dominik Przyborowski IV 5 22 J drowa Katarzyna Wolska Temat wiczenia: Wyznaczanie stosunku przekrojów czynnych na aktywacj neutronami termicznymi

Bardziej szczegółowo

Uczenie Wielowarstwowych Sieci Neuronów o

Uczenie Wielowarstwowych Sieci Neuronów o Plan uczenie neuronu o ci gªej funkcji aktywacji uczenie jednowarstwowej sieci neuronów o ci gªej funkcji aktywacji uczenie sieci wielowarstwowej - metoda propagacji wstecznej neuronu o ci gªej funkcji

Bardziej szczegółowo

Wstawianie gotowych rysunków w texu - informacje podstawowe.

Wstawianie gotowych rysunków w texu - informacje podstawowe. Wstawianie gotowych rysunków w texu - informacje podstawowe. By móc wstawi rysunek musimy w preambule pliku dopisa odpowiedni pakiet komend : \usepackage. W przypadku graki doª czamy pakiet:graphicx, (nieco

Bardziej szczegółowo

Bash i algorytmy. Elwira Wachowicz. 20 lutego

Bash i algorytmy. Elwira Wachowicz. 20 lutego Bash i algorytmy Elwira Wachowicz elwira@ifd.uni.wroc.pl 20 lutego 2012 Elwira Wachowicz (elwira@ifd.uni.wroc.pl) Bash i algorytmy 20 lutego 2012 1 / 16 Inne przydatne polecenia Polecenie Dziaªanie Przykªad

Bardziej szczegółowo

Lekcja 9 - LICZBY LOSOWE, ZMIENNE

Lekcja 9 - LICZBY LOSOWE, ZMIENNE Lekcja 9 - LICZBY LOSOWE, ZMIENNE I STAŠE 1 Liczby losowe Czasami spotkamy si z tak sytuacj,»e b dziemy potrzebowa by program za nas wylosowaª jak ± liczb. U»yjemy do tego polecenia: - liczba losowa Sprawd¹my

Bardziej szczegółowo

EDUKARIS - O±rodek Ksztaªcenia

EDUKARIS - O±rodek Ksztaªcenia - O±rodek Ksztaªcenia Zabrania si kopiowania i rozpowszechniania niniejszego regulaminu przez inne podmioty oraz wykorzystywania go w dziaªalno±ci innych podmiotów. Autor regulaminu zastrzega do niego

Bardziej szczegółowo

. Podstawy Programowania 2. Jednokierunkowa lista liniowa. Arkadiusz Chrobot. 28 marca 2017

. Podstawy Programowania 2. Jednokierunkowa lista liniowa. Arkadiusz Chrobot. 28 marca 2017 .. Podstawy Programowania 2 Jednokierunkowa lista liniowa Arkadiusz Chrobot Zakład Informatyki 28 marca 2017 1 / 57 Plan.1 Jednokierunkowa lista liniowa.2 Implementacja Typ bazowy i wskaźnik listy Tworzenie

Bardziej szczegółowo

PROGRAM PRZECIWDZIAŁANIA PRZEMOCY W RODZINIE ORAZ OCHRONY OFIAR PRZEMOCY W RODZINIE W GMINIE LIPNO NA LATA 2011-2015

PROGRAM PRZECIWDZIAŁANIA PRZEMOCY W RODZINIE ORAZ OCHRONY OFIAR PRZEMOCY W RODZINIE W GMINIE LIPNO NA LATA 2011-2015 PROGRAM PRZECIWDZIAŁANIA PRZEMOCY W RODZINIE ORAZ OCHRONY OFIAR PRZEMOCY W RODZINIE W GMINIE LIPNO NA LATA 2011-2015 LIPNO, MARZEC 2011 GMINNY SYSTEM PRZECIWDZIAŁANIA PRZEMOCY W RODZINIE PODSTAWA PRAWNA

Bardziej szczegółowo

Komputerowa Ksiga Podatkowa Wersja 11.4 ZAKOCZENIE ROKU

Komputerowa Ksiga Podatkowa Wersja 11.4 ZAKOCZENIE ROKU Komputerowa Ksiga Podatkowa Wersja 11.4 ZAKOCZENIE ROKU Przed przystpieniem do liczenia deklaracji PIT-36, PIT-37, PIT-O i zestawienia PIT-D naley zapozna si z objanieniami do powyszych deklaracji. Uwaga:

Bardziej szczegółowo

Informatyka 2. Wykład nr 5 ( ) Plan wykładu nr 5. Politechnika Białostocka. - Wydział Elektryczny. Odwrotna notacja polska.

Informatyka 2. Wykład nr 5 ( ) Plan wykładu nr 5. Politechnika Białostocka. - Wydział Elektryczny. Odwrotna notacja polska. Rok akademicki 008/009, Wykład nr 5 /6 Plan wykładu nr 5 Informatyka Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia niestacjonarne I stopnia (zaoczne) Rok akademicki

Bardziej szczegółowo

Programowanie obiektowe

Programowanie obiektowe Programowanie obiektowe Sieci powiązań Paweł Daniluk Wydział Fizyki Jesień 2015 P. Daniluk (Wydział Fizyki) PO w. IX Jesień 2015 1 / 21 Sieci powiązań Można (bardzo zgrubnie) wyróżnić dwa rodzaje powiązań

Bardziej szczegółowo