Metody numeryczne i statystyka dla in»ynierów

Wielkość: px
Rozpocząć pokaz od strony:

Download "Metody numeryczne i statystyka dla in»ynierów"

Transkrypt

1 Kierunek: Automatyka i Robotyka, II rok Interpolacja PWSZ Gªogów, 2009

2 Interpolacja Okre±lenie zale»no±ci pomi dzy interesuj cymi nas wielko±ciami, Umo»liwia uproszczenie skomplikowanych funkcji (np. wykorzystywana w procedurach caªkowania numerycznego), Wykorzystywana w naukach do±wiadczalnych, gdy dysponujemy niewielk liczb danych, Deterministyczna metoda opisu zjawisk (w opozycji do podej±cia statystycznego). Graka komputerowa (szczególnie 3D)

3 Interpolacja - idea Mniej formalna denicja Rozwi» zadanie interpolacji tzn. odkryj zale»no± która pozwala wytªumaczy warto±ci obserwowane w danych.

4 Interpolacja - idea Mniej formalna denicja Rozwi» zadanie interpolacji tzn. odkryj zale»no± która pozwala wytªumaczy warto±ci obserwowane w danych.

5 Interpolacja - denicja Denicja matematyczna Maj c zbiór danych w postaci n + 1 tzw. w zªów {x i, y i } n i=0, nale»y wyznaczy przybli»one warto±ci w punktach nieb d cych w zªami interpolacji oraz oszacowa bª dy takiego przybli»enia. x i - w zªy interpolacji, punkty y i - warto±ci dla w zªów (punktów) Maj c dan klas funkcji G szukamy takiego g(x, a 0, a 1,..., a n ) G aby g(x i, a 0,..., a n ) = y i,, i = 0, 1,..., n

6 Interpolacja - idea y n g y 2 y 1 y 0 x 0 x 1 x 2 x n

7 Interpolacja - przykªad Dane: Gªówny Urz d Statystyczny Lata Liczba rozwodów

8 Interpolacja - przykªad Jak powinna wygl da krzywa opisuj ce dane?

9 Interpolacja - przykªad... tak

10 Interpolacja - przykªad a mo»e tak?

11 Interpolacja - przykªad a mo»e jednak tak?

12 Rodzaje interpolacji Nieparmetryczne(bazuj ce na danych): algorytm najbli»szego s siada Parametryczne(niezb dna identykacja parametryczna) liniowa (g(x i, a 0,..., a n ) = a 0 + a 1 g 1 (x) + a 2 g 2 (x) a n g n (x)) wielomianowa (w tym w. liniowa, w. kwadratowa,...): g i (x) = x i trygonometryczna: g i (x) = e jix, nieliniowa np. wymierna: j = 1 g(x, a 0,..., a n, b 0,..., b m) = a0 + a1x + a2x a nx n b 0 + b 1x + b 2x b mx m funkcjami sklejanymi (ang. spline): w zªy interpolacji dziel przedziaª interpolacji na podprzedziaªy; w ka»dym podprzedziale przybli»amy funkcje interpolowan wielomianem niskiego stopnia, np. n=3 (najpro±ciej - interpolacja liniowa - dla n=1)

13 Rodzaje interpolacji Nieparmetryczne(bazuj ce na danych): algorytm najbli»szego s siada Parametryczne(niezb dna identykacja parametryczna) liniowa (g(x i, a 0,..., a n ) = a 0 + a 1 g 1 (x) + a 2 g 2 (x) a n g n (x)) wielomianowa (w tym w. liniowa, w. kwadratowa,...): g i (x) = x i trygonometryczna: g i (x) = e jix, nieliniowa np. wymierna: j = 1 g(x, a 0,..., a n, b 0,..., b m) = a0 + a1x + a2x a nx n b 0 + b 1x + b 2x b mx m funkcjami sklejanymi (ang. spline): w zªy interpolacji dziel przedziaª interpolacji na podprzedziaªy; w ka»dym podprzedziale przybli»amy funkcje interpolowan wielomianem niskiego stopnia, np. n=3 (najpro±ciej - interpolacja liniowa - dla n=1)

14 Interpolacja - Matlab Polecenie x - w zªy interpolacji, y - warto±ci w w zªach, yi = interp1(x,y,xi,metoda); xi - punkty, w których chcemy wyznaczy warto±ci po wykonaniu interpolacji, yi - warto±ci w punktach xi, Metoda - dost pne: nearest, linear,spline,pchip,cubic,v5cubic

15 Algorytm najbli»szego s siada Zasada post powania Je±li chcemy wyznaczy warto± y w nowym (nieb d cym w zªem interpolacji) punkcie x, to znajd¹ najbli»szy mu punkt w danych i przyjmij jego warto±. Wady i zalety nie trzeba budowa modelu - maªy nakªad obliczeniowy wykorzystywana w przypadku interpolacji wielowymiarowej maªo realistyczne zaªo»enie o lokalnej niezmienno±ci zjawisk

16 Algorytm najbli»szego s siada Zasada post powania Je±li chcemy wyznaczy warto± y w nowym (nieb d cym w zªem interpolacji) punkcie x, to znajd¹ najbli»szy mu punkt w danych i przyjmij jego warto±. Wady i zalety nie trzeba budowa modelu - maªy nakªad obliczeniowy wykorzystywana w przypadku interpolacji wielowymiarowej maªo realistyczne zaªo»enie o lokalnej niezmienno±ci zjawisk

17 Interpolacja metod najbli»szego s siada

18 Interpolacja liniowa Zasada post powania Warto± y punkcie x le»y na prostej ª cz cej warto±ci w w zªach, pomi dzy którymi le»y x. Denicja matematyczna dla x a x x b y = y a + (x x a )(y b y a ) x b x a

19 Interpolacja liniowa Zasada post powania Warto± y punkcie x le»y na prostej ª cz cej warto±ci w w zªach, pomi dzy którymi le»y x. Denicja matematyczna dla x a x x b y = y a + (x x a )(y b y a ) x b x a

20 Interpolacja liniowa

21 Interpolacja liniowa Wady i zalety najprostszy z grupy modeli wielomianowych nie trzeba estymowa parametrów - bardzo szybkie obliczenia nieró»niczkowalno± funkcji interpoluj cej w w zªach interpolacji zwykle powoduje du»e bª dy

22 Bª dy interpolacji - interpolacja liniowa Zaªó»my,»e istnieje zale»no± pomi dzy zmiennymi {x i, y i }, któr mo»na opisa za pomoc funkcji g : R R, tzn. y i = g(x i ), a która to funkcja posiada ci gª drug pochodn. Je±li mamy dane dwa s siednie w zªy interpolacji y a = g(x a ) oraz y b = g(x b ), bª d jaki mo»emy popeªni, chc c oszacowa warto± funkcji g( ) w punkcie x (x a, x b ) wynosi: gdzie C = 1/8 max g (x) x (x a,x b ) Wnioski y g(x ) C(x b x a ) 2, czym wi ksza odlegªo± mi dzy w zªami, tym wi kszy bª d (zale»no± kwadratowa)!!!

23 Bª dy interpolacji - interpolacja liniowa Zaªó»my,»e istnieje zale»no± pomi dzy zmiennymi {x i, y i }, któr mo»na opisa za pomoc funkcji g : R R, tzn. y i = g(x i ), a która to funkcja posiada ci gª drug pochodn. Je±li mamy dane dwa s siednie w zªy interpolacji y a = g(x a ) oraz y b = g(x b ), bª d jaki mo»emy popeªni, chc c oszacowa warto± funkcji g( ) w punkcie x (x a, x b ) wynosi: gdzie C = 1/8 max g (x) x (x a,x b ) Wnioski y g(x ) C(x b x a ) 2, czym wi ksza odlegªo± mi dzy w zªami, tym wi kszy bª d (zale»no± kwadratowa)!!!

24 Szacowanie bª du interpolacji liniowej Przykªad funkcja g(x) = x 2, g (x) = 2 w zªy interpolacji x a = 0, x b = 2, (y a = 0,y b = 4) Maksymalny bª d interpolacji liniowej wynosi zatem: C = 1 8 max x (x a,x b ) g (x) = 1 4 a wi c maksymalny bª d wynosi: y g(x) C(x b x a ) 2 = 1

25 Szacowanie bª du interpolacji liniowej wezly interpolacji Funkcja interpolowana Interpolacja liniowa Blad interpolacji

26 Interpolacja wielomianowa Sformuªowanie problemu Maj c dane w zªy x 0, x 1,..., x n oraz odpowiadaj ce im warto±ci y 0, y 1,..., y n, znale¹ wielomian W m (x) = a 0 + a 1 x + a 2 x a m x m, taki»e W m (x i ) = y i, dla i = 0, 1,..., n. Twierdzenie (o jednoznaczno±ci interpolacji wielomianowej) Istnieje dokªadnie jeden wielomian interpolacyjny stopnia co najwy»ej n, który w punktach x 0, x 1,..., x n przyjmuje warto±ci y 0, y 1,..., y n.

27 Interpolacja wielomianowa Sformuªowanie problemu Maj c dane w zªy x 0, x 1,..., x n oraz odpowiadaj ce im warto±ci y 0, y 1,..., y n, znale¹ wielomian W m (x) = a 0 + a 1 x + a 2 x a m x m, taki»e W m (x i ) = y i, dla i = 0, 1,..., n. Twierdzenie (o jednoznaczno±ci interpolacji wielomianowej) Istnieje dokªadnie jeden wielomian interpolacyjny stopnia co najwy»ej n, który w punktach x 0, x 1,..., x n przyjmuje warto±ci y 0, y 1,..., y n.

28 Interpolacja wielomianowa - przykªad Przykªad Spróbujmy dopasowa wielomian stopnia pi tego, tj. do danych: W 5 (x) = a 0 + a 1 x + a 2 x 2 + a 3 x 3 + a 4 x 4 + a 5 x 5, i x i y i

29 Interpolacja wielomianowa - przykªad c.d. Przykªad c.d. Jak wyznaczy wspóªczynniki wielomianu {a i } 5 i=0? - wielomian musi przechodzi, przez dane punkty, czyli: a 0 + a a a a a = 1537 a 0 + a a a a a = 1546 a 0 + a a a a a = 1479 a 0 + a a a a a = 1552 a 0 + a a a a a = 1968 a 0 + a a a a a = 2567, tzw. macierz Vandermonde'a.

30 Interpolacja wielomianowa - przykªad c.d. Przykªad c.d. Problem sprowadza si do rozwi zania ukªadu równa«liniowych, t.j. Xa = y, gdzie: X = 1 x 0 x 2 0 x 3 0 x 4 0 x x 1 x 2 1 x 3 1 x 4 1 x x 2 x 2 2 x 3 2 x 4 2 x x 3 x 2 3 x 3 3 x 4 3 x x 4 x 2 4 x 3 4 x 4 4 x x 5 x 2 5 x 3 5 x 4 5 x 5 5 a = a 0 a 1 a 2 a 3 a 4 a 5 y = y 0 y 1 y 2 y 3 y 4 y 5

31 Interpolacja wielomianowa - przykªad c.d. - rozwi zanie Przykªad c.d. Ogólny sposób rozwi zywania ukªadów równa«liniowych: a = X 1 y, Matlab: X = vander(x); a = inv(x) * y; Rozwi zanie: a =

32 Interpolacja wielomianowa - przykªad c.d. - wyniki

33 Interpolacja Lagrange'a Wprowadzenie Wielomian W n (x) mo»na przedstawi w alternatywnej postaci: W n (x) = y 0 Φ 0 (x) + y 1 Φ 1 (x) y n Φ n (x), gdzie Φ j (x) s wielomianami stopnia co najwy»ej n. Rozwi zanie Φ j (x i ) = { 0, gdy j i 1, gdy j = i Inaczej: Φ j (x) = (x x 0)(x x 1 )... (x x j 1 )(x x j+1 )... (x x n ) (x j x 0 )(x j x 1 )... (x j x j 1 )(x j x j+1 )... (x j x n ), L n (x) = n y j Φ j (x) = j=0 n j=0 y j n i = 0 i j x x i x j x i

34 Interpolacja Lagrange'a Wprowadzenie Wielomian W n (x) mo»na przedstawi w alternatywnej postaci: W n (x) = y 0 Φ 0 (x) + y 1 Φ 1 (x) y n Φ n (x), gdzie Φ j (x) s wielomianami stopnia co najwy»ej n. Rozwi zanie Φ j (x i ) = { 0, gdy j i 1, gdy j = i Inaczej: Φ j (x) = (x x 0)(x x 1 )... (x x j 1 )(x x j+1 )... (x x n ) (x j x 0 )(x j x 1 )... (x j x j 1 )(x j x j+1 )... (x j x n ), L n (x) = n y j Φ j (x) = j=0 n j=0 y j n i = 0 i j x x i x j x i

35 Interpolacja Lagrange'a Wprowadzenie Wielomian W n (x) mo»na przedstawi w alternatywnej postaci: W n (x) = y 0 Φ 0 (x) + y 1 Φ 1 (x) y n Φ n (x), gdzie Φ j (x) s wielomianami stopnia co najwy»ej n. Rozwi zanie Φ j (x i ) = { 0, gdy j i 1, gdy j = i Inaczej: Φ j (x) = (x x 0)(x x 1 )... (x x j 1 )(x x j+1 )... (x x n ) (x j x 0 )(x j x 1 )... (x j x j 1 )(x j x j+1 )... (x j x n ), L n (x) = n y j Φ j (x) = j=0 n j=0 y j n i = 0 i j x x i x j x i

36 Interpolacja Lagrange'a - przykªad Znale¹ wielomian interpolacyjny Lagrange'a dla danych: Zgodnie ze wzorem mamy: L 2 (x) = 2 y j Φ j (x) = j=0 2 j=0 i x i y i y j 2 i = 0 i j 2 x 1 2 x x } {{ } (j=0) 1 2 x2 x x x i x j x i = x 3 2 } {{ } (j=1) + 2 x x 1 2 } {{ } (j=2) =

37 Wzór interpolacyjny Newtona Iloraz ró»nicowy 1-go rz du: Iloraz ró»nicowy k-go rz du: f [x i, x i+1 ] = f (x i+1) f (x i ) x i+1 x i f [x i, x i+1,..., x i+k ] = f [x i+1, x i+2,..., x i+k ] f [x i, x i+1,..., x i+k 1 ] x i+k x i Ci g ilorazów ró»nicowych: x 0 f (x 0 ) f [x 0, x 1 ] x 1 f (x 1 ) f [x 0, x 1, x 2 ] f [x 1, x 2 ] x 2 f (x 2 )

38 Wzór interpolacyjny Newtona Wielomian interpolacyjny Newtona Q n (x) =f (x 0 ) + n j=1 j 1 f [x 0,..., x j ] (x x k ) = k=0 n 1 Q n 1 (x) + f [x 0,..., x n ] (x x k ) k=0 Przykªad - znale¹ wielomian interpolacyjny Newtona dla danych: i x i y i

39 Wzór interpolacyjny Newtona Wielomian interpolacyjny Newtona Q n (x) =f (x 0 ) + n j=1 j 1 f [x 0,..., x j ] (x x k ) = k=0 n 1 Q n 1 (x) + f [x 0,..., x n ] (x x k ) k=0 Przykªad - znale¹ wielomian interpolacyjny Newtona dla danych: i x i y i

40 Wielomian interpolacyjny Newtona - przykªad Zgodnie ze wzorem mamy: Q 2 (x) =f (x 0 ) + Ilorazy ró»nicowe: 2 j=1 j 1 f [x 0,..., x j ] (x x k ) = k=0 f (x 0 ) + f [x 0, x 1 ](x x 0 ) + f [x 0, x 1, x 2 ](x x 0 )(x x 1 ) Zatem: f [x 0, x 1 ] = f (x 1) f (x 0 ) x 1 x 0 = = 1 f [x 1, x 2 ] = f (x 2) f (x 1 ) x 2 x 1 = = 1 f [x 0, x 1, x 2 ] = f [x 1, x 2 ] f [x 0, x 1 ] x 2 x 0 = = 1 2 Q 2 (x) = 2 1(x + 1) 1 2 (x + 1)(x 1) = 1 2 x2 x + 1 2

41 Wielomian interpolacyjny Newtona - przykªad Wersja iteracyjna: 1 Q 2 (x) = Q 1 (x) + f [x 0, x 1, x 2 ] (x x k ) = k=0 Q 1 (x) + f [x 0, x 1, x 2 ](x x 0 )(x x 1 ) 0 Q 1 (x) = Q 0 (x) + f [x 0, x 1 ] (x x k ) = k=0 Q 0 (x) + f [x 0, x 1 ](x x 0 ) Q 0 (x) = f (x 0 ) = 2 Zatem po podstawieniu: Q 1 (x) = 2 1(x + 1) = 1 x Q 2 (x) = (1 x) (x 1)(x + 1) = 1 2 x2 x Zaleta: po dodaniu nowego w zªa (x 3, f (x 3 )) mo»na wykorzysta Q 2 (x) 2 wystarczy doliczy f [x 0, x 1, x 2, x 3 ] (x x k ) k=0

42 Wielomian interpolacyjny Newtona - przykªad Wersja iteracyjna: 1 Q 2 (x) = Q 1 (x) + f [x 0, x 1, x 2 ] (x x k ) = k=0 Q 1 (x) + f [x 0, x 1, x 2 ](x x 0 )(x x 1 ) 0 Q 1 (x) = Q 0 (x) + f [x 0, x 1 ] (x x k ) = k=0 Q 0 (x) + f [x 0, x 1 ](x x 0 ) Q 0 (x) = f (x 0 ) = 2 Zatem po podstawieniu: Q 1 (x) = 2 1(x + 1) = 1 x Q 2 (x) = (1 x) (x 1)(x + 1) = 1 2 x2 x Zaleta: po dodaniu nowego w zªa (x 3, f (x 3 )) mo»na wykorzysta Q 2 (x) 2 wystarczy doliczy f [x 0, x 1, x 2, x 3 ] (x x k ) k=0

43 Bª dy interpolacji - interpolacja wielomianowa Zaªó»my,»e warto±ci y 0, y 1,..., y n dla w zªów interpolacji x 0, x 1,..., x n (z przedziaªu < a, b >) bior si z pewnej funkcji g : R R, t.j. g(x i ) = y i. Pytanie: jak dobrze wielomian interpolacyjny W n (x) przybli»a funkcj g(x) w przedziale < a, b >? Odpowied¹: g(x) W n (x) M n+1 ω n (x), gdzie M n+1 = sup g (n+1) (x), oraz ω n (x) = n (x x i ) x (x a,x b ) Bª d interpolacji - komentarz i=0 zale»y od postaci pochodnej interpolowanej funkcji, zale»y od funkcji ω n (x), czyli od rozmieszczenia w zªów interpolacji

44 Bª dy interpolacji - interpolacja wielomianowa Zaªó»my,»e warto±ci y 0, y 1,..., y n dla w zªów interpolacji x 0, x 1,..., x n (z przedziaªu < a, b >) bior si z pewnej funkcji g : R R, t.j. g(x i ) = y i. Pytanie: jak dobrze wielomian interpolacyjny W n (x) przybli»a funkcj g(x) w przedziale < a, b >? Odpowied¹: g(x) W n (x) M n+1 ω n (x), gdzie M n+1 = sup g (n+1) (x), oraz ω n (x) = n (x x i ) x (x a,x b ) Bª d interpolacji - komentarz i=0 zale»y od postaci pochodnej interpolowanej funkcji, zale»y od funkcji ω n (x), czyli od rozmieszczenia w zªów interpolacji

45 Bª dy interpolacji - interpolacja wielomianowa Zaªó»my,»e warto±ci y 0, y 1,..., y n dla w zªów interpolacji x 0, x 1,..., x n (z przedziaªu < a, b >) bior si z pewnej funkcji g : R R, t.j. g(x i ) = y i. Pytanie: jak dobrze wielomian interpolacyjny W n (x) przybli»a funkcj g(x) w przedziale < a, b >? Odpowied¹: g(x) W n (x) M n+1 ω n (x), gdzie M n+1 = sup g (n+1) (x), oraz ω n (x) = n (x x i ) x (x a,x b ) Bª d interpolacji - komentarz i=0 zale»y od postaci pochodnej interpolowanej funkcji, zale»y od funkcji ω n (x), czyli od rozmieszczenia w zªów interpolacji

46 Bª dy interpolacji wielomianowej Przykªad Z jak dokªadno±ci mo»na oszacowa warto± sin(1.885) maj c dane sin(0) = 0, sin(0.6283) = , sin(2.3562) = ). Mamy dane: czyli: n = 2, < a, b >=< 0, > funkcja interpolowana g(x) = sin(x), g (3) (x) = cos(x), zatem M n+1 = 1 ω n (x) = (x 0)(x )(x ) ω n (1.885) = W 2 (1.885) sin(1.885) =

47 Bª dy interpolacji wielomianowej Przykªad Z jak dokªadno±ci mo»na oszacowa warto± sin(1.885) maj c dane sin(0) = 0, sin(0.6283) = , sin(2.3562) = ). Mamy dane: czyli: n = 2, < a, b >=< 0, > funkcja interpolowana g(x) = sin(x), g (3) (x) = cos(x), zatem M n+1 = 1 ω n (x) = (x 0)(x )(x ) ω n (1.885) = W 2 (1.885) sin(1.885) =

48 Bª dy interpolacji wielomianowej - przykªad Bª d w rzeczywisto±ci W 2 (1.885) sin(1.885) = wezly interpolacji szukana wartosc wielomian interpolacyjny blad interpolacji

49 Interpolacja za pomoc funkcji sklejanych Interpolacja za pomoc wielomianów: rz d wielomianu interpolacyjnego zazwyczaj musi by równy liczbie w zªów co dla du»ej ilo±ci w zªów (wysokich stopni wielomianu interpolacyjnego) prowadzi mo»e do du»ych bªedów macierz Vandermonada zwykle ¹le uwarunkowana wielomiany nie nadaj si do szacowania warto±ci poza granicami przedziaªu z którego pochodz w zªy interpolacyjne. Pytanie: czy nie mo»na inaczej? Funkcje sklejane - idea Zamiast stosowa wielomian wysokiego rz du do interpolacji punktów, mo»na zastosowa kilka wielomianów stopnia ni»szego.

50 Interpolacja za pomoc funkcji sklejanych Interpolacja za pomoc wielomianów: rz d wielomianu interpolacyjnego zazwyczaj musi by równy liczbie w zªów co dla du»ej ilo±ci w zªów (wysokich stopni wielomianu interpolacyjnego) prowadzi mo»e do du»ych bªedów macierz Vandermonada zwykle ¹le uwarunkowana wielomiany nie nadaj si do szacowania warto±ci poza granicami przedziaªu z którego pochodz w zªy interpolacyjne. Pytanie: czy nie mo»na inaczej? Funkcje sklejane - idea Zamiast stosowa wielomian wysokiego rz du do interpolacji punktów, mo»na zastosowa kilka wielomianów stopnia ni»szego.

51 Interpolacja za pomoc funkcji sklejanych Interpolacja za pomoc wielomianów: rz d wielomianu interpolacyjnego zazwyczaj musi by równy liczbie w zªów co dla du»ej ilo±ci w zªów (wysokich stopni wielomianu interpolacyjnego) prowadzi mo»e do du»ych bªedów macierz Vandermonada zwykle ¹le uwarunkowana wielomiany nie nadaj si do szacowania warto±ci poza granicami przedziaªu z którego pochodz w zªy interpolacyjne. Pytanie: czy nie mo»na inaczej? Funkcje sklejane - idea Zamiast stosowa wielomian wysokiego rz du do interpolacji punktów, mo»na zastosowa kilka wielomianów stopnia ni»szego.

52 Interpolacja za pomoc funkcji sklejanych Denicja funkcji sklejanej Nie b dzie dany przedziaª < a, b > oraz zestaw punktów x 0, x 1,..., x n, takich»e: a = x 0 < x 1 <... < x n 1 < x n = b. Oznaczmy przez n podziaª ustanowiony przez punkty {x i } n i=0. Funkcj s(x) = s(x, n ) nazywamy funkcj sklejan stopnia m 1, je±li: 1) s(x) jest wielomianem stopnia co najwy»ej m w ka»dym podprzedziale (x i, x i+1 ), i = 0, 1,..., n 1, 2) s(x) C m 1 dla x < a, b >.

53 Interpolacja za pomoc funkcji sklejanych Denicja funkcji sklejanej Nie b dzie dany przedziaª < a, b > oraz zestaw punktów x 0, x 1,..., x n, takich»e: a = x 0 < x 1 <... < x n 1 < x n = b. Oznaczmy przez n podziaª ustanowiony przez punkty {x i } n i=0. Funkcj s(x) = s(x, n ) nazywamy funkcj sklejan stopnia m 1, je±li: 1) s(x) jest wielomianem stopnia co najwy»ej m w ka»dym podprzedziale (x i, x i+1 ), i = 0, 1,..., n 1, 2) s(x) C m 1 dla x < a, b >.

54 Interpolacja za pomoc funkcji sklejanych Denicja funkcji sklejanej Nie b dzie dany przedziaª < a, b > oraz zestaw punktów x 0, x 1,..., x n, takich»e: a = x 0 < x 1 <... < x n 1 < x n = b. Oznaczmy przez n podziaª ustanowiony przez punkty {x i } n i=0. Funkcj s(x) = s(x, n ) nazywamy funkcj sklejan stopnia m 1, je±li: 1) s(x) jest wielomianem stopnia co najwy»ej m w ka»dym podprzedziale (x i, x i+1 ), i = 0, 1,..., n 1, 2) s(x) C m 1 dla x < a, b >.

55 Funkcje sklejane stopnia trzeciego (m = 3) s 0 (x) = c 0,3 x 3 + c 0,2 x 2 + c 0,1 x + c 0,0 s 1 (x) = c 1,3 x 3 + c 1,2 x 2 + c 1,1 x + c 1,0 s 2 (x) = c 2,3 x 3 + c 2,2 x 2 + c 2,1 x + c 2,0 s 3 (x) = c 3,3 x 3 + c 3,2 x 2 + c 3,1 x + c 3,0

56 Funkcje sklejane stopnia trzeciego (m = 3) Komentarz 1 Mamy dokªadnie n(m + 1) = 4n parametrów opisuj cych krzyw. Komentarz 2 Warunek w denicji funkcji sklejanej: s(x) C 2 dla x < a, b >, Oznacza to,»e druga pochodna funkcji s(x) musi by funkcj liniow w ka»dym podprzedziale < x i, x i+1 >, i = 0, 1,..., n 1.

57 Funkcje sklejane stopnia trzeciego (m = 3) Wyznaczanie parametrów warto±ci w w zªach zewn trznych speªniaj warunek interpolacji: s 0 (x 0 ) = f (x 0 ), s n 1 (x n ) = f (x n ) warto±ci 2-gich pochodnych w w zªach zewn trznych speªniaj warunek naturalno±ci: s 0 (x 0 ) = s n 1(x n ) = 0 w w zªach wewn trznych warto±ci funkcji s równe: s i 1 (x i ) = s i (x i ) = f (x i ), i = 1, 2,..., n 1 w w zªach wewn trznych warto±ci pierwszych pochodnych s równe: s i 1(x i ) = s i (x i ), i = 1, 2,..., n 1 w w zªach wewn trznych warto±ci drugich pochodnych s równe: Š cznie mamy 4n równa«s i 1(x i ) = s i (x i ), i = 1, 2,..., n 1

58 Funkcje sklejane - przykªad Dokona interpolacji funkcjami sklejanymi stopnia 3 dla danych: i x i y i

59 Funkcje sklejane - przykªad - wyniki y x

Kurs z matematyki - zadania

Kurs z matematyki - zadania Kurs z matematyki - zadania Miara łukowa kąta Zadanie Miary kątów wyrażone w stopniach zapisać w radianach: a) 0, b) 80, c) 90, d), e) 0, f) 0, g) 0, h), i) 0, j) 70, k), l) 80, m) 080, n), o) 0 Zadanie

Bardziej szczegółowo

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja

Bardziej szczegółowo

Mathematica - podstawy

Mathematica - podstawy Mathematica - podstawy Artur Kalinowski Semestr letni 2011/2012 Artur Kalinowski Mathematica - podstawy 1 / 27 Spis tre±ci Program Mathematica 1 Program Mathematica 2 3 4 5 Artur Kalinowski Mathematica

Bardziej szczegółowo

Metody numeryczne i statystyka dla in»ynierów

Metody numeryczne i statystyka dla in»ynierów Kierunek: Automatyka i Robotyka, II rok Wprowadzenie PWSZ Gªogów, 2009 Plan wykªadów Wprowadzenie, podanie zagadnie«, poj cie metody numerycznej i algorytmu numerycznego, obszar zainteresowa«i stosowalno±ci

Bardziej szczegółowo

Newton vs. Lagrange - kto lepszy?

Newton vs. Lagrange - kto lepszy? Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki Katedra Analizy Matematycznej Agnieszka Rydzyńska nr albumu: 254231 Praca Zaliczeniowa z Seminarium Newton vs. Lagrange - kto lepszy? Opiekun

Bardziej szczegółowo

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15 ANALIZA NUMERYCZNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Metoda Eulera 3 1.1 zagadnienia brzegowe....................... 3 1.2 Zastosowanie ró»niczki...................... 4 1.3 Output do pliku

Bardziej szczegółowo

LXV OLIMPIADA FIZYCZNA ZAWODY III STOPNIA

LXV OLIMPIADA FIZYCZNA ZAWODY III STOPNIA LXV OLIMPIADA FIZYCZNA ZAWODY III STOPNIA CZ DO WIADCZALNA Za zadanie do±wiadczalne mo»na otrzyma maksymalnie 40 punktów. Zadanie D. Rozgrzane wolframowe wªókno»arówki o temperaturze bezwzgl dnej T emituje

Bardziej szczegółowo

Problemy optymalizacyjne - zastosowania

Problemy optymalizacyjne - zastosowania Problemy optymalizacyjne - zastosowania www.qed.pl/ai/nai2003 PLAN WYKŁADU Zło ono obliczeniowa - przypomnienie Problemy NP-zupełne klika jest NP-trudna inne problemy NP-trudne Inne zadania optymalizacyjne

Bardziej szczegółowo

Zastosowania matematyki

Zastosowania matematyki Zastosowania matematyki Monika Bartkiewicz 1 / 143 Dyskonto-przypomnienie Obliczanie kapitaªu pocz tkowego P v na podstawie znanej warto±ci kapitaªu ko«cowego F v nazywa si dyskontowaniem kapitaªu F v.

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur

Bardziej szczegółowo

PRZYBLI ONE METODY ROZWI ZYWANIA RÓWNA

PRZYBLI ONE METODY ROZWI ZYWANIA RÓWNA PRZYBLI ONE METODY ROZWI ZYWANIA RÓWNA Metody kolejnych przybli e Twierdzenie. (Bolzano Cauchy ego) Metody kolejnych przybli e Je eli funkcja F(x) jest ci g a w przedziale domkni tym [a,b] i F(a) F(b)

Bardziej szczegółowo

PAKIET MathCad - Część III

PAKIET MathCad - Część III Opracowanie: Anna Kluźniak / Jadwiga Matla Ćw3.mcd 1/12 Katedra Informatyki Stosowanej - Studium Podstaw Informatyki PAKIET MathCad - Część III RÓWNANIA I UKŁADY RÓWNAŃ 1. Równania z jedną niewiadomą MathCad

Bardziej szczegółowo

Maksymalna liczba punktów do zdobycia: 80. Zadanie 1: a) 6 punktów, b) 3 punkty, Zadanie 2: a) 6 punktów, b) 4 punkty,

Maksymalna liczba punktów do zdobycia: 80. Zadanie 1: a) 6 punktów, b) 3 punkty, Zadanie 2: a) 6 punktów, b) 4 punkty, VII Wojewódzki Konkurs Matematyczny "W ±wiecie Matematyki" im. Prof. Wªodzimierza Krysickiego Etap drugi - 17 lutego 2015 r. Maksymalna liczba punktów do zdobycia: 80. 1. Drugi etap Konkursu skªada si

Bardziej szczegółowo

Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna

Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna 1. Podaj denicj liczby zespolonej. 2. Jak obliczy sum /iloczyn dwóch liczb zespolonych w postaci algebraicznej? 3. Co to jest liczba urojona?

Bardziej szczegółowo

Obliczenia naukowe Wykład nr 6

Obliczenia naukowe Wykład nr 6 Obliczenia naukowe Wykład nr 6 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [1] D. Kincaid, W. Cheney, Analiza

Bardziej szczegółowo

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI ARKUSZ 0 MATURA 00 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 70 minut. Sprawdê, czy arkusz zawiera stron.. W zadaniach od. do 5. sà podane 4 odpowiedzi:

Bardziej szczegółowo

Temat: Funkcje. Własności ogólne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1

Temat: Funkcje. Własności ogólne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Temat: Funkcje. Własności ogólne A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Kody kolorów: pojęcie zwraca uwagę * materiał nieobowiązkowy A n n a R a

Bardziej szczegółowo

DRGANIA MECHANICZNE. materiały uzupełniające do ćwiczeń. Wydział Samochodów i Maszyn Roboczych studia inżynierskie

DRGANIA MECHANICZNE. materiały uzupełniające do ćwiczeń. Wydział Samochodów i Maszyn Roboczych studia inżynierskie DRGANIA MECHANICZNE materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż. Sebastian Korczak część modelowanie, drgania swobodne Poniższe materiały

Bardziej szczegółowo

1 Granice funkcji wielu zmiennych.

1 Granice funkcji wielu zmiennych. AM WNE 008/009. Odpowiedzi do zada«przygotowawczych do czwartego kolokwium. Granice funkcji wielu zmiennych. Zadanie. Zadanie. Pochodne. (a) 0, Granica nie istnieje, (c) Granica nie istnieje, (d) Granica

Bardziej szczegółowo

Programowanie funkcyjne. Wykªad 13

Programowanie funkcyjne. Wykªad 13 Programowanie funkcyjne. Wykªad 13 Siªa wyrazu rachunku lambda Zdzisªaw Spªawski Zdzisªaw Spªawski: Programowanie funkcyjne. Wykªad 13, Siªa wyrazu rachunku lambda 1 Wst p Warto±ci logiczne Liczby naturalne

Bardziej szczegółowo

Kurs wyrównawczy dla kandydatów i studentów UTP

Kurs wyrównawczy dla kandydatów i studentów UTP Kurs wyrównawczy dla kandydatów i studentów UTP Część III Funkcja wymierna, potęgowa, logarytmiczna i wykładnicza Magdalena Alama-Bućko Ewa Fabińska Alfred Witkowski Grażyna Zachwieja Uniwersytet Technologiczno

Bardziej szczegółowo

Ekonometria. Typy zada«optymalizacyjnych Analiza pooptymalizacyjna SOLVER. 22 maja 2016. Karolina Konopczak. Instytut Rozwoju Gospodarczego

Ekonometria. Typy zada«optymalizacyjnych Analiza pooptymalizacyjna SOLVER. 22 maja 2016. Karolina Konopczak. Instytut Rozwoju Gospodarczego Ekonometria Typy zada«optymalizacyjnych Analiza pooptymalizacyjna SOLVER 22 maja 2016 Karolina Konopczak Instytut Rozwoju Gospodarczego Problem diety Aby ±niadanie byªo peªnowarto±ciowe powinno dostarczy

Bardziej szczegółowo

MATEMATYKA 4 INSTYTUT MEDICUS FUNKCJA KWADRATOWA. Kurs przygotowawczy na studia medyczne. Rok szkolny 2010/2011. tel. 0501 38 39 55 www.medicus.edu.

MATEMATYKA 4 INSTYTUT MEDICUS FUNKCJA KWADRATOWA. Kurs przygotowawczy na studia medyczne. Rok szkolny 2010/2011. tel. 0501 38 39 55 www.medicus.edu. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne Rok szkolny 00/0 tel. 050 38 39 55 www.medicus.edu.pl MATEMATYKA 4 FUNKCJA KWADRATOWA Funkcją kwadratową lub trójmianem kwadratowym nazywamy funkcję

Bardziej szczegółowo

2 Model neo-keynsistowski (ze sztywnymi cenami).

2 Model neo-keynsistowski (ze sztywnymi cenami). 1 Dane empiryczne wiczenia 5 i 6 Krzysztof Makarski Szoki popytowe i poda»owe jako ¹ródªa uktuacji. Wspóªczynnik korelacji Odchylenie standardowe (w stosunku do PKB) Cykliczno± Konsumpcja 0,76 75,6% procykliczna

Bardziej szczegółowo

Modelowanie obiektów 3D

Modelowanie obiektów 3D Synteza i obróbka obrazu Modelowanie obiektów 3D Modelowanie Modelowanie opisanie kształtu obiektu. Najczęściej stosuje się reprezentację powierzchniową opis powierzchni obiektu. Najczęstsza reprezentacja

Bardziej szczegółowo

Wstęp do analizy matematycznej

Wstęp do analizy matematycznej Wstęp do analizy matematycznej Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań w

Bardziej szczegółowo

ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ

ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ Maciej Patan Uniwersytet Zielonogórski WSTEP Zadanie minimalizacji bez ograniczeń f(ˆx) = min x R nf(x) f : R n R funkcja ograniczona z dołu Algorytm rozwiazywania Rekurencyjny

Bardziej szczegółowo

Metody numeryczne. Wst p do metod numerycznych. Dawid Rasaªa. January 9, 2012. Dawid Rasaªa Metody numeryczne 1 / 9

Metody numeryczne. Wst p do metod numerycznych. Dawid Rasaªa. January 9, 2012. Dawid Rasaªa Metody numeryczne 1 / 9 Metody numeryczne Wst p do metod numerycznych Dawid Rasaªa January 9, 2012 Dawid Rasaªa Metody numeryczne 1 / 9 Metody numeryczne Czym s metody numeryczne? Istota metod numerycznych Metody numeryczne s

Bardziej szczegółowo

K P K P R K P R D K P R D W

K P K P R K P R D K P R D W KLASA III TECHNIKUM POZIOM PODSTAWOWY I ROZSZERZONY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i

Bardziej szczegółowo

Jan Olek. Uniwersytet Stefana Kardynała Wyszyńskiego. Procesy z Opóźnieniem. J. Olek. Równanie logistyczne. Założenia

Jan Olek. Uniwersytet Stefana Kardynała Wyszyńskiego. Procesy z Opóźnieniem. J. Olek. Równanie logistyczne. Założenia Procesy z Procesy z Jan Olek Uniwersytet Stefana ardynała Wyszyńskiego 2013 Wzór równania logistycznego: Ṅ(t)=rN(t)(1- N ), gdzie Ṅ(t) - przyrost populacji w czasie t r - rozrodczość netto, (r > 0) N -

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA. Dariusz Gozdowski. Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW

Statystyczna analiza danych w programie STATISTICA. Dariusz Gozdowski. Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Statystyczna analiza danych w programie STATISTICA ( 4 (wykład Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Regresja prosta liniowa Regresja prosta jest

Bardziej szczegółowo

2. Generatory liczb (pseudo)losowych

2. Generatory liczb (pseudo)losowych http://www.kaims.pl/~robert/miss/ Zmienne i rozkłady Znane rozkłady Wartość średnia i wariancja Niech X będzie zmienną losową, tj. funkcją odwzorowującą przestrzeń zdarzeń elementarnych Ω w zbiór liczb

Bardziej szczegółowo

Regulamin ustalania wysoko±ci, przyznawania i wypªacania stypendium za wyniki w nauce dla doktorantów MIMUW v4.3

Regulamin ustalania wysoko±ci, przyznawania i wypªacania stypendium za wyniki w nauce dla doktorantów MIMUW v4.3 Regulamin ustalania wysoko±ci, przyznawania i wypªacania stypendium za wyniki w nauce dla doktorantów MIMUW v4.3 1 grudnia 2007 Komentarze s pisane kursyw. 1. Doktoranci s dzieleni na kategorie pod wzgl

Bardziej szczegółowo

Równania liniowe i nieliniowe

Równania liniowe i nieliniowe ( ) Lech Sławik Podstawy Maximy 11 Równania.wxmx 1 / 8 Równania liniowe i nieliniowe 1 Symboliczne rozwiązanie równania z jedną niewiadomą 1.1 solve -- Funkcja: solve() MENU: "Równania->Rozwiąż..."

Bardziej szczegółowo

7. OPRACOWYWANIE DANYCH I PROWADZENIE OBLICZEŃ powtórka

7. OPRACOWYWANIE DANYCH I PROWADZENIE OBLICZEŃ powtórka 7. OPRACOWYWANIE DANYCH I PROWADZENIE OBLICZEŃ powtórka Oczekiwane przygotowanie informatyczne absolwenta gimnazjum Zbieranie i opracowywanie danych za pomocą arkusza kalkulacyjnego Uczeń: wypełnia komórki

Bardziej szczegółowo

Bazy danych. Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl www.uj.edu.pl/web/zpgk/materialy 9/15

Bazy danych. Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl www.uj.edu.pl/web/zpgk/materialy 9/15 Bazy danych Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl www.uj.edu.pl/web/zpgk/materialy 9/15 Przechowywanie danych Wykorzystanie systemu plików, dostępu do plików za pośrednictwem systemu operacyjnego

Bardziej szczegółowo

Ksztaªt orbity planety: I prawo Keplera

Ksztaªt orbity planety: I prawo Keplera V 0 V 0 Ksztaªt orbity planety: I prawo Keplera oka»emy,»e orbit planety poruszaj cej si pod dziaªaniem siªy ci»ko±ci ze strony Sªo«ca jest krzywa sto»kowa, w szczególno±ci elipsa. Wektor pr dko±ci planety

Bardziej szczegółowo

Czas pracy 170 minut

Czas pracy 170 minut ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 013 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od

Bardziej szczegółowo

Wielomiany. dr Tadeusz Werbiński. Teoria

Wielomiany. dr Tadeusz Werbiński. Teoria Wielomiany dr Tadeusz Werbiński Teoria Na początku przypomnimy kilka szkolnych definicji i twierdzeń dotyczących wielomianów. Autorzy podręczników szkolnych podają różne definicje wielomianu - dla jednych

Bardziej szczegółowo

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ L.p. 1. Liczby rzeczywiste 2. Wyrażenia algebraiczne bada, czy wynik obliczeń jest liczbą

Bardziej szczegółowo

Współczesne nowoczesne budownictwo pozwala na wyrażenie indywidualnego stylu domu..

Współczesne nowoczesne budownictwo pozwala na wyrażenie indywidualnego stylu domu.. Współczesne nowoczesne budownictwo pozwala na wyrażenie indywidualnego stylu domu.. w którym będziemy mieszkać. Coraz więcej osób, korzystających ze standardowych projektów, decyduje się nadać swojemu

Bardziej szczegółowo

x = (x 1, x 2,..., x n ), p = (p 1, p 2,..., p n )

x = (x 1, x 2,..., x n ), p = (p 1, p 2,..., p n ) *** Elementy teorii popytu *** II. Funkcja popytu konsumenta x = (x 1, x 2,..., x n ), p = (p 1, p 2,..., p n ) p, x = p 1 x 1 + p 2 x 2 + + p n x n cena koszyka x Zbiór wszystkich koszyków, na jakie sta

Bardziej szczegółowo

Surowiec Zużycie surowca Zapas A B C D S 1 0,5 0,4 0,4 0,2 2000 S 2 0,4 0,2 0 0,5 2800 Ceny 10 14 8 11 x

Surowiec Zużycie surowca Zapas A B C D S 1 0,5 0,4 0,4 0,2 2000 S 2 0,4 0,2 0 0,5 2800 Ceny 10 14 8 11 x Przykład: Przedsiębiorstwo może produkować cztery wyroby A, B, C, i D. Ograniczeniami są zasoby dwóch surowców S 1 oraz S 2. Zużycie surowca na jednostkę produkcji każdego z wyrobów (w kg), zapas surowca

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 014 Czas pracy: 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 1

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejk z kodem szko y dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-P1A1P-061 POZIOM PODSTAWOWY Czas pracy 10 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 1 stron.

Bardziej szczegółowo

7. REZONANS W OBWODACH ELEKTRYCZNYCH

7. REZONANS W OBWODACH ELEKTRYCZNYCH OBWODY SYGNAŁY 7. EZONANS W OBWODAH EEKTYZNYH 7.. ZJAWSKO EZONANS Obwody elektryczne, w których występuje zjawisko rezonansu nazywane są obwodami rezonansowymi lub drgającymi. ozpatrując bezźródłowy obwód

Bardziej szczegółowo

Techniki animacji komputerowej

Techniki animacji komputerowej Techniki animacji komputerowej 1 Animacja filmowa Pojęcie animacji pochodzi od ożywiania i ruchu. Animować oznacza dawać czemuś życie. Słowem animacja określa się czasami film animowany jako taki. Animacja

Bardziej szczegółowo

Próbna Nowa Matura z WSiP Październik 2014 Egzamin maturalny z matematyki dla klasy 3 Poziom podstawowy

Próbna Nowa Matura z WSiP Październik 2014 Egzamin maturalny z matematyki dla klasy 3 Poziom podstawowy Wypełnia uczeń Numer PESEL Kod ucznia Próbna Nowa Matura z WSiP Październik 0 Egzamin maturalny z matematyki dla klasy Poziom podstawowy Informacje dla ucznia. Sprawdź, czy zestaw egzaminacyjny zawiera

Bardziej szczegółowo

W. Guzicki Zadanie 23 z Informatora Maturalnego poziom rozszerzony 1

W. Guzicki Zadanie 23 z Informatora Maturalnego poziom rozszerzony 1 W. Guzicki Zadanie 3 z Informatora Maturalnego poziom rozszerzony 1 Zadanie 3. Rozwiąż równanie: sin 5x cos x + sin x = 0. W rozwiązaniach podobnych zadań często korzystamy ze wzorów trygonometrycznych

Bardziej szczegółowo

. 0 0... 1 0. 0 0 0 0 1 gdzie wektory α i tworz baz ortonormaln przestrzeni E n

. 0 0... 1 0. 0 0 0 0 1 gdzie wektory α i tworz baz ortonormaln przestrzeni E n GAL II 2013-2014 A. Strojnowski str.45 Wykªad 20 Denicja 20.1 Przeksztaªcenie aniczne f : H H anicznej przestrzeni euklidesowej nazywamy izometri gdy przeksztaªcenie pochodne f : T (H) T (H) jest izometri

Bardziej szczegółowo

Wzory Viete a i ich zastosowanie do uk ladów równań wielomianów symetrycznych dwóch i trzech zmiennych

Wzory Viete a i ich zastosowanie do uk ladów równań wielomianów symetrycznych dwóch i trzech zmiennych Wzory Viete a i ich zastosowanie do uk ladów równań wielomianów symetrycznych dwóch i trzech zmiennych Pawe l Józiak 007-- Poje cia wste pne Wielomianem zmiennej rzeczywistej t nazywamy funkcje postaci:

Bardziej szczegółowo

POLITECHNIKA WROCŠAWSKA WYDZIAŠ ELEKTRONIKI PRACA DYPLOMOWA MAGISTERSKA

POLITECHNIKA WROCŠAWSKA WYDZIAŠ ELEKTRONIKI PRACA DYPLOMOWA MAGISTERSKA POLITECHNIKA WROCŠAWSKA WYDZIAŠ ELEKTRONIKI Kierunek: Specjalno± : Automatyka i Robotyka (AIR) Robotyka (ARR) PRACA DYPLOMOWA MAGISTERSKA Podatny manipulator planarny - budowa i sterowanie Vulnerable planar

Bardziej szczegółowo

pobrano z (A1) Czas GRUDZIE

pobrano z  (A1) Czas GRUDZIE EGZAMIN MATURALNY OD ROKU SZKOLNEGO 014/015 MATEMATYKA POZIOM ROZSZERZONY PRZYK ADOWY ZESTAW ZADA (A1) W czasie trwania egzaminu zdaj cy mo e korzysta z zestawu wzorów matematycznych, linijki i cyrkla

Bardziej szczegółowo

y f x 0 f x 0 x x 0 x 0 lim 0 h f x 0 lim x x0 - o ile ta granica właściwa istnieje. f x x2 Definicja pochodnych jednostronnych 1.5 0.

y f x 0 f x 0 x x 0 x 0 lim 0 h f x 0 lim x x0 - o ile ta granica właściwa istnieje. f x x2 Definicja pochodnych jednostronnych 1.5 0. Matematyka ZLic - 3 Pochodne i różniczki funkcji jednej zmiennej Definicja Pochodną funkcji f w punkcie x, nazwiemy liczbę oznaczaną symbolem f x lub df x dx, równą granicy właściwej f x lim h - o ile

Bardziej szczegółowo

MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI

MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI LUTY 01 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz zawiera strony (zadania 1 ).. Arkusz zawiera 4 zadania zamknięte i 9

Bardziej szczegółowo

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ MATEMATYKA Klasa III ZAKRES PODSTAWOWY Dział programu Temat Wymagania. Uczeń: 1. Miara łukowa kąta zna pojęcia: kąt skierowany, kąt

Bardziej szczegółowo

Mateusz Rzeszutek. 19 kwiecie«2012. Sie VLAN nie zmienia nic w kwestii domen kolizyjnych. przynale»no± w oparciu o numer portu

Mateusz Rzeszutek. 19 kwiecie«2012. Sie VLAN nie zmienia nic w kwestii domen kolizyjnych. przynale»no± w oparciu o numer portu Sieci: lab3 Mateusz Rzeszutek 19 kwiecie«2012 1 Poj cie sieci wirtualnej Sie VLAN jest logiczn grup urz dze«sieciowych wydzielon w ramach innej, wi kszej sieci zycznej. Urz dzenia w sieci VLAN mog komunikowa

Bardziej szczegółowo

Caªkowanie numeryczne - porównanie skuteczno±ci metody prostokatów, metody trapezów oraz metody Simpsona

Caªkowanie numeryczne - porównanie skuteczno±ci metody prostokatów, metody trapezów oraz metody Simpsona Akademia Górniczo-Hutnicza im. Stanisªawa Staszica w Krakowie Wydziaª Fizyki i Informatyki Stosowanej Krzysztof Grz dziel kierunek studiów: informatyka stosowana Caªkowanie numeryczne - porównanie skuteczno±ci

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów

Metody numeryczne. materiały do wykładu dla studentów Metody numeryczne materiały do wykładu dla studentów Autorzy: Maria Kosiorowska Marta Kornafel Grzegorz Kosiorowski Grzegorz Szulik Sebastian Baran Jakub Bielawski Materiały przygotowane w ramach projektu

Bardziej szczegółowo

Podstawowe działania w rachunku macierzowym

Podstawowe działania w rachunku macierzowym Podstawowe działania w rachunku macierzowym Marcin Detka Katedra Informatyki Stosowanej Kielce, Wrzesień 2004 1 MACIERZE 1 1 Macierze Macierz prostokątną A o wymiarach m n (m wierszy w n kolumnach) definiujemy:

Bardziej szczegółowo

P 0max. P max. = P max = 0; 9 20 = 18 W. U 2 0max. U 0max = q P 0max = p 18 2 = 6 V. D = T = U 0 = D E ; = 6

P 0max. P max. = P max = 0; 9 20 = 18 W. U 2 0max. U 0max = q P 0max = p 18 2 = 6 V. D = T = U 0 = D E ; = 6 XL OLIMPIADA WIEDZY TECHNICZNEJ Zawody II stopnia Rozwi zania zada dla grupy elektryczno-elektronicznej Rozwi zanie zadania 1 Sprawno przekszta tnika jest r wna P 0ma a Maksymaln moc odbiornika mo na zatem

Bardziej szczegółowo

Grafika komputerowa Wykład 7 Modelowanie obiektów graficznych cz. I

Grafika komputerowa Wykład 7 Modelowanie obiektów graficznych cz. I Grafika komputerowa Wykład 7 Modelowanie obiektów graficznych cz. I Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści 1

Bardziej szczegółowo

Modele ARIMA prognoza, specykacja

Modele ARIMA prognoza, specykacja Modele ARIMA prognoza, specykacja Wst p do ekonometrii szeregów czasowych wiczenia 3 5 marca 2010 Plan prezentacji 1 Specykacja modelu ARIMA 2 3 Plan prezentacji 1 Specykacja modelu ARIMA 2 3 Funkcja autokorelacji

Bardziej szczegółowo

STATYSTYCZNE MODELOWANIE DANYCH BIOLOGICZNYCH

STATYSTYCZNE MODELOWANIE DANYCH BIOLOGICZNYCH STATYSTYCZNE MODELOWANIE DANYCH BIOLOGICZNYCH WYKŠAD 1 13 pa¹dziernik 2014 1 / 49 Plan wykªadu 1. Analizy prze»ycia na przykªadach 2. Podstawowe idee statystyki matematycznej wykorzystywane w analizie

Bardziej szczegółowo

Oprogramowanie klawiatury matrycowej i alfanumerycznego wyświetlacza LCD

Oprogramowanie klawiatury matrycowej i alfanumerycznego wyświetlacza LCD Oprogramowanie klawiatury matrycowej i alfanumerycznego wyświetlacza LCD 1. Wprowadzenie DuŜa grupa sterowników mikroprocesorowych wymaga obsługi przycisków, które umoŝliwiają uŝytkownikowi uruchamianie

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 9

Bardziej szczegółowo

Macierz A: macierz problemów liniowych (IIII); Macierz rozszerzona problemów liniowych (IIII): a 11 a 1m b 1 B = a n1 a nm b n

Macierz A: macierz problemów liniowych (IIII); Macierz rozszerzona problemów liniowych (IIII): a 11 a 1m b 1 B = a n1 a nm b n Plan Spis tre±ci 1 Problemy liniowe 1 2 Zadania I 3 3 Formy biliniowe 3 3.1 Odwzorowania wieloliniowe..................... 3 3.2 Formy biliniowe............................ 4 4 Formy kwadratowe 4 1 Problemy

Bardziej szczegółowo

Temat: Co to jest optymalizacja? Maksymalizacja objętości naczynia prostopadłościennego za pomocą arkusza kalkulacyjngo.

Temat: Co to jest optymalizacja? Maksymalizacja objętości naczynia prostopadłościennego za pomocą arkusza kalkulacyjngo. Konspekt lekcji Przedmiot: Informatyka Typ szkoły: Gimnazjum Klasa: II Nr programu nauczania: DKW-4014-87/99 Czas trwania zajęć: 90min Temat: Co to jest optymalizacja? Maksymalizacja objętości naczynia

Bardziej szczegółowo

INFORMACJA PRASOWA. Cel: zakup komputerów, budowa sieci LAN, zakup i wdroŝenie aplikacji aktualnie dostępnych na rynku.

INFORMACJA PRASOWA. Cel: zakup komputerów, budowa sieci LAN, zakup i wdroŝenie aplikacji aktualnie dostępnych na rynku. RZECZPOSPOLITA POLSKA MINISTERSTWO SPRAWIEDLIWOŚCI BIURO MINISTRA WYDZIAŁ INFORMACJI Warszawa, dnia 13 października 2007 r. INFORMACJA PRASOWA Minione dwa lata przyniosły przełom w informatyzacji polskiego

Bardziej szczegółowo

Rozdział 6. Pakowanie plecaka. 6.1 Postawienie problemu

Rozdział 6. Pakowanie plecaka. 6.1 Postawienie problemu Rozdział 6 Pakowanie plecaka 6.1 Postawienie problemu Jak zauważyliśmy, szyfry oparte na rachunku macierzowym nie są przerażająco trudne do złamania. Zdecydowanie trudniejszy jest kryptosystem oparty na

Bardziej szczegółowo

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 17 stron.. W zadaniach od 1. do 0. s podane 4 odpowiedzi:

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejk z kodem dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Czas pracy 10 minut Instrukcja dla zdaj cego 1. Prosz sprawdzi, czy arkusz egzaminacyjny zawiera 9 stron. Ewentualny brak nale

Bardziej szczegółowo

ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures.

ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures. Algorytmy i struktury danych. Metody numeryczne ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures. dzienne magisterskie Numerical methods. (Part 2. Numerical methods)

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W ZESPOLE SZKÓŁ NR 32 im. K. K. Baczyńskiego W WARSZAWIE

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W ZESPOLE SZKÓŁ NR 32 im. K. K. Baczyńskiego W WARSZAWIE PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W ZESPOLE SZKÓŁ NR 32 im. K. K. Baczyńskiego W WARSZAWIE I. Przedmiotowy System Oceniania z matematyki jest zgodny z Wewnątrzszkolnym Systemem Oceniania (WSO)

Bardziej szczegółowo

Kurs pracy w systemie Linux zadanie z listy zada«

Kurs pracy w systemie Linux zadanie z listy zada« Kurs pracy w systemie Linux zadanie z listy zada«jakub Michaliszyn Instytut Informatyki Uniwersytetu Wrocªawskiego 6 grudnia 2009 1 Pobieranie plików 2 Przepisywanie pliku 3 Alternatywa 4 Jeszcze wi cej,

Bardziej szczegółowo

epuap Ogólna instrukcja organizacyjna kroków dla realizacji integracji

epuap Ogólna instrukcja organizacyjna kroków dla realizacji integracji epuap Ogólna instrukcja organizacyjna kroków dla realizacji integracji Projekt współfinansowany ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka

Bardziej szczegółowo

1. Rozwiązać układ równań { x 2 = 2y 1

1. Rozwiązać układ równań { x 2 = 2y 1 Dzień Dziecka z Matematyką Tomasz Szymczyk Piotrków Trybunalski, 4 czerwca 013 r. Układy równań szkice rozwiązań 1. Rozwiązać układ równań { x = y 1 y = x 1. Wyznaczając z pierwszego równania zmienną y,

Bardziej szczegółowo

wstrzykiwanie "dodatkowych" nośników w przyłożonym polu elektrycznym => wzrost gęstości nośników (n)

wstrzykiwanie dodatkowych nośników w przyłożonym polu elektrycznym => wzrost gęstości nośników (n) UKŁADY STUDNI KWANTOWYCH I BARIER W POLU LEKTRYCZNYM transport podłużny efekt podpasm energia kinetyczna ruchu do złącz ~ h 2 k 2 /2m, na dnie podpasma k =0 => v =0 wstrzykiwanie "dodatkowych" nośników

Bardziej szczegółowo

Statut Stowarzyszenia SPIN

Statut Stowarzyszenia SPIN Statut Stowarzyszenia SPIN Rozdział I. Postanowienia ogólne 1 1. Stowarzyszenie nosi nazwę SPIN w dalszej części Statutu zwane Stowarzyszeniem. 2. Stowarzyszenie działa na podstawie ustawy z dnia 7 kwietnia

Bardziej szczegółowo

Zarz dzanie rm. Zasada 2: samoorganizuj ce si zespoªy. Piotr Fulma«ski. March 17, 2015

Zarz dzanie rm. Zasada 2: samoorganizuj ce si zespoªy. Piotr Fulma«ski. March 17, 2015 Zarz dzanie rm Zasada 2: samoorganizuj ce si zespoªy Piotr Fulma«ski Instytut Nauk Ekonomicznych i Informatyki, Pa«stwowa Wy»sza Szkoªa Zawodowa w Pªocku, Polska March 17, 2015 Table of contents Ludzie

Bardziej szczegółowo

4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze. ϕ : K(x 0, δ) (y 0 η, y 0 + η), taka że

4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze. ϕ : K(x 0, δ) (y 0 η, y 0 + η), taka że 4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze taka że K(x 0, δ) (y 0 η, y 0 + η) R n R, f(x 0, y 0 ) = 0, y f(x 0, y 0 ) 0. Wówczas dla odpowiednio

Bardziej szczegółowo

Cel modelowania neuronów realistycznych biologicznie:

Cel modelowania neuronów realistycznych biologicznie: Sieci neuropodobne XI, modelowanie neuronów biologicznie realistycznych 1 Cel modelowania neuronów realistycznych biologicznie: testowanie hipotez biologicznych i fizjologicznych eksperymenty na modelach

Bardziej szczegółowo

14.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe.

14.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe. Matematyka 4/ 4.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe. I. Przypomnij sobie:. Wiadomości z poprzedniej lekcji... Że przy rozwiązywaniu zadań tekstowych wykorzystujących

Bardziej szczegółowo

PROGRAM ZAJĘĆ MATEMATYCZNYCH DLA UCZNIÓW Z DYSLEKSJĄ

PROGRAM ZAJĘĆ MATEMATYCZNYCH DLA UCZNIÓW Z DYSLEKSJĄ Nie wystarczy mieć rozum, trzeba jeszcze umieć z niego korzystać Kartezjusz Rozprawa o metodzie PROGRAM ZAJĘĆ MATEMATYCZNYCH DLA UCZNIÓW Z DYSLEKSJĄ II KLASA LICEUM OGÓLNOKSZTAŁCĄCE 1 Opracowała : Dorota

Bardziej szczegółowo

Szkolenie Regresja logistyczna

Szkolenie Regresja logistyczna Szkolenie Regresja logistyczna program i cennik Łukasz Deryło Analizy statystyczne, szkolenia www.statystyka.c0.pl Szkolenie Regresja logistyczna Co to jest regresja logistyczna? Regresja logistyczna pozwala

Bardziej szczegółowo

NUMER IDENTYFIKATORA:

NUMER IDENTYFIKATORA: Społeczne Liceum Ogólnokształcące z Maturą Międzynarodową im. Ingmara Bergmana IB WORLD SCHOOL 53 ul. Raszyńska, 0-06 Warszawa, tel./fax 668 54 5 www.ib.bednarska.edu.pl / e-mail: liceum.ib@rasz.edu.pl

Bardziej szczegółowo

Technika analogowa 2. Wykład 5 Analiza obwodów nieliniowych

Technika analogowa 2. Wykład 5 Analiza obwodów nieliniowych Technika analogowa Wykład 5 Analiza obwodów nieliniowych 1 Plan wykładu Wprowadzenie Charakterystyki parametry dwójników nieliniowych odzaje charakterystyk elementów nieliniowych Obwody z nieliniowymi

Bardziej szczegółowo

Uzasadnienie Projekt rozporządzenia Ministra Edukacji Narodowej w sprawie udzielania dotacji celowej na wyposażenie szkół w podręczniki, materiały edukacyjne i materiały ćwiczeniowe jest wykonaniem upoważnienia

Bardziej szczegółowo

NAJWAŻNIEJSZE ZALETY LAMP DIODOWYCH

NAJWAŻNIEJSZE ZALETY LAMP DIODOWYCH NAJWAŻNIEJSZE ZALETY LAMP DIODOWYCH Pozwalają zaoszczędzić do 80% energii elektrycznej i więcej! Strumień światła zachowuje 100% jakości w okresie eksploatacji nawet do 50.000 do 70.000 h tj. w okresie

Bardziej szczegółowo

Szczegółowe Specyfikacje Techniczne Wykonania i Odbioru Robót Budowlanych CPV 45310000-3 Branża elektryczna

Szczegółowe Specyfikacje Techniczne Wykonania i Odbioru Robót Budowlanych CPV 45310000-3 Branża elektryczna Szczegółowe Specyfikacje Techniczne Wykonania i Odbioru Robót Budowlanych CPV 45310000-3 Branża elektryczna OBIEKT: Budynki 20 i 21 Wojewódzkiego Sądu Administracyjnego w Gdańsku ADRES: Gdańsk, Al. Zwycięstwa

Bardziej szczegółowo

Reforma emerytalna w ±wietle modelu z nakªadaj cymi si pokoleniami (OLG)

Reforma emerytalna w ±wietle modelu z nakªadaj cymi si pokoleniami (OLG) Reforma emerytalna w ±wietle modelu z nakªadaj cymi si pokoleniami (OLG) Jan Hagemejer, Krzysztof Makarski, Joanna Tyrowicz wsparcie: Marcin Bielecki, Agnieszka Borowska, Karolina Goraus GRAPE@WNE UW/SGH/NBP

Bardziej szczegółowo

OBWODY REZYSTANCYJNE NIELINIOWE

OBWODY REZYSTANCYJNE NIELINIOWE Politechnika Białostocka Wydział Elektryczny atedra Elektrotechniki Teoretycznej i Metrologii nstrukcja do zaj laboratoryjnych OBWODY REZYSTANCYJNE NELNOWE Numer wiczenia E17 Opracowanie: dr in. Jarosław

Bardziej szczegółowo

Kratownice Wieża Eiffel a

Kratownice Wieża Eiffel a Kratownice Wieża Eiffel a Kratownica jest to konstrukcja nośna, składająca się z prętów połączonch ze sobą w węzłach. Kratownica może bć: 1) płaska, gd wszstkie pręt leżą w jednej płaszczźnie, 2) przestrzenna,

Bardziej szczegółowo

0.1 Hierarchia klas. 0.1.1 Diagram. 0.1.2 Krótkie wyjaśnienie

0.1 Hierarchia klas. 0.1.1 Diagram. 0.1.2 Krótkie wyjaśnienie 0.1 Hierarchia klas 0.1.1 Diagram 0.1.2 Krótkie wyjaśnienie Po pierwsze to jest tylko przykładowe rozwiązanie. Zarówno na wtorkowych i czwartkowych ćwiczeniach odbiegaliśmy od niego, ale nie wiele. Na

Bardziej szczegółowo

Elementy Modelowania Matematycznego Wykªad 9 Systemy kolejkowe

Elementy Modelowania Matematycznego Wykªad 9 Systemy kolejkowe Elementy Modelowania Matematycznego Wykªad 9 Systemy kolejkowe Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis tre±ci 1 2 3 Spis tre±ci 1 2 3 Spis tre±ci 1 2 3 Teoria masowej obsªugi,

Bardziej szczegółowo

A. Informacje dotyczące podmiotu, któremu ma A1) Informacje dotyczące wspólnika spółki cywilnej być udzielona pomoc de minimis 1)

A. Informacje dotyczące podmiotu, któremu ma A1) Informacje dotyczące wspólnika spółki cywilnej być udzielona pomoc de minimis 1) FORMULARZ INFORMACJI PRZEDSTAWIANYCH PRZY UBIEGANIU SIĘ O POMOC DE MINIMIS Stosuje się do de minimis udzielanej na warunkach określonych w rozporządzeniu Komisji (UE) nr 1407/2013 z dnia 18 grudnia 2013

Bardziej szczegółowo

MATEMATYKA LICEUM. 1. Liczby rzeczywiste. Uczeń:

MATEMATYKA LICEUM. 1. Liczby rzeczywiste. Uczeń: MATEMATYKA LICEUM Stopień niedostateczny otrzymuje uczeń, który nie opanował wiadomości i umiejętności określonych w podstawie programowej i braki uniemożliwiają dalsze zdobywanie wiedzy z tego przedmiotu,

Bardziej szczegółowo

Chmura obliczeniowa. do przechowywania plików online. Anna Walkowiak CEN Koszalin 2015-10-16

Chmura obliczeniowa. do przechowywania plików online. Anna Walkowiak CEN Koszalin 2015-10-16 Chmura obliczeniowa do przechowywania plików online Anna Walkowiak CEN Koszalin 2015-10-16 1 Chmura, czyli co? Chmura obliczeniowa (cloud computing) to usługa przechowywania i wykorzystywania danych, do

Bardziej szczegółowo

Optymalizacja R dlaczego warto przesi ± si na Linuxa?

Optymalizacja R dlaczego warto przesi ± si na Linuxa? Optymalizacja R dlaczego warto przesi ± si na Linuxa? 19 listopada 2014 Wi cej informacji, wraz z dodatkowymi materiaªami mo»na znale¹ w repozytorium na GitHubie pod adresem https://github.com/zzawadz/

Bardziej szczegółowo