Janusz Adamowski METODY OBLICZENIOWE FIZYKI Zastosowanie eliptycznych równa«ró»niczkowych

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Janusz Adamowski METODY OBLICZENIOWE FIZYKI Zastosowanie eliptycznych równa«ró»niczkowych"

Transkrypt

1 Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdziaª 9 RÓWNANIA ELIPTYCZNE 9.1 Zastosowanie eliptycznych równa«ró»niczkowych cz stkowych Problemy z warunkami brzegowymi W przestrzeni dwuwymiarowej problemy te opisane s za pomoc równa«eliptycznych równa«o postaci ( ) 2 x + 2 ϕ(x, y) = S(x, y). (9.1) 2 y 2 Przykªadowe zastosowania równania (9.1) to: (i) Równanie Poissona w elektrostatyce: w tym przypadku ϕ jest potencjaªem elektrostatycznym, a S funkcj ¹ródªa, okre±lon przez rozkªad ªadunku S = ϱ/ε 0. (ii) Równanie opisuj ce stacjonarny przepªyw ciepªa: w tym przypadku ϕ = T = temperatura, a S jest szybko±ci ogrzewania lub chªodzenia. Warunki brzegowe dla problemu opisanego równaniem (9.1) zadajemy na brzegach obszaru D okre±lono±ci ϕ(x, y). Mo»na zada dodatkowe warunki brzegowe na dowolnej krzywej C wewn trz obszaru D. Dla wygody dalszych rozwa»a«wybieramy D jako jednostkowy kwadrat na pªaszczy¹nie xy (Rys. 9.1).

2 2 Rozdziaª 9. Równania eliptyczne \ & 5\V Rys Obszar D i kontur C. [ ' Problemy wªasne: równanie Schr dingera niezale»ne od czasu Równanie to ma posta ( ) h2 2 2m x + 2 ψ(x, y) + U(x, y)ψ = Eψ(x, y). (9.2) 2 y 2 W tym przypadku warunki brzegowe zadane s w postaci Dirichleta. Równanie (9.2) mo»e by rozwi zywane podobnie do równania (9.1). W zwi zku z tym skoncentrujemy si teraz nad metodami numerycznymi rozwi zania równania (9.1). Nale»y jedynie zauwa»y,»e w równaniu Schr dingera wyst puje dodatkowa niewiadoma: warto± wªasna E, któr znajdujemy np. z warunków brzegowych na funkcj falow. 9.2 Dyskretyzacja równania h. Na pªaszczy¹nie x y wprowadzamy jednorodn sie w zªów o staªej sieci

3 Janusz Adamowski METODY OBLICZENIOWE FIZYKI 3 \ 1 \ \ L 5\V K [ \ [ L [ [ 1 Rys Sie w zªów w kwadracie jednostkowym na pªaszczy¹nie x y. W zªy sieci (x i, y j ): x i = ih, gdzie i = 0, 1,..., N, y j = jh, gdzie j = 0, 1,..., N. Ponadto deniujemy oraz ϕ ij df = ϕ(xi, y j ) (9.3) S ij df = S(xi, y j ). (9.4) Stosujemy trójpunktowe przybli»enie drugiej pochodnej w ka»dym kierunku i otrzymujemy posta ró»nicow równania (9.1) ( ϕi+1,j 2ϕ ij + ϕ i 1,j h 2 + ϕ ) i,j+1 2ϕ ij + ϕ i,j+1 = S h 2 ij. (9.5) 9.3 Jednowymiarowe równanie Poissona d2 ϕ = S(x). (9.6) dx2

4 4 Rozdziaª 9. Równania eliptyczne Równanie (9.6) po dyskretyzacji ϕ i 1 2ϕ i + ϕ i+1 = h 2 S i (9.7) stanowi ukªad równa«liniowych na niewiadome ϕ i. 9.4 Metoda macierzowa Zaªó»my,»e zadane warunki brzegowe dla ukªadu równa«(9.7) maj posta ϕ 0 = c 0, ϕ N = c N. (9.8) Wtedy ukªad równa«(9.7) mo»na zapisa w postaci macierzowej AΦ = C, (9.9) gdzie Φ i C s (N + 1)-elementowymi macierzami jednokolumnowymi Φ = ϕ 0 ϕ 1. ϕ N 1 ϕ N c 0 h 2 S 1 C =. h 2 S N 1 c N A jest macierz kwadratow (N + 1) (N + 1) o postaci A = (9.10) (9.11) (9.12) W ten sposób problem (9.7)zostaª zredukowany do zagadnienia rozwi zywania ukªadu równa«liniowych o ogólnej postaci (9.9). Ukªady takie mo»na rozwi zywa korzystaj c z tego,»e odpowiedne macierze A s rzadkie, tzn. wi kszo± ich elementów jest równa zero. Np. w przypadku jednowymiarowym jest to macierz trójprzek tniowa (9.12), dla której istniej bardzo efektywne metody numeryczne.

5 Janusz Adamowski METODY OBLICZENIOWE FIZYKI Metoda relaksacyjna Metoda ta bazuje na iteracyjnej procedurze rozwi zywania problemu brzegowego. Rozwi zujemy równanie (9.7) ze wzgl du na ϕ i i otrzymujemy ϕ i = 1 2 (ϕ i 1 + ϕ i+1 + h 2 S i ) (9.13) Je»eli warto±ci ϕ i 1 oraz ϕ i+1 s znane, to wzór (9.13) mo»na interpretowa jako algorytm poprawiania przybli»e«dla ϕ i bazuj cy na s siednich w zªach sieci. Oznaczamy przez ϕ (s) i warto±ci zmiennej zale»nej w s-tym kroku iteracyjnym. Wtedy ϕ (s+1) i = 1 2 [ϕ(s) i 1 + ϕ (s) i+1 + h 2 S i ] (9.14) Rozwi zanie startowe ϕ (0) i mo»e by wybrane w sposób dowolny. Procedura iteracyjna z u»yciem wzoru (9.14) jest nazywana metod GaussaSeidla Przyspieszenie zbie»no±ci iteracji Zmierzanie warto±ci ϕ (s) i otrzymanych w kolejnych krokach iteracji do warto±ci poprawnych mo»e by potraktowane jako pewien zyczny proces relaksacji. Szybko± zbie»no±ci procedury iteracyjnej (szybko± relaksacji) mo»na zmieni wprowadzaj c parametr relaksacji ω. Wtedy w ka»dym kroku iteracji ϕ (s+1) i = (1 ω)ϕ (s) i + ω 2 [ϕ(s) i 1 + ϕ (s) i+1 + h 2 S i ]. (9.15) Warto± parametru relaksacji ω wybieramy metod prób i bª dów tak, aby uzyska najwi ksz szybko± zbie»no±ci procedury iteracyjnej. W przypadku jednowymiarowym mo»na pokaza,»e optymalne warto±ci parametru relaksacji s zawarte w przedziale 0 < ω < 2. (9.16) 9.6 Metoda relaksacyjna dla problemów dwuwymiarowych Dla dwóch zmiennych niezale»nych równanie ró»nicowe ma posta 4ϕ ij ϕ i+1,j ϕ i 1,j ϕ i,j+1 ϕ i,j 1 = h 2 S ij. (9.17)

6 6 Rozdziaª 9. Równania eliptyczne Rozwi zujemy je ze wzgl du na ϕ ij i otrzymujemy ϕ ij = 1 4 (ϕ i+1,j + ϕ i,j+1 + ϕ i 1,j + ϕ i,j 1 + h 2 S ij ), (9.18) Stosujemy uogólniony schemat iteracyjny (9.15) ϕ (s+1) ij = (1 ω)ϕ (s) ij + ωψ (s) ij, (9.19) gdzie ψ (s) ij = 1 ( (s) ϕ i+1,j + ϕ (s) i 1,j + ϕ (s) i,j+1 + ϕ (s) ) i,j 1 + h 2 S ij (9.20) 4 Rachunki wedªug schematu (9.20) wykonujemy dla ka»dego w zªa sieci na pªaszczy¹nie x y.

Metody numeryczne i statystyka dla in»ynierów

Metody numeryczne i statystyka dla in»ynierów Kierunek: Automatyka i Robotyka, II rok Ukªady równa«liniowych PWSZ Gªogów, 2009 Motywacje Zagadnienie kluczowe dla przetwarzania numerycznego Wiele innych zada«redukuje si do problemu rozwi zania ukªadu

Bardziej szczegółowo

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15 ANALIZA NUMERYCZNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Metoda Eulera 3 1.1 zagadnienia brzegowe....................... 3 1.2 Zastosowanie ró»niczki...................... 4 1.3 Output do pliku

Bardziej szczegółowo

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x, y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0, y 0 ) Pochodn cz stkow pierwszego rz du funkcji dwóch zmiennych wzgl

Bardziej szczegółowo

Metody numeryczne i statystyka dla in»ynierów

Metody numeryczne i statystyka dla in»ynierów Kierunek: Automatyka i Robotyka, II rok Aproksymacja cz. II, wielomiany ortogonalne zastosowania PWSZ Gªogów, 2009 Iloczyn skalarny Funkcja okre±lona na przestrzeni liniowej (, ) R iloczyn skalarny wektorów

Bardziej szczegółowo

Ekstremalnie fajne równania

Ekstremalnie fajne równania Ekstremalnie fajne równania ELEMENTY RACHUNKU WARIACYJNEGO Zaczniemy od ogólnych uwag nt. rachunku wariacyjnego, który jest bardzo przydatnym narz dziem mog cym posªu»y do rozwi zywania wielu problemów

Bardziej szczegółowo

5 Równania ró»niczkowe cz stkowe liniowe drugiego

5 Równania ró»niczkowe cz stkowe liniowe drugiego Równania ró»niczkowe cz stkowe drugiego rz du 51 5 Równania ró»niczkowe cz stkowe liniowe drugiego rz du. 5.1 Równania ró»niczkowe cz stkowe drugiego rz du dla funkcji dwóch zmiennych Dla funkcji u = u(x,

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych dr Krzysztof yjewski Informatyka I rok I 0 in» 12 stycznia 2016 Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0 y 0 )

Bardziej szczegółowo

Aproksymacja funkcji metod najmniejszych kwadratów

Aproksymacja funkcji metod najmniejszych kwadratów Aproksymacja funkcji metod najmniejszych kwadratów Teoria Interpolacja polega na znajdowaniu krzywej przechodz cej przez wszystkie w zªy. Zdarzaj si jednak sytuacje, w których dane te mog by obarczone

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. II Ekstrema funkcji wielu zmiennych, twierdzenia o funkcji odwrotnej i funkcji uwikªanej

Zadania z analizy matematycznej - sem. II Ekstrema funkcji wielu zmiennych, twierdzenia o funkcji odwrotnej i funkcji uwikªanej Zadania z analizy matematycznej - sem. II Ekstrema funkcji wielu zmiennych, twierdzenia o funkcji odwrotnej i funkcji uwikªanej Denicja 1. Niech X = R n b dzie przestrzeni unormowan oraz d(x, y) = x y.

Bardziej szczegółowo

Ukªady równa«liniowych - rozkªady typu LU i LL'

Ukªady równa«liniowych - rozkªady typu LU i LL' Rozdziaª 9 Ukªady równa«liniowych - rozkªady typu LU i LL' W tym rozdziale zapoznamy si z metodami sªu» cych do rozwi zywania ukªadów równa«liniowych przy pomocy uzyskiwaniu odpowiednich rozkªadów macierzy

Bardziej szczegółowo

ANALIZA MATEMATYCZNA Z ALGEBR

ANALIZA MATEMATYCZNA Z ALGEBR ANALIZA MATEMATYCZNA Z ALGEBR WYKŠAD II Maªgorzata Murat MACIERZ A rzeczywist (zespolon ) o m wierszach i n kolumnach nazywamy przyporz dkowanie ka»dej uporz dkowanej parze liczb naturalnych (i, j), gdzie

Bardziej szczegółowo

Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna

Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna 1. Podaj denicj liczby zespolonej. 2. Jak obliczy sum /iloczyn dwóch liczb zespolonych w postaci algebraicznej? 3. Co to jest liczba urojona?

Bardziej szczegółowo

1 Metody iteracyjne rozwi zywania równania f(x)=0

1 Metody iteracyjne rozwi zywania równania f(x)=0 1 Metody iteracyjne rozwi zywania równania f()=0 1.1 Metoda bisekcji Zaªó»my,»e funkcja f jest ci gªa w [a 0, b 0 ]. Pierwiastek jest w przedziale [a 0, b 0 ] gdy f(a 0 )f(b 0 ) < 0. (1) Ustalmy f(a 0

Bardziej szczegółowo

1 Ró»niczka drugiego rz du i ekstrema

1 Ró»niczka drugiego rz du i ekstrema Plan Spis tre±ci 1 Pochodna cz stkowa 1 1.1 Denicja................................ 1 1.2 Przykªady............................... 2 1.3 Wªasno±ci............................... 2 1.4 Pochodne wy»szych

Bardziej szczegółowo

1 Granice funkcji wielu zmiennych.

1 Granice funkcji wielu zmiennych. AM WNE 008/009. Odpowiedzi do zada«przygotowawczych do czwartego kolokwium. Granice funkcji wielu zmiennych. Zadanie. Zadanie. Pochodne. (a) 0, Granica nie istnieje, (c) Granica nie istnieje, (d) Granica

Bardziej szczegółowo

1 Bª dy i arytmetyka zmiennopozycyjna

1 Bª dy i arytmetyka zmiennopozycyjna 1 Bª dy i arytmetyka zmiennopozycyjna Liczby w pami ci komputera przedstawiamy w ukªadzie dwójkowym w postaci zmiennopozycyjnej Oznacza to,»e s one postaci ±m c, 01 m < 1, c min c c max, (1) gdzie m nazywamy

Bardziej szczegółowo

CAŠKOWANIE METODAMI MONTE CARLO Janusz Adamowski

CAŠKOWANIE METODAMI MONTE CARLO Janusz Adamowski III. CAŠKOWAIE METODAMI MOTE CARLO Janusz Adamowski 1 1 azwa metody Podstawowym zastosowaniem w zyce metody Monte Carlo (MC) jest opis zªo-»onych ukªadów zycznych o du»ej liczbie stopni swobody. Opis zªo»onych

Bardziej szczegółowo

Rachunek caªkowy funkcji wielu zmiennych

Rachunek caªkowy funkcji wielu zmiennych Rachunek caªkowy funkcji wielu zmiennych I. Malinowska, Z. Šagodowski Politechnika Lubelska 8 czerwca 2015 Caªka iterowana podwójna Denicja Je»eli funkcja f jest ci gªa na prostok cie P = {(x, y) : a x

Bardziej szczegółowo

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14 WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkibiel Wiosna 2013/14 Spis tre±ci 1 Kodowanie i dekodowanie 4 1.1 Kodowanie a szyfrowanie..................... 4 1.2 Podstawowe poj cia........................

Bardziej szczegółowo

Metody dowodzenia twierdze«

Metody dowodzenia twierdze« Metody dowodzenia twierdze«1 Metoda indukcji matematycznej Je±li T (n) jest form zdaniow okre±lon w zbiorze liczb naturalnych, to prawdziwe jest zdanie (T (0) n N (T (n) T (n + 1))) n N T (n). 2 W przypadku

Bardziej szczegółowo

Statystyka matematyczna - ZSTA LMO

Statystyka matematyczna - ZSTA LMO Statystyka matematyczna - ZSTA LMO Šukasz Smaga Wydziaª Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza w Poznaniu Wykªad 4 Šukasz Smaga (WMI UAM) ZSTA LMO Wykªad 4 1 / 18 Wykªad 4 - zagadnienia

Bardziej szczegółowo

Modele wielorównaniowe. Problem identykacji

Modele wielorównaniowe. Problem identykacji Modele wielorównaniowe. Problem identykacji Ekonometria Szeregów Czasowych SGH Identykacja 1 / 43 Plan wykªadu 1 Wprowadzenie 2 Trzy przykªady 3 Przykªady: interpretacja 4 Warunki identykowalno±ci 5 Restrykcje

Bardziej szczegółowo

Macierz A: macierz problemów liniowych (IIII); Macierz rozszerzona problemów liniowych (IIII): a 11 a 1m b 1 B = a n1 a nm b n

Macierz A: macierz problemów liniowych (IIII); Macierz rozszerzona problemów liniowych (IIII): a 11 a 1m b 1 B = a n1 a nm b n Plan Spis tre±ci 1 Problemy liniowe 1 2 Zadania I 3 3 Formy biliniowe 3 3.1 Odwzorowania wieloliniowe..................... 3 3.2 Formy biliniowe............................ 4 4 Formy kwadratowe 4 1 Problemy

Bardziej szczegółowo

Teoria Sterowania. Warunki zaliczenia

Teoria Sterowania. Warunki zaliczenia Teoria Sterowania Warunki zaliczenia. Pytania. Tematy µ-projektów. 3.5 poprawne zaliczenie testu; Warunki zaliczenia 4 poprawne zaliczenie testu + poprawne rozwi zanie kilku zada«(pliki Alin, TS-skrypt1,

Bardziej szczegółowo

Metody numeryczne i statystyka dla in»ynierów

Metody numeryczne i statystyka dla in»ynierów Kierunek: Automatyka i Robotyka, II rok Interpolacja PWSZ Gªogów, 2009 Interpolacja Okre±lenie zale»no±ci pomi dzy interesuj cymi nas wielko±ciami, Umo»liwia uproszczenie skomplikowanych funkcji (np. wykorzystywana

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

Dynamiczne wªasno±ci algorytmu propagacji przekona«

Dynamiczne wªasno±ci algorytmu propagacji przekona« BP propagacji przekona«4. Interdyscyplinarne Warsztaty Matematyczne Wydziaª Fizyki Politechnika Warszawska B dlewo, 26 maja, 2013 BP 1 2 3 4 5 6 BP Rysunek: Zbiór zmiennych losowych. BP Rysunek: Zbiór

Bardziej szczegółowo

Rys.2 N = H (N cos = N) : (1) H y = q x2. y = q x2 2 H : (3) Warto± siªy H, która mo»e by uto»samiana z siª naci gu kabla, jest równa: z (3) przy

Rys.2 N = H (N cos = N) : (1) H y = q x2. y = q x2 2 H : (3) Warto± siªy H, która mo»e by uto»samiana z siª naci gu kabla, jest równa: z (3) przy XXXV OLIMPIADA WIEDZY TECHNICZNEJ Zawody III stopnia Rozwi zania zada«dla grupy mechaniczno-budowlanej Rozwi zanie zadania Tzw. maªy zwis, a wi c cos. W zwi zku z tym mo»na przyj,»e Rys. N H (N cos N)

Bardziej szczegółowo

Metody numeryczne. Wst p do metod numerycznych. Dawid Rasaªa. January 9, 2012. Dawid Rasaªa Metody numeryczne 1 / 9

Metody numeryczne. Wst p do metod numerycznych. Dawid Rasaªa. January 9, 2012. Dawid Rasaªa Metody numeryczne 1 / 9 Metody numeryczne Wst p do metod numerycznych Dawid Rasaªa January 9, 2012 Dawid Rasaªa Metody numeryczne 1 / 9 Metody numeryczne Czym s metody numeryczne? Istota metod numerycznych Metody numeryczne s

Bardziej szczegółowo

Ekonometria Bayesowska

Ekonometria Bayesowska Ekonometria Bayesowska Wykªad 9: Metody numeryczne: MCMC Andrzej Torój 1 / 17 Plan wykªadu Wprowadzenie 1 Wprowadzenie 3 / 17 Plan prezentacji Wprowadzenie 1 Wprowadzenie 3 3 / 17 Zastosowanie metod numerycznych

Bardziej szczegółowo

Przeksztaªcenia liniowe

Przeksztaªcenia liniowe Przeksztaªcenia liniowe Przykªady Pokaza,»e przeksztaªcenie T : R 2 R 2, postaci T (x, y) = (x + y, x 6y) jest przeksztaªceniem liniowym Sprawdzimy najpierw addytywno± przeksztaªcenia T Niech v = (x, y

Bardziej szczegółowo

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14 WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkibiel Wiosna 203/4 Spis tre±ci Kodowanie i dekodowanie 4. Kodowanie a szyfrowanie..................... 4.2 Podstawowe poj cia........................

Bardziej szczegółowo

Pewne algorytmy algebry liniowej Andrzej Strojnowski

Pewne algorytmy algebry liniowej Andrzej Strojnowski Pewne algorytmy algebry liniowej ndrzej Strojnowski 6 stycznia 2011 Przedstawimy tu kilka algorytmów rozwi zuj ce typowe zadania algebry liniowej Wszystkie zaprezentowane tu algorytmy polegaj na zbudowaniu

Bardziej szczegółowo

Caªkowanie numeryczne - porównanie skuteczno±ci metody prostokatów, metody trapezów oraz metody Simpsona

Caªkowanie numeryczne - porównanie skuteczno±ci metody prostokatów, metody trapezów oraz metody Simpsona Akademia Górniczo-Hutnicza im. Stanisªawa Staszica w Krakowie Wydziaª Fizyki i Informatyki Stosowanej Krzysztof Grz dziel kierunek studiów: informatyka stosowana Caªkowanie numeryczne - porównanie skuteczno±ci

Bardziej szczegółowo

Wykªad 4. Funkcje wielu zmiennych.

Wykªad 4. Funkcje wielu zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 4. Funkcje wielu zmiennych. Zbiory na pªaszczy¹nie i w przestrzeni.

Bardziej szczegółowo

Spis tre±ci. 1 Gradient. 1.1 Pochodna pola skalarnego. Plan

Spis tre±ci. 1 Gradient. 1.1 Pochodna pola skalarnego. Plan Plan Spis tre±ci 1 Gradient 1 1.1 Pochodna pola skalarnego...................... 1 1.2 Gradient................................ 3 1.3 Operator Hamiltona......................... 4 2 Ró»niczkowanie pola

Bardziej szczegółowo

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu 1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie

Bardziej szczegółowo

5. Równania różniczkowe zwyczajne pierwszego rzędu

5. Równania różniczkowe zwyczajne pierwszego rzędu 5. Równania różniczkowe zwyczajne pierwszego rzędu 5.1. Wstęp. Definicja 5.1. Niech V R 3 będzie obszarem oraz F : V R. Równaniem różniczkowym zwyczajnym rzędu pierwszego nazywamy równanie postaci Równanie

Bardziej szczegółowo

Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach

Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach Teoria obowi zuje z wykªadu, dlatego te» zostan tutaj przedstawione tylko podstawowe denicje, twierdzenia i wzory. Denicja 1. Równanie

Bardziej szczegółowo

Modele wielorównaniowe. Estymacja parametrów

Modele wielorównaniowe. Estymacja parametrów Modele wielorównaniowe. Estymacja parametrów Ekonometria Szeregów Czasowych SGH Estymacja 1 / 47 Plan wykªadu 1 Po±rednia MNK 2 Metoda zmiennych instrumentalnych 3 Podwójna MNK 4 Estymatory klasy k 5 MNW

Bardziej szczegółowo

Strategie zabezpieczaj ce

Strategie zabezpieczaj ce 04062008 Plan prezentacji Model binarny Model Black Scholesa Bismut- Elworthy -Li formuła Model binarny i opcja call Niech cena akcji w chwili pocz tkowej wynosi S 0 = 21 Zaªó»my,»e ceny akcji po trzech

Bardziej szczegółowo

Spis tre±ci. Plan. 1 Pochodna cz stkowa. 1.1 Denicja Przykªady Wªasno±ci Pochodne wy»szych rz dów... 3

Spis tre±ci. Plan. 1 Pochodna cz stkowa. 1.1 Denicja Przykªady Wªasno±ci Pochodne wy»szych rz dów... 3 Plan Spis tre±ci 1 Pochodna cz stkowa 1 1.1 Denicja................................ 2 1.2 Przykªady............................... 2 1.3 Wªasno±ci............................... 2 1.4 Pochodne wy»szych

Bardziej szczegółowo

Rachunek ró»niczkowy funkcji jednej zmiennej

Rachunek ró»niczkowy funkcji jednej zmiennej Lista Nr 5 Rachunek ró»niczkowy funkcji jednej zmiennej 5.0. Obliczanie pochodnej funkcji Pochodne funkcji podstawowych. f() = α f () = α α. f() = log a f () = ln a '. f() = ln f () = 3. f() = a f () =

Bardziej szczegółowo

x = (x 1, x 2,..., x n ), p = (p 1, p 2,..., p n )

x = (x 1, x 2,..., x n ), p = (p 1, p 2,..., p n ) *** Elementy teorii popytu *** II. Funkcja popytu konsumenta x = (x 1, x 2,..., x n ), p = (p 1, p 2,..., p n ) p, x = p 1 x 1 + p 2 x 2 + + p n x n cena koszyka x Zbiór wszystkich koszyków, na jakie sta

Bardziej szczegółowo

Przykªady problemów optymalizacji kombinatorycznej

Przykªady problemów optymalizacji kombinatorycznej Przykªady problemów optymalizacji kombinatorycznej Problem Komiwoja»era (PK) Dane: n liczba miast, n Z +, c ji, i, j {1,..., n}, i j odlegªo± mi dzy miastem i a miastem j, c ji = c ij, c ji R +. Zadanie:

Bardziej szczegółowo

ZADANIA. Maciej Zakarczemny

ZADANIA. Maciej Zakarczemny ZADANIA Maciej Zakarczemny 2 Spis tre±ci 1 Algebra 5 2 Analiza 7 2.1 Granice iterowane, granica podwójna funkcji dwóch zmiennych....... 7 2.2 Caªki powierzchniowe zorientowane...................... 8 2.2.1

Bardziej szczegółowo

przewidywania zapotrzebowania na moc elektryczn

przewidywania zapotrzebowania na moc elektryczn do Wykorzystanie do na moc elektryczn Instytut Techniki Cieplnej Politechnika Warszawska Slide 1 of 20 do Coraz bardziej popularne staj si zagadnienia zwi zane z prac ¹ródªa energii elektrycznej (i cieplnej)

Bardziej szczegółowo

y i b) metoda różnic skończonych nadal problem nieliniowy 2 go rzędu z warunkiem Dirichleta

y i b) metoda różnic skończonych nadal problem nieliniowy 2 go rzędu z warunkiem Dirichleta b) metoda różnic skończonych nadal problem nieliniowy 2 go rzędu z warunkiem Dirichleta przedział (a,b) dzielimy na siatkę, powiedzmy o stałym kroku: punkty siatki: u A y i w metodzie strzałów używamy

Bardziej szczegółowo

wiczenie nr 3 z przedmiotu Metody prognozowania kwiecie«2015 r. Metodyka bada«do±wiadczalnych dr hab. in». Sebastian Skoczypiec Cel wiczenia Zaªo»enia

wiczenie nr 3 z przedmiotu Metody prognozowania kwiecie«2015 r. Metodyka bada«do±wiadczalnych dr hab. in». Sebastian Skoczypiec Cel wiczenia Zaªo»enia wiczenie nr 3 z przedmiotu Metody prognozowania kwiecie«2015 r. wiczenia 1 2 do wiczenia 3 4 Badanie do±wiadczalne 5 pomiarów 6 7 Cel Celem wiczenia jest zapoznanie studentów z etapami przygotowania i

Bardziej szczegółowo

2. Równania nieliniowe i ich uk lady

2. Równania nieliniowe i ich uk lady Metoda Newtona stycznych dla równania f(x) 0: x n+ x n f(x n) f (x n ) Chcemy rozwia ι zać uk lad N równań dla N niewiadomych f (x,x,,x N ) 0 f (x,x,,x N ) 0, f N (x,x,,x N ) 0 krócej: Czy jest jakaś analogia?

Bardziej szczegółowo

Metody numeryczne i statystyka dla in»ynierów

Metody numeryczne i statystyka dla in»ynierów Kierunek: Automatyka i Robotyka, II rok Wprowadzenie PWSZ Gªogów, 2009 Plan wykªadów Wprowadzenie, podanie zagadnie«, poj cie metody numerycznej i algorytmu numerycznego, obszar zainteresowa«i stosowalno±ci

Bardziej szczegółowo

ELEMENTARNA TEORIA LICZB. 1. Podzielno±

ELEMENTARNA TEORIA LICZB. 1. Podzielno± ELEMENTARNA TEORIA LICZB IZABELA AGATA MALINOWSKA N = {1, 2,...} 1. Podzielno± Denicja 1.1. Niepusty podzbiór A zbioru liczb naturalnych jest ograniczony, je»eli istnieje taka liczba naturalna n 0,»e m

Bardziej szczegółowo

Schematy blokowe ukªadów automatyki

Schematy blokowe ukªadów automatyki Rozdziaª 1 Schematy blokowe ukªadów automatyki Autorzy: Marcin Stachura 1.1 Algebra schematów blokowych 1.1.1 Zasady przeksztaªcania schematów blokowych W celu uproszczenia wypadkowej transmitancji operatorowej

Bardziej szczegółowo

Makroekonomia Zaawansowana

Makroekonomia Zaawansowana Makroekonomia Zaawansowana wiczenia 1 Stan ustalony i log-linearyzacja MZ 1 / 27 Plan wicze«1 Praca z modelami DSGE 2 Stan ustalony 3 Log-linearyzacja 4 Zadania MZ 2 / 27 Plan prezentacji 1 Praca z modelami

Bardziej szczegółowo

Graka komputerowa Wykªad 3 Geometria pªaszczyzny

Graka komputerowa Wykªad 3 Geometria pªaszczyzny Graka komputerowa Wykªad 3 Geometria pªaszczyzny Instytut Informatyki i Automatyki Pa«stwowa Wy»sza Szkoªa Informatyki i Przedsi biorczo±ci w Šom»y 2 0 0 9 Spis tre±ci Spis tre±ci 1 Przeksztaªcenia pªaszczyzny

Bardziej szczegółowo

Liczby zespolone Pochodna Caªka nieoznaczona i oznaczona Podstawowe wielko±ci zyczne. Repetytorium z matematyki

Liczby zespolone Pochodna Caªka nieoznaczona i oznaczona Podstawowe wielko±ci zyczne. Repetytorium z matematyki Repetytorium z matematyki Denicja liczb zespolonych Wyra»enie a + bi, gdzie a i b s liczbami rzeczywistymi a i speªnia zale»no± i 2 = 1, nazywamy liczb zespolon. Liczb i nazywamy jednostk urojon, a iloczyn

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Funkcja kwadratowa, wielomiany oraz funkcje wymierne

Funkcja kwadratowa, wielomiany oraz funkcje wymierne Funkcja kwadratowa, wielomiany oraz funkcje wymierne Šukasz Dawidowski Nocne powtórki maturalne 28 kwietnia 2014 r. Troch teorii Funkcj f : R R dan wzorem: f (x) = ax 2 + bx + c gdzie a 0 nazywamy funkcj

Bardziej szczegółowo

Wykªad 10. Spis tre±ci. 1 Niesko«czona studnia potencjaªu. Fizyka 2 (Informatyka - EEIiA 2006/07) c Mariusz Krasi«ski 2007

Wykªad 10. Spis tre±ci. 1 Niesko«czona studnia potencjaªu. Fizyka 2 (Informatyka - EEIiA 2006/07) c Mariusz Krasi«ski 2007 Wykªad 10 Fizyka 2 (Informatyka - EEIiA 2006/07) 08 05 2007 c Mariusz Krasi«ski 2007 Spis tre±ci 1 Niesko«czona studnia potencjaªu 1 2 Laser 3 2.1 Emisja spontaniczna...........................................

Bardziej szczegółowo

c Marcin Sydow Przepªywy Grafy i Zastosowania Podsumowanie 12: Przepªywy w sieciach

c Marcin Sydow Przepªywy Grafy i Zastosowania Podsumowanie 12: Przepªywy w sieciach 12: w sieciach Spis zagadnie«sieci przepªywowe przepªywy w sieciach ±cie»ka powi kszaj ca tw. Forda-Fulkersona Znajdowanie maksymalnego przepªywu Zastosowania przepªywów Sieci przepªywowe Sie przepªywowa

Bardziej szczegółowo

Problemy optymalizacyjne - zastosowania

Problemy optymalizacyjne - zastosowania Problemy optymalizacyjne - zastosowania www.qed.pl/ai/nai2003 PLAN WYKŁADU Zło ono obliczeniowa - przypomnienie Problemy NP-zupełne klika jest NP-trudna inne problemy NP-trudne Inne zadania optymalizacyjne

Bardziej szczegółowo

Rozwi zywanie Ukªadów Równa«Liniowych Ax=B metod dekompozycji LU, za pomoc JAVA RMI

Rozwi zywanie Ukªadów Równa«Liniowych Ax=B metod dekompozycji LU, za pomoc JAVA RMI Rozwi zywanie Ukªadów Równa«Liniowych Ax=B metod dekompozycji LU, za pomoc JAVA RMI Marcn Šabudzik AGH-WFiIS, al. Mickiewicza 30, 30-059, Kraków, Polska email: labudzik@ghnet.pl www: http://fatcat.ftj.agh.edu.pl/

Bardziej szczegółowo

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ... Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x

Bardziej szczegółowo

2. L(a u) = al( u) dla dowolnych u U i a R. Uwaga 1. Warunki 1., 2. mo»na zast pi jednym warunkiem: L(a u + b v) = al( u) + bl( v)

2. L(a u) = al( u) dla dowolnych u U i a R. Uwaga 1. Warunki 1., 2. mo»na zast pi jednym warunkiem: L(a u + b v) = al( u) + bl( v) Przeksztaªcenia liniowe Def 1 Przeksztaªceniem liniowym (homomorzmem liniowym) rzeczywistych przestrzeni liniowych U i V nazywamy dowoln funkcj L : U V speªniaj c warunki: 1 L( u + v) = L( u) + L( v) dla

Bardziej szczegółowo

istnienie elementu neutralnego dodawania (zera): 0 K a K a + 0 = a, istnienie elementu neutralnego mno»enia (jedynki): 1 K a K a 1 = a,

istnienie elementu neutralnego dodawania (zera): 0 K a K a + 0 = a, istnienie elementu neutralnego mno»enia (jedynki): 1 K a K a 1 = a, Ciaªo Denicja. Zbiór K z dziaªaniami dodawania + oraz mno»enia (których argumentami s dwa elementy z tego zbioru, a warto±ciami elementy z tego zbioru) nazywamy ciaªem, je±li zawiera co najmniej dwa elementy

Bardziej szczegółowo

PRZYBLI ONE METODY ROZWI ZYWANIA RÓWNA

PRZYBLI ONE METODY ROZWI ZYWANIA RÓWNA PRZYBLI ONE METODY ROZWI ZYWANIA RÓWNA Metody kolejnych przybli e Twierdzenie. (Bolzano Cauchy ego) Metody kolejnych przybli e Je eli funkcja F(x) jest ci g a w przedziale domkni tym [a,b] i F(a) F(b)

Bardziej szczegółowo

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i

Bardziej szczegółowo

Elementarna statystyka Wnioskowanie o regresji (Inference 2 czerwca for regression) / 13

Elementarna statystyka Wnioskowanie o regresji (Inference 2 czerwca for regression) / 13 Elementarna statystyka Wnioskowanie o regresji (Inference for regression) Alexander Bendikov Uniwersytet Wrocªawski 2 czerwca 2016 Elementarna statystyka Wnioskowanie o regresji (Inference 2 czerwca for

Bardziej szczegółowo

2 Liczby rzeczywiste - cz. 2

2 Liczby rzeczywiste - cz. 2 2 Liczby rzeczywiste - cz. 2 W tej lekcji omówimy pozostaªe tematy zwi zane z liczbami rzeczywistymi. 2. Przedziaªy liczbowe Wyró»niamy nast puj ce rodzaje przedziaªów liczbowych: (a) przedziaªy ograniczone:

Bardziej szczegółowo

1 Wzór Taylora dla funkcji wielu zmiennych

1 Wzór Taylora dla funkcji wielu zmiennych 1 Wzór Taylora dla funkcji wielu zmiennych 1.1 Wzór Taylora Niech O R N zbiór otwarty. Niech f : O R funkcja klasy C r (tzn. ró»niczkowalna r razy i r te pochodne s ci gªe). Niech x, x 0 O, h = x x 0,

Bardziej szczegółowo

POLITECHNIKA WROCŠAWSKA WYDZIAŠ ELEKTRONIKI PRACA DYPLOMOWA MAGISTERSKA

POLITECHNIKA WROCŠAWSKA WYDZIAŠ ELEKTRONIKI PRACA DYPLOMOWA MAGISTERSKA POLITECHNIKA WROCŠAWSKA WYDZIAŠ ELEKTRONIKI Kierunek: Specjalno± : Automatyka i Robotyka (AIR) Robotyka (ARR) PRACA DYPLOMOWA MAGISTERSKA Podatny manipulator planarny - budowa i sterowanie Vulnerable planar

Bardziej szczegółowo

Bifurkacje. Ewa Gudowska-Nowak Nowak. Plus ratio quam vis

Bifurkacje. Ewa Gudowska-Nowak Nowak. Plus ratio quam vis Bifurkacje Nowak Plus ratio quam vis M. Kac Complex Systems Research Center, M. Smoluchowski Institute of Physics, Jagellonian University, Kraków, Poland 2008 Gªówna idea.. Pozornie "dynamika" ukªadów

Bardziej szczegółowo

Rozwiązywanie równań różniczkowych cząstkowych metodą elementów skończonych - wprowadzenie

Rozwiązywanie równań różniczkowych cząstkowych metodą elementów skończonych - wprowadzenie Rozwiązywanie równań różniczkowych cząstkowych metodą elementów skończonych - wprowadzenie Wprowadzenie Metoda Elementów Skończonych (MES) należy do numerycznych metod otrzymywania przybliżonych rozwiązań

Bardziej szczegółowo

f(x) f(x 0 ) i f +(x 0 ) := lim = f(x 0 + x) f(x 0 ) wynika ci gªo± funkcji w punkcie x 0. W ka»dym przypadku zachodzi:

f(x) f(x 0 ) i f +(x 0 ) := lim = f(x 0 + x) f(x 0 ) wynika ci gªo± funkcji w punkcie x 0. W ka»dym przypadku zachodzi: Pochodna funkcji Def 1 Pochodn wªa±ciw funkcji f w punkcie x 0 nazywamy granic f (x 0 ) := lim o ile granica ta istnieje i jest wªa±ciwa Funkcj f nazywamy wtedy ró»niczkowaln Przy zaªo»eniu,»e f jest ci

Bardziej szczegółowo

WICZENIE 2 Badanie podstawowych elementów pasywnych

WICZENIE 2 Badanie podstawowych elementów pasywnych Laboratorium Elektroniki i Elektrotechniki Katedra Sterowania i In»ynierii Systemów www.control.put.poznan.pl 1 Politechnika Pozna«ska WICZENIE 2 Badanie podstawowych elementów pasywnych Celem wiczenia

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Krzywe i powierzchnie stopnia drugiego

Krzywe i powierzchnie stopnia drugiego Krzywe i powierzchnie stopnia drugiego Iwona Malinowska, Zbigniew Šagodowski 25 maja 2015 I. Malinowska, Z. Lagodowski Geometria 25 maja 2015 1 / 30 Rozwa»my dwie proste przecinaj ce si pod k tem α, 0

Bardziej szczegółowo

PAKIET MathCad - Część III

PAKIET MathCad - Część III Opracowanie: Anna Kluźniak / Jadwiga Matla Ćw3.mcd 1/12 Katedra Informatyki Stosowanej - Studium Podstaw Informatyki PAKIET MathCad - Część III RÓWNANIA I UKŁADY RÓWNAŃ 1. Równania z jedną niewiadomą MathCad

Bardziej szczegółowo

Metody numeryczne. Janusz Szwabiński. Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/50

Metody numeryczne. Janusz Szwabiński. Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/50 Metody numeryczne Układy równań liniowych, część II Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/50 Układy równań liniowych, część II 1. Iteracyjne poprawianie

Bardziej szczegółowo

Od redakcji. Symbolem oznaczono zadania wykraczające poza zakres materiału omówionego w podręczniku Fizyka z plusem cz. 2.

Od redakcji. Symbolem oznaczono zadania wykraczające poza zakres materiału omówionego w podręczniku Fizyka z plusem cz. 2. Od redakcji Niniejszy zbiór zadań powstał z myślą o tych wszystkich, dla których rozwiązanie zadania z fizyki nie polega wyłącznie na mechanicznym przekształceniu wzorów i podstawieniu do nich danych.

Bardziej szczegółowo

I Rok LOGISTYKI: wykªad 2 Pochodna funkcji. iloraz ró»nicowy x y x

I Rok LOGISTYKI: wykªad 2 Pochodna funkcji. iloraz ró»nicowy x y x I Rok LOGISTYKI: wykªad 2 Pochodna funkcji Niech f jest okre±lona w Q(x 0, δ) i x Q(x 0, δ). Oznaczenia: x = x x 0 y = y y 0 = f(x 0 + x) f(x 0 ) y x = f(x 0 + x) f(x 0 ) iloraz ró»nicowy x y x = tgβ,

Bardziej szczegółowo

1 0 Je»eli wybierzemy baz A = ((1, 1), (2, 1)) to M(f) A A =. 0 2 Daje to znacznie lepszy opis endomorzmu f.

1 0 Je»eli wybierzemy baz A = ((1, 1), (2, 1)) to M(f) A A =. 0 2 Daje to znacznie lepszy opis endomorzmu f. GAL II 2012-2013 A Strojnowski str1 Wykªad 1 Ten semestr rozpoczniemy badaniem endomorzmów sko«czenie wymiarowych przestrzeni liniowych Denicja 11 Niech V b dzie przestrzeni liniow nad ciaªem K 1) Przeksztaªceniem

Bardziej szczegółowo

Uczenie Wielowarstwowych Sieci Neuronów o

Uczenie Wielowarstwowych Sieci Neuronów o Plan uczenie neuronu o ci gªej funkcji aktywacji uczenie jednowarstwowej sieci neuronów o ci gªej funkcji aktywacji uczenie sieci wielowarstwowej - metoda propagacji wstecznej neuronu o ci gªej funkcji

Bardziej szczegółowo

Matematyka wykªad 1. Macierze (1) Andrzej Torój. 17 wrze±nia 2011. Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej

Matematyka wykªad 1. Macierze (1) Andrzej Torój. 17 wrze±nia 2011. Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej Matematyka wykªad 1 Macierze (1) Andrzej Torój Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej 17 wrze±nia 2011 Plan wykªadu 1 2 3 4 5 Plan prezentacji 1 2 3 4 5 Kontakt moja strona internetowa:

Bardziej szczegółowo

Wybrane poj cia i twierdzenia z wykªadu z teorii liczb

Wybrane poj cia i twierdzenia z wykªadu z teorii liczb Wybrane poj cia i twierdzenia z wykªadu z teorii liczb 1. Podzielno± Przedmiotem bada«teorii liczb s wªasno±ci liczb caªkowitych. Zbiór liczb caªkowitych oznacza b dziemy symbolem Z. Zbiór liczb naturalnych

Bardziej szczegółowo

Metodydowodzenia twierdzeń

Metodydowodzenia twierdzeń 1 Metodydowodzenia twierdzeń Przez zdanie rozumiemy dowolne stwierdzenie, które jest albo prawdziwe, albo faªszywe (nie mo»e by ono jednocze±nie prawdziwe i faªszywe). Tradycyjnie b dziemy u»ywali maªych

Bardziej szczegółowo

17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek

17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 17 KLASYCZNA DYNAMIKA MOLEKULARNA 17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek Rozważamy układ N punktowych cząstek

Bardziej szczegółowo

Obliczenia iteracyjne

Obliczenia iteracyjne Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej

Bardziej szczegółowo

MATEMATYKA 4 INSTYTUT MEDICUS FUNKCJA KWADRATOWA. Kurs przygotowawczy na studia medyczne. Rok szkolny 2010/2011. tel. 0501 38 39 55 www.medicus.edu.

MATEMATYKA 4 INSTYTUT MEDICUS FUNKCJA KWADRATOWA. Kurs przygotowawczy na studia medyczne. Rok szkolny 2010/2011. tel. 0501 38 39 55 www.medicus.edu. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne Rok szkolny 00/0 tel. 050 38 39 55 www.medicus.edu.pl MATEMATYKA 4 FUNKCJA KWADRATOWA Funkcją kwadratową lub trójmianem kwadratowym nazywamy funkcję

Bardziej szczegółowo

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 20 KWANTOWE METODY MONTE CARLO 20.1 Kwantowa wariacyjna metoda Monte Carlo Problem własny dla stanu podstawowego układu N cząstek (H E 0 )ψ 0 (r)

Bardziej szczegółowo

POD- I NADOKREŚLONE UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

POD- I NADOKREŚLONE UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH POD- I NADOKREŚLONE UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko

Bardziej szczegółowo

Równanie przewodnictwa cieplnego (I)

Równanie przewodnictwa cieplnego (I) Wykład 4 Równanie przewodnictwa cieplnego (I) 4.1 Zagadnienie Cauchy ego dla pręta nieograniczonego Rozkład temperatury w jednowymiarowym nieograniczonym pręcie opisuje funkcja u = u(x, t), spełniająca

Bardziej szczegółowo

Modelowanie ukªadów dynamicznych

Modelowanie ukªadów dynamicznych 1 Modelowanie ukªadów dynamicznych PRZYKŠAD 1 - Zbiornik Na rys. 1 pokazany jest schemat zbiornika przepªywowego. Rysunek 1: Schemat zbiornika przepªywowego. Zakªada si, i»: do zbiornika wpªywa i wypªywa

Bardziej szczegółowo

Spl tanie i inne korelacje kwantowe w ukªadach zªo»onych

Spl tanie i inne korelacje kwantowe w ukªadach zªo»onych Spl tanie i inne korelacje kwantowe w ukªadach zªo»onych Lech Jakóbczyk Instytut Fizyki Teoretycznej Uniwersytet Wrocªawski 1 / 17 Spl tanie stanów czystych Formalna denicja spl tania Ukªad zªo»ony: Hilberta

Bardziej szczegółowo

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1)

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1) ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL 1. Problem Rozważmy układ dwóch równań z dwiema niewiadomymi (x 1, x 2 ): 1 x1 sin x2 x2 cos x1 (1) Nie jest

Bardziej szczegółowo

Optymalizacja R dlaczego warto przesi ± si na Linuxa?

Optymalizacja R dlaczego warto przesi ± si na Linuxa? Optymalizacja R dlaczego warto przesi ± si na Linuxa? 19 listopada 2014 Wi cej informacji, wraz z dodatkowymi materiaªami mo»na znale¹ w repozytorium na GitHubie pod adresem https://github.com/zzawadz/

Bardziej szczegółowo

ROZWIĄZANIE PROBLEMU NIELINIOWEGO

ROZWIĄZANIE PROBLEMU NIELINIOWEGO Budownictwo, studia I stopnia, semestr VII przedmiot fakultatywny rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Jerzy Pamin Tematyka zajęć 1 Dyskretyzacja

Bardziej szczegółowo

Zadanie 1. Zadanie 2. Zadanie 3

Zadanie 1. Zadanie 2. Zadanie 3 Zadanie R to rata miesi czna, odsetki w k-tej racie to ods k = R( v 8 k ), a spªata kapitaªu wyra»a si wzorem kap k = Rv 8 k, gdzie v = (, 5) /6. Dany jest ukªad nierówno±ci z którego wynika Rv 8 N R(

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 1 Zadanie Definicja 1.1. (zadanie) Zadaniem nazywamy zagadnienie znalezienia rozwiązania x spełniającego równanie F (x, d) = 0, gdzie d jest zbiorem danych (od których zależy rozwiązanie x), a F

Bardziej szczegółowo