ELEKTROSTATYKA. Zakład Elektrotechniki Teoretycznej Politechniki Wrocławskiej, I-7, W-5

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "ELEKTROSTATYKA. Zakład Elektrotechniki Teoretycznej Politechniki Wrocławskiej, I-7, W-5"

Transkrypt

1 ELEKTROSTATYKA 2.1 Obliczyć siłę, z jaką działają na siebie dwa ładunki punktowe Q 1 = Q 2 = 1C umieszczone w odległości l km od siebie, a z jaką siłą - w tej samej odległości - dwie jednogramowe kulki miedziane pozbawione elektronów? 2.2 Maksymalny ładunek, jaki moŝna zgromadzić na kulce metalowej o średnicy l cm jest ograniczony wytrzymałością powietrza na przebicie elektryczne i wynosi 10-8 C. Przyjmując dwie kulki jako ładunki punktowe Q 1 = Q 2 = 10-8 C w odległości 10 cm od siebie, obliczyć siłę, z jaką się odpychają oraz przyrost ich masy w wyniku naładowania Dwa jednakoimienne ładunki C i C znajdują się w odległości 5 cm od siebie. Obliczyć wielkość i kierunek siły działającej na ładunek C w punkcie odległym od pierwszego i drugiego ładunku odpowiednio o 3 i 4 cm. RozwaŜyć jako ośrodki, próŝnię, powietrze, olej transformatorowy (ε=4ε 0 ) Trzy jednakowe ładunki Q umieszczono w wierzchołkach równobocznego trójkąta. Jaki ładunek o przeciwnym znaku naleŝy umieścić w środku tego trójkąta, aby siła działająca na kaŝdy ładunek była równa zeru? 2.5. W wierzchołkach równobocznego trójkąta o boku l cm umieszczono ładunki Q 1 = Q 2 = 10-9 C, Q 3 = C. Określić wektor natęŝenia pola E i potencjał w geometrycznym środku trójkąta oraz w środku kaŝdego z jego boków Cienką nić nieprzewodzącą zwinięto w okręg o promieniu R i naładowano równomiernie z gęstością q l,. Wyznaczyć wektor E i potencjał na osi obrotu okręgu Na tarczy o promieniu R rozłoŝono równomiernie ładunek o gęstości powierzchniowej q S. Wyznaczyć natęŝenie pola na osi obrotu tarczy obrotowej oraz potencjał. Copyright , Politechnika Wrocławska. All rights reserved. 1

2 2.8. Dla przedstawionych na rysunkach a) do h) rozkładów liniowych gęstości ładunku q l, określić wektor E i potencjał w punkcie P Na powierzchni kuli o promieniu R rozłoŝony jest ładunek o gęstości powierzchniowej q S = const cos(θ) (θ oznacza kąt mierzony od ustalonej osi przechodzącej przez środek kuli). Wyznaczyć natęŝenie pola elektrycznego oraz potencjał W płaszczyźnie naładowanej równomiernie ładunkiem o gęstości q S wycięto otwór o promieniu r. Określić natęŝenie pola E w dowolnym punkcie na prostej - osi obrotu otworu Jakie byłoby natęŝenie pola E w środku sfery o promieniu R gdyby jedna połowa tej sfery była naładowana równomiernie ładunkiem o gęstości q sl a druga o gęstości q s2 (ε=ε 0 ). Copyright , Politechnika Wrocławska. All rights reserved. 2

3 2.12. Wyznaczyć wektor E r w przypadku powierzchni walcowej o promieniu r naładowanej równomiernie ładunkiem o gęstości q S.(r odległość punktu od osi, (ε=ε 0 ) Wyznaczyć wektor E r od ładunku rozłoŝonego z równomierną gęstością przestrzenną q V wewnątrz walca obrotowego o promieniu r 0. (r - odległość punktu od osi) W walcu o promieniu r 1 naładowanym równomiernie ładunkiem o gęstości q V zawarta jest wnęka walcowa o promieniu r 2 (r 2 < r 1 ). Osie obu walców są przesunięte o odcinek a (a+r 2 <r 1 ). Wyznaczyć natęŝenie E tego pola Kula o promienia R została naładowana równomiernie ładunkiem o gęstości q V. Wyznaczyć wektor E (r) oraz potencjał (r - odległość od środka kuli) Przestrzeń między dwiema współśrodkowymi sferami o promieniach R 1 <R 2 wypełniono ładunkiem o gęstości przestrzennej q V =α/2 (α = const). Określić wektor E oraz potencjał w całej przestrzeni Wewnątrz kuli o promieniu R, naładowanej równomiernie gęstością przestrzenną q V znajduje się nienaładowana kulista wnęka o promieniu R 1. Środek tej wnęki znajduje się w odległości a od środka duŝej kuli (a + R 1 < R) określić pole E we wnęce Obszar między naładowanymi płaszczyznami oddalonymi o a od siebie o gęstościach: q S1., q S2 wypełniono ładunkiem o gęstości przestrzennej q V. Obliczyć wektor E w całej przestrzeni oraz pomiędzy płaszczyznami Wykazać potencjalność pola E: a) ładunku punktowego, b) prostej naładowanej równomiernie, c) kuli naładowanej równomiernie d) gdy E = f(r) r (r - współrzędna sferyczna lub walcowa) Jaką pracę naleŝy wykonać, aby przenieść ładunek próbny q ze środka naładowanej równomiernie z gęstością q V kuli o promieniu R do nieskończoności? Związek tej pracy z potencjałem Dwa bardzo cienkie przewodniki zwinięto w okręgi o promieniu R kaŝdy naładowano równomiernie z gęstościami liniowymi q l1, q l2. Okręgi te leŝą w równoległych płaszczyznach oddalonych o a od siebie. Określić całkowite ładunki zgromadzone na okręgach, jeŝeli potencjały Copyright , Politechnika Wrocławska. All rights reserved. 3

4 w ich środkach wynoszą V 1 i V 2 a oś obrotu okręgów jest wspólna Dwie współśrodkowe powierzchnie kuliste o promieniach R 1 i R 2 (R1<R2), naładowane powierzchniowo gęstościami q S1 i q S2, ograniczają obszar naładowany gęstością przestrzenną q V. Obliczyć pracę potrzebną do przeniesienia ładunku próbnego q z jednej powierzchni na drugą Trzy identyczne ładunki punktowe q są umieszczone na wierzchołkach trójkąta równobocznego. Jaką pracę naleŝy wykonać, aby przenieść jeden z tych ładunków do środka trójkąta? Wyznaczyć związek tej pracy z napięciem Jeden z (historycznych) modeli atomu zakłada, Ŝe ładunek elektronu w atomie niewzbudzonym jest rozłoŝony przestrzennie z gęstością e 2r q V(r)= exp 3 π - a a, gdzie a to tzw. borowski (od: N. Bohr a) promień atomu (a 0, cm), e ładunek elementarny (e 1, C). Określić potencjał i natęŝenie pola wytworzone przez rozmyty w ten sposób ładunek elektronu Ładunek rozproszony w nieskończoności o wartości Q sprowadzono na: a) powierzchnię sfery o promieniu R i rozłoŝono równomiernie. Jaka została wykonana praca? Określić energię pola całej przestrzeni (ε=ε 0 ). b) do wnętrza kuli o promieniu R i rozłoŝono równomiernie. Jaka została wykonana praca? Określić całkowitą energię pola W pole elektrostatyczne (pierwotnie równomierne) wprowadzono nienaładowaną bryłę metalu z wydrąŝoną w niej wnęką. Naszkicować układ linii pola zwracając szczególną uwagę na wyeksponowanie struktury pola przy powierzchni bryły. Odpowiedzieć na pytania: a) czy na wewnętrznej powierzchni bryły (od strony wnęki) pojawią się ładunki elektryczne, b) czy pole przenika do wnęki, c) czy linie pola zaburzonego obecnością bryły mogą zaczynać się i kończyć na powierzchni bryły? Wykazać, Ŝe powierzchnie ekwipotencjalne pola wytworzonego przez dwie równomiernie naładowane prostoliniowo nici z gęstościami q l, -q l są walcami kołowymi Dwie metalowe kule o promieniach R 1, R 2, umieszczone w duŝej odległości od siebie połączone są przewodzącą nicią. Układ ten został naładowany ładunkiem Q a następnie usunięto łączącą kule nić. Copyright , Politechnika Wrocławska. All rights reserved. 4

5 Obliczyć gęstości powierzchniowe ładunków kul i wyznaczyć ich związek z promieniami krzywizn powierzchni W lampie elektronowej elektrony są emitowane z gorącej, płaskiej katody a zbierane są przez płaską metalową anodę umieszczoną równolegle do katody w odległości d od niej (rys. 2.29). Rozkład potencjału jest określony wzorem V(x)=k x 1/3 (k=const). Określić a) powierzchniową gęstość ładunku na katodzie i anodzie, b) przestrzenną gęstość ładunku q V (x); (0 < x < d) W układzie dwóch koncentrycznych sferycznych warstw metalowych (patrz rys. 2.30) sumaryczny ładunek warstwy wewnętrznej Q 1 a wewnętrznej Q 2. Naszkicować a) rozkład natęŝenia pola w funkcji odległości od środka, b) rozkład potencjału w funkcji j.w Dwie metalowe płyty równoległe są utrzymywane (patrz rys. 2.31) w odległości "d" od siebie i połączone na krawędzi metalową blaszką. Między płytami, w odległości d/3 od płyty górnej umieszczono cienką warstwę tworzywa naładowanego równomiernie z gęstością q S. Jakie jest natęŝenie pola przy powierzchni górnej i dolnej płyty? Dwa ładunki punktowe Q 1 i Q 2 są odległe o a od siebie. Wykazać, Ŝe Copyright , Politechnika Wrocławska. All rights reserved. 5

6 dla tego układu istnieje powierzchnia ekwipotencjalna o kształcie sfery. Wyznaczyć promień tej sfery R i odległość h jej środka od ładunku bezwzględnie mniejszego W polu ładunku punktowego Q umieszczony jest przewodnik kulisty o promieniu' "R" naładowany ładunkiem q. Odległość ładunku punktowego od środka przewodnika wynosi "a" (a > R/). Wyznaczyć potencjał przewodnika Bańka mydlana o promieniu R = 10 cm, o ściankach grubości 3, cm, ma potencjał 100 V, Obliczyć potencjał kulistej kropli o objętości równej objętości ścianki bańki przy zachowaniu poprzedniego ładunku Określić strumień wektora natęŝenia pola, pochodzącego od ładunku punktowego Q, przez powierzchnię sześcianu, gdy ładunek jest umieszczony: a) wewnątrz sześcianu, b) w środku jednej ze ścian c) w wierzchołku sześcianu Ładunek punktowy Q znajduje się w środku geometrycznym walca o promieniu podstawy R i wysokości h. Obliczyć strumień wektora E przez a) powierzchnie boczne walca, b) powierzchnię jednej z podstaw walca Metalowa kula zanurzona w nafcie (ε=2ε 0 ) naładowana jest do potencjału 200 V. Obliczyć wielkości D i P w punkcie odległym o 10 cm od środka kuli. Obliczyć powierzchniową gęstość ładunku na powierzchni kuli. Jak zmieniłyby się obliczane wielkości po usunięciu nafty? Bryłę metalowe połączono z jednym biegunem baterii akumulatorów a drugi biegun uziemiono (patrz rys.). Uzasadnić odpowiedź na następujące pytania a) czy wektor D ulegnie zmianie, jeśli przy zamkniętym kluczu k zmienimy przenikalność z ε 1 na ε 2 b) czy wektor D ulegnie zmianie, jeśli zmienimy przenikalność ośrodka po uprzednim naładowaniu bryły i rozwarciu klucza k? Copyright , Politechnika Wrocławska. All rights reserved. 6

7 2.40. Powierzchnią graniczną między dwoma dielektrykami jest równomierne naładowana ładunkiem q S płaszczyzna. Pole elektryczne jest równomierne i prostopadłe do tej płaszczyzny. Określić natęŝenia pola E po jednej stronie płaszczyzny, jeŝeli po drugiej stronie E 2 = 100 V/m, a przenikalność elektryczna: ε 1 =4ε 0, ε 1 =2ε 0 oraz q S = C/m. Określić powierzchniową gęstość ładunku związanego (polaryzacyjnego) na granicy dielektryków Ładunek punktowy Q umieszczony jest na wysokości h nad płaszczyznę przewodzącą. Posługując się metodę odbić zwierciadlanych określić: a) gęstość powierzchniową ładunku indukowanego na płaszczyźnie, b) siłę, z jaką płaszczyzna przyciąga ładunek Q (ε=ε 0 ) Określić natęŝenie pola elektrycznego w próŝni między dwiema równoległymi płaszczyznami naładowanymi równomiernie z gęstością q S i -q S odpowiednio, Jak zmieni się to pole jeśli obszar między płaszczyznami zapełnić dielektrykiem o przenikalności ε>ε 0? Odległość między równoległymi, naładowanymi q S1 i q S2 płaszczyznami wynosi d. Przenikalność dielektryczna ośrodka między okładkami kondensatora płaskiego zmienia się liniowo od ε 1 do ε 2 przy okładkach. Wyznaczyć napięcie między płaszczyznami Określić natęŝenie pola wytworzonego przez kulę metalową z sumarycznym ładunkiem Q. Jak zmieni się to pole jeśli obszar na zewnątrz kuli zapełnić dielektrykiem o przenikalności ε>ε 0? Wyznaczyć rozkład gęstości powierzchniowej ładunku q S na powierzchni nienaładowanej kuli metalowej o promieniu R znajdującej się w polu punktowego ładunku Q odległego o "a" od jej środka (a>r) Wyznaczyć rozkład gęstości powierzchniowej ładunku q S na powierzchni nienaładowanego walca metalowego o promieniu r znajdującego się w polu równomiernie naładowanej osi o gęstości liniowej ładunku q l odległej o a od osi walca Kulę metalową o promieniu r = 2,5 cm pokryto warstwą dielektryka (ε r = 10) o grubości b. Stwierdzono, Ŝe zwiększenie grubości pokrycia dielektrycznego o 10 cm powoduje dwukrotny wzrost pojemności elektrycznej kulki (w stosunku do pojemności, jaką ma kulka pokryta warstwą dielektryka o grubości b ). Znaleźć b. Copyright , Politechnika Wrocławska. All rights reserved. 7

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI.

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. 1. Ładunki q 1 =3,2 10 17 i q 2 =1,6 10 18 znajdują się w próżni

Bardziej szczegółowo

Podstawy fizyki wykład 8

Podstawy fizyki wykład 8 Podstawy fizyki wykład 8 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Ładunek elektryczny Grecy ok. 600 r p.n.e. odkryli, że bursztyn potarty o wełnę przyciąga inne (drobne) przedmioty. słowo

Bardziej szczegółowo

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α Elektrostatyka ŁADUNEK elektron: -e = -1.610-19 C proton: e = 1.610-19 C neutron: 0 C n p p n Cząstka α Ładunek elektryczny Ładunek jest skwantowany: Jednostką ładunku elektrycznego w układzie SI jest

Bardziej szczegółowo

Rozdział 22 Pole elektryczne

Rozdział 22 Pole elektryczne Rozdział 22 Pole elektryczne 1. NatęŜenie pola elektrycznego jest wprost proporcjonalne do A. momentu pędu ładunku próbnego B. energii kinetycznej ładunku próbnego C. energii potencjalnej ładunku próbnego

Bardziej szczegółowo

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie Problemy elektrodynamiki. Prawo Gaussa i jego zastosowanie przy obliczaniu pól ładunku rozłożonego w sposób ciągły. I LO im. Stefana Żeromskiego w Lęborku 19 marca 2012 Nowe spojrzenie na prawo Coulomba

Bardziej szczegółowo

21 ELEKTROSTATYKA. KONDENSATORY

21 ELEKTROSTATYKA. KONDENSATORY Włodzimierz Wolczyński Pojemność elektryczna 21 ELEKTROSTATYKA. KONDENSATORY - dla przewodników - dla kondensatorów C pojemność elektryczna Q ładunek V potencjał, U napięcie jednostka farad 1 r Pojemność

Bardziej szczegółowo

Odp.: F e /F g = 1 2,

Odp.: F e /F g = 1 2, Segment B.IX Pole elektrostatyczne Przygotował: mgr Adam Urbanowicz Zad. 1 W atomie wodoru odległość między elektronem i protonem wynosi około r = 5,3 10 11 m. Obliczyć siłę przyciągania elektrostatycznego

Bardziej szczegółowo

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl Ładunki elektryczne i siły ich wzajemnego oddziaływania Pole elektryczne Copyright by pleciuga@ o2.pl Ładunek punktowy Ładunek punktowy (q) jest to wyidealizowany model, który zastępuje rzeczywiste naelektryzowane

Bardziej szczegółowo

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C Wymiana ciepła Ładunek jest skwantowany ładunek elementarny ładunek pojedynczego elektronu (e). Każdy ładunek q (dodatni lub ujemny) jest całkowitą wielokrotnością jego bezwzględnej wartości. q=n. e gdzie

Bardziej szczegółowo

ELEKTROSTATYKA. cos tg60 3

ELEKTROSTATYKA. cos tg60 3 Włodzimierz Wolczyński 45 POWTÓRKA 7 ELEKTROSTATYKA Zadanie 1 Na nitkach nieprzewodzących o długościach 1 m wiszą dwie jednakowe metalowe kuleczki. Po naładowaniu obu ładunkiem jednoimiennym 1μC nitki

Bardziej szczegółowo

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste

Bardziej szczegółowo

Wykład 17 Izolatory i przewodniki

Wykład 17 Izolatory i przewodniki Wykład 7 Izolatory i przewodniki Wszystkie ciała możemy podzielić na przewodniki i izolatory albo dielektryki. Przewodnikami są wszystkie metale, roztwory kwasów i zasad, roztopione soli, nagrzane gazy

Bardziej szczegółowo

Przewodniki w polu elektrycznym

Przewodniki w polu elektrycznym Przewodniki w polu elektrycznym Ryszard J. Barczyński, 2017 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Przewodniki to ciała takie, po

Bardziej szczegółowo

kondensatory Jednostkę pojemności [Q/V] przyjęto nazywać faradem i oznaczać literą F.

kondensatory Jednostkę pojemności [Q/V] przyjęto nazywać faradem i oznaczać literą F. Pojemność elektryczna i kondensatory Umieśćmy na przewodniku ładunek. Przyjmijmy zero potencjału w nieskończoności. Potencjał przewodnika jest proporcjonalny do ładunku (dlaczego?). Współczynnik proporcjonalności

Bardziej szczegółowo

Elektrostatyka, część pierwsza

Elektrostatyka, część pierwsza Elektrostatyka, część pierwsza ZADANIA DO PRZEROBIENIA NA LEKJI 1. Dwie kulki naładowano ładunkiem q 1 = 1 i q 2 = 3 i umieszczono w odległości r = 1m od siebie. Oblicz siłę ich wzajemnego oddziaływania.

Bardziej szczegółowo

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku Fizyka w poprzednim odcinku Obliczanie natężenia pola Fizyka Wyróżniamy ładunek punktowy d Wektor natężenia pola d w punkcie P pochodzący od ładunku d Suma składowych x-owych wektorów d x IĄGŁY ROZKŁAD

Bardziej szczegółowo

Elektrostatyka. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Elektrostatyka. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Elektrostatyka Projekt współfinansowany przez Unię Europejską w ramach Europejskiego unduszu Społecznego Ładunek elektryczny Materia zbudowana jest z atomów. Atom składa się z dodatnie naładowanego jądra

Bardziej szczegółowo

Badanie rozkładu pola elektrycznego

Badanie rozkładu pola elektrycznego Ćwiczenie 8 Badanie rozkładu pola elektrycznego 8.1. Zasada ćwiczenia W wannie elektrolitycznej umieszcza się dwie metalowe elektrody, połączone ze źródłem zmiennego napięcia. Kształt przekrojów powierzchni

Bardziej szczegółowo

Linia dwuprzewodowa Obliczanie pojemności linii dwuprzewodowej

Linia dwuprzewodowa Obliczanie pojemności linii dwuprzewodowej Linia dwuprzewodowa Obliczanie pojemności linii dwuprzewodowej 1. Wstęp Pojemność kondensatora można obliczyć w prosty sposób znając wartości zgromadzonego na nim ładunku i napięcia między okładkami: Q

Bardziej szczegółowo

cz.3 dr inż. Zbigniew Szklarski

cz.3 dr inż. Zbigniew Szklarski Wykład : lektrostatyka cz.3 dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Przykłady Jaka musiałaby być powierzchnia okładki kondensatora płaskiego, aby, przy odległości

Bardziej szczegółowo

POLE ELEKTRYCZNE PRAWO COULOMBA

POLE ELEKTRYCZNE PRAWO COULOMBA POLE ELEKTRYCZNE PRAWO COULOMBA gdzie: Q, q ładunki elektryczne wyrażone w kulombach [C] r - odległość między ładunkami Q i q wyrażona w [m] ε - przenikalność elektryczna bezwzględna środowiska, w jakim

Bardziej szczegółowo

Elektrostatyka, cz. 2

Elektrostatyka, cz. 2 Podstawy elektromagnetyzmu Wykład 4 Elektrostatyka, cz. Praca, energia, pojemność i kondensatory, ekrany elektrostatyczne Energia Praca w polu elektrostatycznym dw =F dl=q E dl W = L F d L=q L E d L=q

Bardziej szczegółowo

Segment B.X Kondensatory Przygotował: dr Winicjusz Drozdowski

Segment B.X Kondensatory Przygotował: dr Winicjusz Drozdowski Segment B.X Kondensatory Przygotował: dr Winicjusz Drozdowski Zad. 1 Układ Ziemia - jonosfera stanowi swoisty kondensator o pojemności C = 1.8 F, naładowany ładunkiem Q = 5.4 10 5 C. Ile wynosi różnica

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne....................

Bardziej szczegółowo

MAGNETOSTATYKA. Zakład Elektrotechniki Teoretycznej Politechniki Wrocławskiej, I-7, W-5

MAGNETOSTATYKA. Zakład Elektrotechniki Teoretycznej Politechniki Wrocławskiej, I-7, W-5 MAGNETOSTATYKA 5.1. Wyznaczyć natęŝenie pola magnetycznego H, indukcję B oraz potencjał wektorowy A w punkcie P jak na rysunkach a) i). Przez przewody o podanych kształtach płynie prąd stały. Środowiskiem

Bardziej szczegółowo

Ostrosłupy ( ) Zad. 4: Jedna z krawędzi ostrosłupa trójkątnego ma długość 2, a pozostałe 4. Znajdź objętość tego ostrosłupa. Odp.: V =

Ostrosłupy ( ) Zad. 4: Jedna z krawędzi ostrosłupa trójkątnego ma długość 2, a pozostałe 4. Znajdź objętość tego ostrosłupa. Odp.: V = Ostrosłupy Zad 1: W ostrosłupie prawidłowym trójkątnym kwadrat długości krawędzi podstawy, kwadrat długości wysokości ostrosłupa i kwadrat długości krawędzi bocznej są kolejnymi wyrazami ciągu arytmetycznego

Bardziej szczegółowo

Pojemność elektryczna

Pojemność elektryczna Pojemność elektryczna Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Pojemność elektryczna Umieśćmy na pewnym

Bardziej szczegółowo

Elektryczność i magnetyzm

Elektryczność i magnetyzm Elektryczność i magnetyzm Pole elektryczne, kondensatory, przewodniki i dielektryki. Zadanie 1. Dwie niewielkie, przewodzące kulki o masach równych odpowiednio m 1 i m 2 naładowane ładunkami q 1 i q 2

Bardziej szczegółowo

Pojemność elektryczna. Pojemność elektryczna, Kondensatory Energia elektryczna

Pojemność elektryczna. Pojemność elektryczna, Kondensatory Energia elektryczna Pojemność elektryczna Pojemność elektryczna, Kondensatory Energia elektryczna Pojemność elektryczna - kondensatory Kondensator : dwa przewodniki oddzielone izolatorem zwykle naładowane ładunkami o przeciwnych

Bardziej szczegółowo

GEOMETRIA PRZESTRZENNA (STEREOMETRIA)

GEOMETRIA PRZESTRZENNA (STEREOMETRIA) GEOMETRIA PRZESTRZENNA (STEREOMETRIA) WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. Na początek omówimy

Bardziej szczegółowo

Wykład 2. POLE ELEKTROMEGNETYCZNE:

Wykład 2. POLE ELEKTROMEGNETYCZNE: Wykład 2. POLE ELEKTROMEGNETYCZNE: Ładunek elektryczny Ładunki elektryczne: -dodatnie i ujemne - skwantowane, czyli że mają pewną najmniejszą wartość, której nie można już dalej podzielić. Nie można ładunków

Bardziej szczegółowo

Elektrostatyka. mgr inż. Grzegorz Strzeszewski. 20 kwietnia 2013 r. ZespółSzkółnr2wWyszkowie. mgr inż. Grzegorz Strzeszewski Elektrostatyka

Elektrostatyka. mgr inż. Grzegorz Strzeszewski. 20 kwietnia 2013 r. ZespółSzkółnr2wWyszkowie. mgr inż. Grzegorz Strzeszewski Elektrostatyka Elektrostatyka mgr inż. Grzegorz Strzeszewski ZespółSzkółnr2wWyszkowie 20 kwietnia 2013 r. Nauka jest dla tych, którzy chcą być mądrzejsi, którzy chcą wykorzystywać swój umysł do poznawania otaczającego

Bardziej szczegółowo

Ćwiczenie nr 31: Modelowanie pola elektrycznego

Ćwiczenie nr 31: Modelowanie pola elektrycznego Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko.. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr : Modelowanie pola

Bardziej szczegółowo

Pojemność elektryczna, Kondensatory Energia elektryczna

Pojemność elektryczna, Kondensatory Energia elektryczna Pojemność elektryczna Pojemność elektryczna, Kondensatory Energia elektryczna 1 Pojemność elektryczna - kondensatory Kondensator : dwa przewodniki oddzielone izolatorem zwykle naładowane ładunkami o przeciwnych

Bardziej szczegółowo

Człowiek najlepsza inwestycja

Człowiek najlepsza inwestycja Człowiek najlepsza inwestycja Fizyka ćwiczenia F6 - Prąd stały, pole magnetyczne magnesów i prądów stałych Prowadzący: dr Edmund Paweł Golis Instytut Fizyki Konsultacje stałe dla projektu; od Pn. do Pt.

Bardziej szczegółowo

Pole magnetyczne magnesu w kształcie kuli

Pole magnetyczne magnesu w kształcie kuli napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość

Bardziej szczegółowo

Potencjalne pole elektrostatyczne. Przypomnienie

Potencjalne pole elektrostatyczne. Przypomnienie Potencjalne pole elektrostatyczne Wszystkie rysunki i animacje zaczerpnięto ze strony http://webmitedu/802t/www/802teal3d/visualizations/electrostatics/indexhtm Tekst jest wolnym tłumaczeniem pliku guide03pdf

Bardziej szczegółowo

Ładunek elektryczny ćwiczenia

Ładunek elektryczny ćwiczenia Ładunek elektryczny ćwiczenia. Na jedwabnej nici wisi naelektryzowana kulka. W jaki sposób moŝna określić znak jej ładunku.. Czy poprawne jest stwierdzenie: W czasie pocierania ebonitu o sukno powstają

Bardziej szczegółowo

Stereometria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie

Stereometria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie Stereometria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie http://www.zadania.info/) 1. W ostrosłupie prawidłowym czworokątnym ściana boczna o polu równym 10 jest nachylona do płaszczyzny podstawy

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 21 ELEKTROSTATYKA CZĘŚĆ 1. POLE CENTRALNE I JEDNORODNE

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 21 ELEKTROSTATYKA CZĘŚĆ 1. POLE CENTRALNE I JEDNORODNE autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 21 ELEKTROSTATYKA CZĘŚĆ 1. POLE CENTRALNE I JEDNORODNE Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania TEST JEDNOKROTNEGO

Bardziej szczegółowo

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1

Bardziej szczegółowo

Rozdział 21 Ładunek elektryczny

Rozdział 21 Ładunek elektryczny Rozdział 1 Ładunek elektryczny 1. Jednostka ładunku kulomb jest równowaŝna A. A/s B. ½ A/s C. A/m D. As E. N/m. Kiloamperogodzina jest jednostką A. natęŝenia prądu B. ładunku w czasie C. mocy D. ładunku

Bardziej szczegółowo

Opracowanie tablic: Adam Konstantynowicz, Anna Konstantynowicz, Kaja Mikoszewska

Opracowanie tablic: Adam Konstantynowicz, Anna Konstantynowicz, Kaja Mikoszewska Opracowanie tablic: Adam Konstantynowicz, Anna Konstantynowicz, Kaja Mikoszewska Redaktor serii: Marek Jannasz Ilustracje: Magdalena Wójcik Projekt okładki: Teresa Chylińska-Kur, KurkaStudio Projekt makiety

Bardziej szczegółowo

ZADANIE 1 (5 PKT) ZADANIE 2 (5 PKT) Oblicz objętość czworościanu foremnego o krawędzi a.

ZADANIE 1 (5 PKT) ZADANIE 2 (5 PKT) Oblicz objętość czworościanu foremnego o krawędzi a. ZADANIE 1 (5 PKT) Czworościan foremny o krawędzi a rozcięto płaszczyzna prostopadła do jednej z krawędzi, przechodzac a w odległości 0, 25a od jednego końca tej krawędzi. Oblicz objętość otrzymanych brył.

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z FIZYKI

PRÓBNY EGZAMIN MATURALNY Z FIZYKI Miejsce na naklejkę z kodem (Wpisuje zdający przed rozpoczęciem pracy) KOD ZDAJĄCEGO OKRĘGOWA K O M I S J A EGZAMINACYJNA w KRAKOWIE PRÓBNY EGZAMIN MATURALNY Z FIZYKI Czas pracy 90 minut Informacje 1.

Bardziej szczegółowo

1. Dwa ładunki punktowe q znajdujące się w odległości 1 m od siebie odpychają się siłą o wartości F r

1. Dwa ładunki punktowe q znajdujące się w odległości 1 m od siebie odpychają się siłą o wartości F r 1. Dwa ładunki punktowe q znajdujące się w odległości 1 m od siebie odpychają się siłą o wartości F r. Sporządź wykres zależności F(r) dla tych ładunków. 2. Naelektryzowany płatek waty zbliża się do przeciwnie

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA POZIOM ROZSZERZONY LISTOPAD 01 Czas pracy: 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

Badanie rozkładu pola elektrycznego

Badanie rozkładu pola elektrycznego Ćwiczenie E1 Badanie rozkładu pola elektrycznego E1.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie rozkładu pola elektrycznego dla różnych układów elektrod i ciał nieprzewodzących i przewodzących umieszczonych

Bardziej szczegółowo

POLE ELEKTROSTATYCZNE

POLE ELEKTROSTATYCZNE POLE ELEKTROSTATYCZNE Dr Stanisław W. Tkaczyk Projekt współfinansowany przez Unię Europejską z Europejskiego Funduszu Społecznego w ramach Programu Projekt współfinansowany przez Unię Europejską z Europejskiego

Bardziej szczegółowo

MAGNETYZM. PRĄD PRZEMIENNY

MAGNETYZM. PRĄD PRZEMIENNY Włodzimierz Wolczyński 47 POWTÓRKA 9 MAGNETYZM. PRĄD PRZEMIENNY Zadanie 1 W dwóch przewodnikach prostoliniowych nieskończenie długich umieszczonych w próżni, oddalonych od siebie o r = cm, płynie prąd.

Bardziej szczegółowo

XXXVII OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne

XXXVII OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne XXXVII OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne Wybierz lub podaj i krótko uzasadnij właściwą odpowiedź na dowolnie przez siebie wybrane siedem spośród dziesięciu poniższych punktów: ZADANIE

Bardziej szczegółowo

Lekcja 40. Obraz graficzny pola elektrycznego.

Lekcja 40. Obraz graficzny pola elektrycznego. Lekcja 40. Obraz graficzny pola elektrycznego. Polem elektrycznym nazywamy obszar, w którym na wprowadzony doń ładunek próbny q działa siła. Pole elektryczne występuje wokół ładunków elektrycznych i ciał

Bardziej szczegółowo

Wykład 14: Indukcja cz.2.

Wykład 14: Indukcja cz.2. Wykład 14: Indukcja cz.. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 10.05.017 Wydział Informatyki, Elektroniki i 1 Przykład

Bardziej szczegółowo

Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3)

Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3) Pytania zamknięte / TEST : Wybierz 1 odp prawidłową. 1. Punkt: A) jest aksjomatem in. pewnikiem; B) nie jest aksjomatem, bo można go zdefiniować. 2. Prosta: A) to zbiór punktów; B) to zbiór punktów współliniowych.

Bardziej szczegółowo

Pole elektromagnetyczne

Pole elektromagnetyczne Pole elektromagnetyczne Pole magnetyczne Strumień pola magnetycznego Jednostką strumienia magnetycznego w układzie SI jest 1 weber (1 Wb) = 1 N m A -1. Zatem, pole magnetyczne B jest czasem nazywane gęstością

Bardziej szczegółowo

5. Oblicz pole powierzchni bocznej tego graniastosłupa.

5. Oblicz pole powierzchni bocznej tego graniastosłupa. 11. STEREOMETRIA Zad.11.1. Oblicz pole powierzchni całkowitej sześcianu, wiedząc Ŝe jego objętość wynosi 16 cm. Zad.11.. Oblicz długość przekątnej sześcianu, jeśli jego pole powierzchni całkowitej wynosi

Bardziej szczegółowo

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics)

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Koniec XIX / początek XX wieku Lata 90-te XIX w.: odkrycie elektronu (J. J. Thomson, promienie katodowe), promieniowania Roentgena

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 26 MAGNETYZM I ELEKTROMAGNETYZM. CZĘŚĆ 1

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 26 MAGNETYZM I ELEKTROMAGNETYZM. CZĘŚĆ 1 autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 26 MAGNETYZM I ELEKTROMAGNETYZM. CZĘŚĆ 1 Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania Zadanie 1 1 punkt TEST JEDNOKROTNEGO

Bardziej szczegółowo

r r 2 r 1 E k Na podstawie poniŝszego wykresu oblicz:

r r 2 r 1 E k Na podstawie poniŝszego wykresu oblicz: Na poniŝszym rysunku przedstawiono wykres zaleŝności przyspieszenia od czasu dla biegnącego owczarka. WskaŜ przedział lub przedziały czasu, w których owczarek biegnie ze stałą prędkością. Na podstawie

Bardziej szczegółowo

Rys.1 Rozkład mocy wnikającej do dielektryka przy padaniu fali płaskiej Natężenie pola wewnątrz dielektryka maleje wykładniczo. Określa to wzór: (1)

Rys.1 Rozkład mocy wnikającej do dielektryka przy padaniu fali płaskiej Natężenie pola wewnątrz dielektryka maleje wykładniczo. Określa to wzór: (1) Temat nr 22: Badanie kuchenki mikrofalowej 1.Wiadomości podstawowe Metoda elektrotermiczna mikrofalowa polega na wytworzeniu ciepła we wsadzie głównie na skutek przepływu prądu przesunięcia (polaryzacji)

Bardziej szczegółowo

20. Na poniŝszym rysunku zaznaczono bieg promienia świetlnego 1. Podaj konstrukcję wyznaczającą kierunek padania promienia 2 na soczewkę.

20. Na poniŝszym rysunku zaznaczono bieg promienia świetlnego 1. Podaj konstrukcję wyznaczającą kierunek padania promienia 2 na soczewkę. Optyka stosowana Załamanie światła. Soczewki 1. Współczynnik załamania światła dla wody wynosi n 1 = 1,33, a dla szkła n 2 = 1,5. Ile wynosi graniczny kąt padania dla promienia świetlnego przechodzącego

Bardziej szczegółowo

Dielektryki. właściwości makroskopowe. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego

Dielektryki. właściwości makroskopowe. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego Dielektryki właściwości makroskopowe Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego Przewodniki i izolatory Przewodniki i izolatory Pojemność i kondensatory Podatność dielektryczna

Bardziej szczegółowo

KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI

KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI PRACA KONTROLNA nr 1 październik 1999 r 1. Stop składa się z 40% srebra próby 0,6, 30% srebra próby 0,7 oraz 1 kg srebra próby 0,8. Jaka jest waga i jaka

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka 7. Pole magnetyczne zadania z arkusza I 7.8 7.1 7.9 7.2 7.3 7.10 7.11 7.4 7.12 7.5 7.13 7.6 7.7 7. Pole magnetyczne - 1 - 7.14 7.25 7.15 7.26 7.16 7.17 7.18 7.19 7.20 7.21 7.27 Kwadratową ramkę (rys.)

Bardziej szczegółowo

POWTÓRKA PRZED KONKURSEM CZĘŚĆ 14 ZADANIA ZAMKNIĘTE

POWTÓRKA PRZED KONKURSEM CZĘŚĆ 14 ZADANIA ZAMKNIĘTE DO ZDOBYCIA PUNKTÓW 50 POWTÓRKA PRZED KONKURSEM CZĘŚĆ 14 Jest to powtórka przed etapem rejonowym (głównie elektrostatyka). ZADANIA ZAMKNIĘTE łącznie pkt. zamknięte otwarte SUMA zadanie 1 1 pkt Po włączeniu

Bardziej szczegółowo

Lista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie

Lista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Lista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w

Bardziej szczegółowo

Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej.

Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. C Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. Zad. 1 Oblicz pole trójkąta o bokach 13 cm, 14 cm, 15cm. Zad. 2 W trójkącie ABC rys. 1 kąty

Bardziej szczegółowo

KARTA PRACY NAUCZYCIELA

KARTA PRACY NAUCZYCIELA KARTA PRACY NAUCZYCIELA Przedmiot: Klasa: Temat: Data Uwagi: Matematyka III gimnazjum Objętość brył podobnych Nie wszystkie zadania muszą zostać wykonane. Wszystko zależy od poziomu wiadomości danej klasy.

Bardziej szczegółowo

CZĘŚĆ A 18 pkt. 3. Które z poniższych brył A, B, C, D przedstawiają bryłę zaznaczoną kolorem szarym?

CZĘŚĆ A 18 pkt. 3. Które z poniższych brył A, B, C, D przedstawiają bryłę zaznaczoną kolorem szarym? WYDZIAŁ ARCHITEKTURY POLITECHNIKI GDAŃSKIEJ T E S T K W A L I F I K A C Y J N Y Z P R E D Y S P O Z Y C J I D O Z A W O D U A R C H I T E K T A GDAŃSK, 6 CZERWCA 2009, CZAS TRWANIA TESTU (CZĘŚĆ A + B +

Bardziej szczegółowo

Zadanie I. 2. Gdzie w przestrzeni usytuowane są punkty (w której ćwiartce leży dany punkt): F x E' E''

Zadanie I. 2. Gdzie w przestrzeni usytuowane są punkty (w której ćwiartce leży dany punkt): F x E' E'' GEOMETRIA WYKREŚLNA ĆWICZENIA ZESTAW I Rok akademicki 2012/2013 Zadanie I. 1. Według podanych współrzędnych punktów wykreślić je w przestrzeni (na jednym rysunku aksonometrycznym) i określić, gdzie w przestrzeni

Bardziej szczegółowo

Zestaw nr 7 bryły. (Przyjmij do obliczeń, że 2 1,41 )

Zestaw nr 7 bryły. (Przyjmij do obliczeń, że 2 1,41 ) Zestaw nr 7 bryły Zad. 1. Ogrodnik zbudował 5 tuneli foliowych o długości 10 m każdy. Przekrój poprzeczny tunelu jest trapezem równoramiennym o podstawach 3 m i 1,6 m oraz wysokości 2,4 m. Ile metrów sześciennych

Bardziej szczegółowo

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY MODUŁ MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI Z ELEMENTAMI TECHNOLOGII

Bardziej szczegółowo

Skrypt 33. Powtórzenie do matury:

Skrypt 33. Powtórzenie do matury: Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 33 Powtórzenie do matury:

Bardziej szczegółowo

4.1.1 Elektryzowanie ciał. Zasada zachowania ładunku

4.1.1 Elektryzowanie ciał. Zasada zachowania ładunku Rozdział 4 Pole elektryczne 4.1 Ładunki elektryczne 4.1.1 Elektryzowanie ciał. Zasada zachowania ładunku W niniejszym rozdziale zostaną przedstawione wybrane zagadnienia elektrostatyki. Elektrostatyka

Bardziej szczegółowo

Indukcja magnetyczna pola wokół przewodnika z prądem. dr inż. Romuald Kędzierski

Indukcja magnetyczna pola wokół przewodnika z prądem. dr inż. Romuald Kędzierski Indukcja magnetyczna pola wokół przewodnika z prądem dr inż. Romuald Kędzierski Pole magnetyczne wokół pojedynczego przewodnika prostoliniowego Założenia wyjściowe: przez nieskończenie długi prostoliniowy

Bardziej szczegółowo

Elektrodynamika Część 3 Pola elektryczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 3 Pola elektryczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 3 Pola elektryczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 4 Pola elektryczne w materii 3 4.1 Polaryzacja elektryczna..................

Bardziej szczegółowo

Skrypt 20. Bryły: 24. Obliczanie pól powierzchni walców w sytuacjach praktycznych. 26. Zastosowanie tw. Pitagorasa do obliczania objętości walców

Skrypt 20. Bryły: 24. Obliczanie pól powierzchni walców w sytuacjach praktycznych. 26. Zastosowanie tw. Pitagorasa do obliczania objętości walców Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 20 Bryły: 21. Przykłady brył obrotowych 22.

Bardziej szczegółowo

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi) Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek

Bardziej szczegółowo

Stereometria bryły. Wielościany. Wielościany foremne

Stereometria bryły. Wielościany. Wielościany foremne Stereometria bryły Stereometria - geometria przestrzeni trójwymiarowej. Przedmiotem jej badań są własności brył oraz przekształcenia izometryczne i afiniczne przestrzeni. Przyjęte oznaczenia: - Pole powierzchni

Bardziej szczegółowo

Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści. Przedmowa 11

Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści. Przedmowa 11 Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści Przedmowa 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce? 13 1. Analiza wektorowa 19

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE IV TECHNIKUM.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE IV TECHNIKUM. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE IV TECHNIKUM. I. Podstawowe pojęcia statystyki. 1. Sposoby prezentowania danych, interpretacja wykresów. 2. Mediana i dominanta. 3. Średnia arytmetyczna

Bardziej szczegółowo

Strumień pola elektrycznego i prawo Gaussa

Strumień pola elektrycznego i prawo Gaussa Strumień pola elektrycznego i prawo Gaussa Ryszard J. Barczyński, 2010 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Strumień pola

Bardziej szczegółowo

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH METODA ROZDZIELENIA ZMIENNYCH (2) (3) (10) (11) Modelowanie i symulacje obiektów w polu elektromagnetycznym 1 Rozwiązania równań (10-11) mają ogólną postać: (12) (13) Modelowanie i symulacje obiektów w

Bardziej szczegółowo

Tematy: zadania tematyczne

Tematy: zadania tematyczne Tematy: zadania tematyczne 1. Ciągi liczbowe zadania typu udowodnij 1) Udowodnij, Ŝe jeŝeli liczby,, tworzą ciąg arytmetyczny ), to liczby,, takŝe tworzą ciąg arytmetyczny. 2) Ciąg jest ciągiem geometrycznym.

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI WPISUJE ZDAJĄCY KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY PRZED MATURĄ MAJ 015 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron (zadania 1 34). Ewentualny brak zgłoś przewodniczącemu

Bardziej szczegółowo

Uczeń. KONKURS OMNIBUS MATEMATYCZNY rok szkolny 2011/2012. 90 minut. Pracuj samodzielnie. Powodzenia! Finał 20 kwietnia 2012 roku

Uczeń. KONKURS OMNIBUS MATEMATYCZNY rok szkolny 2011/2012. 90 minut. Pracuj samodzielnie. Powodzenia! Finał 20 kwietnia 2012 roku KONKURS OMNIBUS MATEMATYCZNY rok szkolny 2011/2012 Finał 20 kwietnia 2012 roku Zestaw dla uczniów klas III Uczeń Liczba zdobytych punktów Drogi Uczniu, witaj na finale konkursu Omnibus Matematyczny. Przeczytaj

Bardziej szczegółowo

Witam na teście z działu ELEKTROSTATYKA

Witam na teście z działu ELEKTROSTATYKA Witam na teście z działu ELEKTROSTATYKA Masz do rozwiązania 22 zadania oto jaką ocenę możesz uzyskać: dopuszczająca jeśli rozwiążesz 6 zadań z zakresu pytań od 1 7 dostateczna jeśli rozwiążesz zadania

Bardziej szczegółowo

Pojemnośd elektryczna

Pojemnośd elektryczna Pojemnośd elektryczna Tekst jest wolnym tłumaczeniem pliku guide05pdf kursu dostępnego na stronie http://webmitedu/802t/www/802teal3d/visualizations/coursenotes/indexhtm Wszystkie rysunki i animacje zaczerpnięto

Bardziej szczegółowo

Grafika inżynierska. Ćwiczenia. mgr inż. Kamil Wróbel. Poznań 2017

Grafika inżynierska. Ćwiczenia. mgr inż. Kamil Wróbel. Poznań 2017 Grafika inżynierska Ćwiczenia mgr inż. Kamil Wróbel Poznań 2017 Wydział Inżynierii Zarządzania Katedra Ergonomii i Inżynierii Jakości asystent Kamil.wrobel@put.poznan.pl p.214 ul. Strzelecka 11, Poznań

Bardziej szczegółowo

ELEKTROMAGNETYZM cz.1

ELEKTROMAGNETYZM cz.1 LKTROMAGNTYZM cz. I. Ładunek i materia W przyrodzie obserwujemy dwa rodzaje ładunków elektrycznych: dodatnie i ujemnie. Wielkość sił elektrycznych, zarówno przyciągających jak i odpychających opisuje prawo

Bardziej szczegółowo

MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1

MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1 Wszelkie prawa zastrzeżone. Rozpowszechnianie, wypożyczanie i powielanie niniejszych testów w jakiejkolwiek formie surowo zabronione. W przypadku złamania zakazu mają zastosowanie przepisy dotyczące naruszenia

Bardziej szczegółowo

Matura z matematyki 1920 r.

Matura z matematyki 1920 r. Matura z matematyki 1920 r. (źródło: Sprawozdanie Dyrekcji Państwowego Gimnazjum im. Karola Marcinkowskiego w Poznaniu: za 1-sze dziesięciolecie zakładu w niepodległej i wolnej ojczyźnie: 1919-1929) Żelazna

Bardziej szczegółowo

LIII MIĘDZYSZKOLNY TURNIEJ FIZYCZNY dla uczniów szkół ponadgimnazjalnych w roku szkolnym 2010/2011 TEST

LIII MIĘDZYSZKOLNY TURNIEJ FIZYCZNY dla uczniów szkół ponadgimnazjalnych w roku szkolnym 2010/2011 TEST LIII MIĘDZYSZKOLNY TURNIEJ FIZYCZNY dla uczniów szkół ponadgimnazjalnych w roku szkolnym 00/0 TEST. Jeżeli długość sekundowego wahadła matematycznego które znajduje się na powierzchni Ziemi zwiększymy

Bardziej szczegółowo

Geometria. Rodzaje i własności figur geometrycznych:

Geometria. Rodzaje i własności figur geometrycznych: Geometria Jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych i zależności między nimi. Figury geometryczne na płaszczyźnie noszą nazwę figur płaskich, w przestrzeni

Bardziej szczegółowo

Wyznaczanie stosunku e/m elektronu

Wyznaczanie stosunku e/m elektronu Ćwiczenie 27 Wyznaczanie stosunku e/m elektronu 27.1. Zasada ćwiczenia Elektrony przyspieszane w polu elektrycznym wpadają w pole magnetyczne, skierowane prostopadle do kierunku ich ruchu. Wyznacza się

Bardziej szczegółowo

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment

Bardziej szczegółowo

Stożkiem nazywamy bryłę obrotową, która powstała przez obrót trójkąta prostokątnego wokół jednej z jego przyprostokątnych.

Stożkiem nazywamy bryłę obrotową, która powstała przez obrót trójkąta prostokątnego wokół jednej z jego przyprostokątnych. 1.4. Stożek W tym temacie dowiesz się: jak obliczać pole powierzchni bocznej i pole powierzchni całkowitej stożka, jak obliczać objętość stożka, jak wykorzystywać własności stożków w zadaniach praktycznych.

Bardziej szczegółowo

COMENIUS PROJEKT ROZWOJU SZKOŁY. Sezamie, otwórz się! - rozwijanie zdolności uczenia i myślenia uczniów.

COMENIUS PROJEKT ROZWOJU SZKOŁY. Sezamie, otwórz się! - rozwijanie zdolności uczenia i myślenia uczniów. COMENIUS PROJEKT ROZWOJU SZKOŁY Sezamie, otwórz się! - rozwijanie zdolności uczenia i myślenia uczniów. GIMNAZJUM 20 GDAŃSK POLSKA Maj 2007 SCENARIUSZ LEKCJI MATEMATYKI Z WYKORZYSTANIEM METODY STOLIKÓW

Bardziej szczegółowo

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym Ćwiczenie 11B Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym 11B.1. Zasada ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający

Bardziej szczegółowo